Strong Normalizability of Calculus of Explicit Substitutions with Composition

Takafumi Sakurai
Department of Mathematics and Informatics, Chiba University
sakurai@math.s.chiba-u.ac.jp

Abstract

We develop a novel method for proving the strong normalizability of simply typed $\lambda \mathrm{x}$ with a composition rule. Bloo and Geuvers [2] proved the strong normalizability of $\lambda \mathrm{x}$ with a composition rule, but our composition rule is a new one: $t\langle y:=r\rangle\langle x:=s\rangle \mapsto t\langle x:=s\rangle\langle y:=r\langle x:=s\rangle\rangle$ if $x \in \mathrm{FV}(r)$. In fact, we prove the stronger result: Suppose we have a reduction sequence that consists of rules of $\lambda \mathrm{x}$, the above composition rule, and the permutation rule $t\langle y:=r\rangle\langle x:=s\rangle \mapsto t\langle x:=s\rangle\langle y:=r\rangle$ if $x \notin \mathrm{FV}(r)$, where the successive application of permutation rules is finite. Then, the reduction sequence is finite. This implies that the meta-substitution is admissible in our calculus.

1 Introduction

$\lambda \sigma[1]$ is designed to formalize the implementation of $\lambda \beta$. So it was natural to expect that $\lambda \sigma$ inherits all the good properties of $\lambda \beta$. But Melliès [10] has shown that there is a typed $\lambda \sigma$ term that is not strongly normalizing. In his counterexample, the substitution composition rule plays the essential role. So, since then, a quest for an appropriate composition rule has begun. λ_{d} and $\lambda_{d n}[8,7]$ are variants of $\lambda \sigma$ whose substitution composition rules are more restrictive than that of $\lambda \sigma . \lambda_{w s}[4,6,5]$ is a calculus of explicit substitutions whose terms are decorated with 'labels' that correspond to weakenings and it has a full composition rule that is controlled by the information attached to the term. In the case of $\lambda \mathrm{x}[3]$, which is the simplest calculus of explicit substitution, terms do not have such extra information. So, it is difficult to control the application of composition rule. Up to now, the best result is the one proved by Bloo and Geuvers [2]. They proved the strong normalizability of $\lambda \mathrm{x}$ with the following composition rule:

$$
t\langle y:=r\rangle\langle x:=s\rangle \mapsto t\langle y:=r\langle x:=s\rangle\rangle \quad \text { if } y \in \mathrm{FV}(\mathrm{x}(t)) \text { and } x \notin \mathrm{FV}(\mathrm{x}(t))-\{y\}
$$

where $\times(t)$ stands for the substitution-normal-form of t. This form of composition has been considered as 'on the edge', but our composition rule is a full composition rule controlled by a simple condition, that is,

$$
t\langle y:=r\rangle\langle x:=s\rangle \mapsto t\langle x:=s\rangle\langle y:=r\langle x:=s\rangle\rangle \quad \text { if } x \in \mathrm{FV}(r) .
$$

In this paper, we prove the strong normalizability of $\lambda \mathrm{x}$ with this composition rule. In fact, we prove the stronger result: Suppose we have a reduction sequence that consists of rules of $\lambda \mathrm{x}$, the above composition rule, and the permutation rule

$$
t\langle y:=r\rangle\langle x:=s\rangle \mapsto t\langle x:=s\rangle\langle y:=r\rangle \quad \text { if } x \notin \mathrm{FV}(r),
$$

where the successive application of permutation rules is finite. Then, the reduction sequence is finite. This make the meta-substitution admissible in our calculus.

Usually, when we try to prove the strong normalizability of $\lambda \mathrm{x}$ or its variant, it is necessary to show the lemma "If $t\langle x:=s\rangle\langle y:=r\rangle$ is SN , then $((\lambda x . t) s)\langle y:=r\rangle$ is SN." Then, we are tempted to prove this lemma by converting a reduction sequence starting from $((\lambda x . t) s)\langle y:=r\rangle$ to a reduction sequence starting from $t\langle x:=s\rangle\langle y:=r\rangle$. But if we try to convert a reduction sequence $((\lambda x . t) s)\langle y:=r\rangle \xrightarrow{*}$ $(\lambda x . t\langle y:=r\rangle)(s\langle y:=r\rangle) \rightarrow t\langle y:=r\rangle\langle x:=s\langle y:=r\rangle\rangle$, we get stuck. This is why the proof of strong normalizability of $\lambda \mathrm{x}$ is more difficult than that of $\lambda \beta$. Various techniques are introduced to overcome this difficulty, but we present a novel technique. We extend the notion of term by adding a new kind of substitution. Our substitution has a distinctive feature that it can be composed with other substitutions unconditionally. This leads to non-termination, but we can deal with it by modifying the notion of SN. (We call the modified notion semi SN.) In this setting, we can naturally prove the lemma (Lemma 3) that corresponds to the lemma mentioned above, but the drawback is that the proof of void lemma (weakening lemma) becomes complicated.

Unlike the ordinary style, we prove PSN property using intersection type system. Furthermore, we can characterize semi SN using intersection type system, though we omit the proof here.

This paper is organized as follows. In section 2, we describe our calculus. Section 3 is the most complicated part of this paper, which is devoted to prove void lemma. In section 4 , we prove the reducibility theorem. In section 5 , we briefly note the relation with intersection type system.

2 Explicit Substitution

We define the calculus of explicit substitution $\lambda \mathrm{x}$ [3]. We assume a countably infinite set V of variables and define the syntax of (untyped) $\lambda \mathrm{x}$-term by the following grammar

$$
t, s::=x|\lambda x . t| t s \mid t\langle x:=s\rangle
$$

where x ranges over V . We omit the formal definition of free and bound variables here. We just remark that in λx. t and $t\langle x:=s\rangle$, the variable x in t is bound by the binders λx. and $\langle x:=s\rangle$. We call x in λx. and $\langle x:=s\rangle$ a binding variable, $\langle x:=s\rangle$ a substitution, and s (resp. t) in $t\langle x:=s\rangle$ the body (resp. target) of the substitution. We identify α-convertible terms and adopt the conventions that bound variables
are different from free variables and different binders have different binding variables. We write t_{x}^{y} for a term obtained by renaming free occurrence of x in t to y.

A position is a string over L, F, A, T, B. (An empty string is denoted by A.) For a term t and a position π, we define a term t / π as follows.

1. $t / \Lambda \triangleq t$
2. $\lambda x . t / \mathrm{L} \pi \triangleq t / \pi$
3. $t s / \mathrm{F} \pi \triangleq t / \pi \quad t s / \mathrm{A} \pi \triangleq s / \pi$
4. $t\langle x:=s\rangle / \mathrm{T} \pi \triangleq t / \pi \quad t\langle x:=s\rangle / \mathrm{B} \pi \triangleq s / \pi$

Note that t / π may be undefined, but we will use the notation t / π only when it is defined and say π is a position in t. Then, we say t / π is in (position π of) t, or t / π is a subterm of t. If $t / \pi \equiv r\langle x:=s\rangle$ for some r, we say $\langle x:=s\rangle$ is in (position π of) t.

Let π and σ be positions. We write $\pi \sqsubseteq \sigma$ if $\sigma \equiv \pi \pi^{\prime}$ for some π^{\prime}, and write $\pi \sqsubset \sigma$ if $\pi^{\prime} \not \equiv \Lambda$. If π is a position in t, then $t_{\pi}[s]$ stands for the term which is obtained from t by textually replacing its subterm t / π at π with s.

The conversion rules \mapsto of $\lambda \mathrm{x}$ are defined as follows.
($\boldsymbol{\lambda})(\lambda x . t) s \mapsto t\langle x:=s\rangle$
(var) $x\langle x:=s\rangle \mapsto s$
(gc) $t\langle x:=s\rangle \mapsto t \quad$ if $x \notin \mathrm{FV}(t)$
(abs) $(\lambda y \cdot t)\langle x:=s\rangle \mapsto \lambda y . t\langle x:=s\rangle \quad$ if $y \notin\{x\} \cup \mathrm{FV}(s)$
(app) $(t r)\langle x:=s\rangle \mapsto(t\langle x:=s\rangle)(r\langle x:=s\rangle)$
We refer to a set of these rules as $\lambda \mathrm{x}$ and, moreover, we have the following composition rule.
(comp) $t\langle y:=r\rangle\langle x:=s\rangle \mapsto t\langle x:=s\rangle\langle y:=r\langle x:=s\rangle\rangle \quad$ if $x \in \mathrm{FV}(r)$
We write $(R \mid \pi): t \rightarrow t^{\prime}$ if $t / \pi \mapsto s$ by rule (R) and $t^{\prime} \equiv t_{\pi}[s]$, and say $(R \mid \pi)$ is applied to $t,(R)$ is applied at π (in t), or π is a reduction position of (R). We just write $t \rightarrow t^{\prime}$ or $(R): t \rightarrow t^{\prime}$ when (R) and/or π need not be specified. To specify a reduction sequence, we write $\gamma_{1}, \ldots, \gamma_{n}, \ldots: t_{1} \rightarrow \cdots t_{n} \rightarrow \cdots$ when γ_{i} is applied to t_{i}.

We will extend the notion of term in the following, so we will refer to the term defined above as an original $\lambda \mathrm{x}$-term. Now, we prepare another countably infinite set D of variables that is disjoint from V and introduce a new kind of substitution $\{x:=s\}$, which we call definitional substitution (or d-substitution for short). Then, we say t is a term or t satisfies the term formation condition, if t : term is derivable using the following rules.

$$
\begin{aligned}
& \frac{x \in \mathrm{~V} \cup \mathrm{D}}{x: \text { term }} \frac{t: \text { term } s: \text { term }}{t s: \text { term }} \frac{t: \text { term } x \in \mathrm{~V}}{\lambda x \cdot t: \text { term }} \frac{t: \text { term } s: \text { term } x \in \mathrm{~V}}{t\langle x:=s\rangle: \text { term }} \\
& \frac{t: \text { term } s: \text { term } x \in \mathrm{D} \quad \mathrm{FV}(s) \subseteq \mathrm{D}}{t\langle x:=s\rangle: \text { term }} \frac{t: \text { term }}{} \quad s: \text { term } \quad x \in \mathrm{D} \quad \mathrm{FV}(s) \subseteq \mathrm{D} \\
& t\{x:=s\}: \text { term }
\end{aligned}
$$

We also assume that when a bound variable is renamed, a variable in V (resp. D) should be renamed to a variable in V (resp. D). A term is ds-free if it does not have a subterm of the form $t\{x:=s\}$. As for the notion of position, d -substitution is treated in the same way as substitution, that is, $t\{x:=s\} / \mathrm{T} \pi \triangleq$ $t / \pi, t\{x:=s\} / \mathrm{B} \pi \triangleq s / \pi$.

The conversion rules for d-substitution are given by replacing $\langle x:=s\rangle$ in (var), (gc), (abs), (app) by $\{x:=s\}$ and these rules are referred to by the same names. Furthermore, the following rules are introduced.

$$
\begin{array}{ll}
\text { (dox) } & t\langle y:=r\rangle\{x:=s\} \mapsto t\{x:=s\}\langle y:=r\{x:=s\}\rangle \\
\text { (dod) } & t\{y:=r\}\{x:=s\} \mapsto t\{x:=s\}\{y:=r\{x:=s\}\} \\
\text { (d2x) } t\{x:=s\} \mapsto t\langle x:=s\rangle \\
\text { (perm) } t\langle y:=r\rangle\langle x:=s\rangle \mapsto t\langle x:=s\rangle\langle y:=r\rangle \quad \text { if } x \notin \mathrm{FV}(r)
\end{array}
$$

Note that the term formation condition is not violated by the reduction. Though non-termination is easily caused by these rules, we can deal with it by relaxing the notion of SN . We will define it after we introduce another form of term in the next paragraph.

A definition is an expression of the form $x:=s$ where $x \in \mathrm{D}$ and s is a term such that $\mathrm{FV}(s) \subseteq \mathrm{D}$, and a def-term is an expression of the form $\Delta \mathrm{t} t$ where Δ is a sequence of definitions and t is a term. When Δ is an empty sequence, we identify $\Delta \mathrm{I} t$ and t. Let $\Delta \equiv d_{1}, \ldots, d_{n}$ be a definition sequence. We write Δ_{k} for d_{k} and Δ_{k} for d_{1}, \ldots, d_{k}. For def-terms, we have the following reduction rules.

$$
(R) \Delta \mathrm{I} t \rightarrow \Delta \mathrm{I} t^{\prime} \quad \text { if }(R): t \rightarrow t^{\prime} \text { where }(R) \text { is one of the above rules }
$$

(def) $\Delta, x:=s$ ı $t \rightarrow \Delta$ । $t\{x:=s\}$
A definition is essentially a d-substitution, but this syntactic distinction is necessary when we define reducibility. Before that, we can think of $x_{1}:=s_{1}, \ldots, x_{n}:=s_{n}$ I t as $t\left\{x_{n}:=s_{n}\right\} \cdots\left\{x_{1}:=s_{1}\right\}$.

A reduction sequence is non-permutative if the length of every successive application of (perm)s is finite. A reduction sequence starting from $\Delta \mathrm{I} t$ is nontrivial if it is non-permutative and there exists its initial part $\Delta \mathrm{I} t \xrightarrow{*} t^{\prime}$ such that t^{\prime} is ds-free. A def-term $\Delta \mathrm{I} t$ is semi $S N$ if any non-trivial reduction sequence starting from $\Delta \mathrm{I} t$ terminates, and a sequence of definitions Δ is semi $S N$ if $\Delta_{k-1} \mid s_{k}$ is semi SN for each $\Delta_{k} \equiv x:=s_{k}$. (Therefore, a ds-free term t is semi SN iff any non-permutative reduction sequence starting from t terminates.) For a ds-free term t, we write $\nu(t)$ for the length of the longest non-permutative reduction sequence starting from t ignoring the number of (perm)s. Note that if (perm) : $t \rightarrow t^{\prime}$ and $\nu(t)$ is defined then $\nu(t)=\nu\left(t^{\prime}\right)$.

A position π is n-applicative, if $\pi \equiv \mathrm{T}^{k_{1}} \mathrm{~F} \cdots \mathrm{~T}^{k_{n-1}} \mathrm{FT}^{k_{n}}$ for some $k_{1}, \ldots, k_{n} \geq$ 0 , and is $n \geq$-applicative if m-applicative for some $m \leq n$. This notion is used to specify a position in a term of the form $\left(\cdots\left(t_{0} \overline{\theta_{0}} t_{1}\right) \overline{\theta_{1}} \cdots t_{n}\right) \overline{\theta_{n}}$ where $\overline{\theta_{i}} \equiv$ $\left\{x_{i 1}:=s_{i 1}\right\} \cdots\left\{x_{i m_{i}}:=s_{i m_{i}}\right\}$ and $\left\{x_{i j}:=s_{i j}\right\}$ stands for either a substitution or a d-substitution. In this term, $\left\{x_{i j}:=s_{i j}\right\}(0 \leq i \leq n)$ and $\left(t_{i-1} \overline{\theta_{i-1}} t_{i}\right)(1 \leq i \leq n)$ are in $n-i+1$-applicative position and t_{0} is in $n+1$-applicative position.

Lemma 1. If there is an infinite non-trivial reduction sequence starting from $\Delta \mathrm{I} t_{0} t_{1} \cdots t_{n}$ that has no ($\boldsymbol{\lambda}$) at n-applicative position, at least one of $\Delta \mathrm{I} t_{0}$, $\Delta \mathrm{I} t_{1}, \ldots, \Delta \mathrm{I} t_{n}$ is not semi $S N$.

Proof. Let $\bar{\gamma}$ be the reduction sequence. Since all terms in $\bar{\gamma}$ are of the form $\left(\cdots\left(t_{0}^{\prime} \overline{\theta_{0}} t_{1}^{\prime}\right) \overline{\theta_{1}} \cdots t_{n}^{\prime}\right) \overline{\theta_{n}}$ and $\bar{\gamma}$ is infinite, we have three cases. (i) There is an i applicative position $\pi(1 \leq i \leq n)$ such that there are infinitely many reduction positions of the form $\pi \mathrm{A} \pi^{\prime}$ in $\bar{\gamma}$. (ii) There is an n-applicative position π such that there are infinitely many reduction positions of the form $\pi \mathrm{F} \pi^{\prime}$ in $\bar{\gamma}$. (iii) There is an i-applicative position $\pi(1 \leq i \leq n)$ such that there are infinitely many reduction positions of the form $\pi \mathrm{B} \pi^{\prime}$ in $\bar{\gamma}$.

In the case (i), we construct a reduction sequence starting from $\Delta \mathrm{I} t_{n-i+1}$ by modifying $\bar{\gamma}$, that is, we change or skip each reduction γ in $\bar{\gamma}$ as follows: (In the following, $\tilde{\pi}$ denotes a position obtained by removing all F from π.)

1. $\gamma \equiv\left(R \mid \pi \mathrm{A} \pi^{\prime}\right)$ where π is an i-applicative position: changed to $\left(R \mid \tilde{\pi} \pi^{\prime}\right)$.
2. $\gamma \equiv\left(R \mid \pi \mathrm{B} \pi^{\prime}\right)$ where π is an $i \geq$-applicative position: changed to $\left(R \mid \tilde{\pi} \mathrm{B} \pi^{\prime}\right)$.
3. $\gamma \equiv(R \mid \pi)$ where $(R) \equiv(c o m p)$, (dox), (dod), or (gc) and π is an $i \geq$ applicative position: changed to $(R \mid \tilde{\pi})$.
4. otherwise: skipped.

In the case (ii) (resp. (iii)), we can similarly construct an infinite reduction sequence starting from $\Delta \mathrm{I} t_{0}$ (resp. $\Delta \mathrm{I} t_{n-i+1}$).

Lemma 2. If $\Delta \mathrm{I} t$ is not semi $S N$, then $\Delta \mathrm{I} t s, \Delta \mathrm{I} s t, \Delta \mathrm{t} t\langle x:=s\rangle$, and $\Delta \mathrm{I} s\langle x:=t\rangle$ are not semi $S N$.

Proof. We prove the case $\Delta \mathrm{I} t\langle x:=s\rangle$. Other cases are similar. Suppose we have an infinite non-trivial reduction sequence $\bar{\gamma}$ starting from $\Delta \mathrm{I} t$. By changing (def) to (def), (dox $\mid \Lambda)$ and changing $(R \mid \sigma)$ to $(R \mid \mathrm{T} \sigma)$, we have an infinite non-trivial reduction sequence starting from $\Delta \mathrm{I} t\langle x:=s\rangle$.

The following lemma is the one that we mentioned in the introduction. By examining how this kind of lemma is used in proving reducibility theorem, we find that we need to prove this lemma only in the case $\langle y:=r\rangle$ is a d-substitution. We explain the idea of the proof using a simple example. Suppose we have a reduction sequence $y:=r \mathbf{I}(\lambda x . t) s \rightarrow((\lambda x . t) s)\{y:=r\} \rightarrow((\lambda x . t) s)\langle y:=r\rangle \xrightarrow{*}$ $(\lambda x . t\langle y:=r\rangle)(s\langle y:=r\rangle) \rightarrow t\langle y:=r\rangle\langle x:=s\langle y:=r\rangle\rangle$. Then, we have the following sequence $y:=r$ । $t\langle x:=s\rangle \rightarrow t\langle x:=s\rangle\{y:=r\} \rightarrow t\{y:=r\}\langle x:=s\{y:=r\}\rangle \xrightarrow{*} t\langle y:=r\rangle$ $\langle x:=s\langle y:=r\rangle\rangle$ by delaying (d2x).
Lemma 3. If $\Delta \mathrm{I}(t\langle x:=s\rangle) s_{1} \cdots s_{n}$ is semi $S N$, then $\Delta \mathbf{I}(\lambda x$. $t) s s_{1} \cdots s_{n}$ is semi SN.

Proof. Suppose $\Delta_{\mathrm{I}}(\lambda x . t) s s_{1} \cdots s_{n}$ is not semi SN. By Lemma 1, we have two cases.

1. one of $\Delta \mathrm{\imath} \lambda x . t, \Delta \mathrm{l} s, \Delta \mathrm{l} s_{1}, \ldots, \Delta \mathrm{I} s_{n}$ is not semi SN: If $\Delta \mathrm{I} \lambda x . t$ is not semi SN, then $\Delta \mathrm{I} t$ is not semi SN. So, by Lemma 2, $\Delta \mathrm{I}(t\langle x:=s\rangle) s_{1} \cdots s_{n}$ is not semi SN.
2. there is an infinite non-trivial reduction sequence $\bar{\gamma},(\boldsymbol{\lambda} \mid \sigma), \ldots$ where $(\boldsymbol{\lambda} \mid \sigma)$ is the first $(\boldsymbol{\lambda})$ applied at $n+1$-applicative position: Let $\bar{\gamma},(\boldsymbol{\lambda} \mid \sigma): \Delta \mathrm{I}(\lambda x . t) s$ $s_{1} \cdots s_{n} \xrightarrow{*} \Delta^{\prime} \mathbf{I} r_{1} \rightarrow \Delta^{\prime} \mathbf{I} r_{2}$. (Note that r_{1} is of the form $\left(\cdots\left(\left(\left(\lambda x . t^{\prime}\right) s^{\prime}\right) \overline{\theta_{0}}\right.\right.$ $\left.\left.s_{1}^{\prime}\right) \overline{\theta_{1}} \cdots s_{n}^{\prime}\right) \overline{\theta_{n}}$ and r_{2} is $\left(\cdots\left(\left(t^{\prime}\left\langle x:=s^{\prime}\right\rangle\right) \overline{\theta_{0}} s_{1}^{\prime}\right) \overline{\theta_{1}} \cdots s_{n}^{\prime}\right) \overline{\theta_{n}}$. $)$ We construct a reduction sequence $\Delta \mathrm{I}(t\langle x:=s\rangle) s_{1} \cdots s_{n} \xrightarrow{*} \Delta^{\prime} \mathrm{I} r_{2}$ by modifying $\bar{\gamma}$ as follows. First, we remove all $n+1 \geq$-applicative $(\mathrm{d} 2 \mathrm{x}) \mathrm{s}$ in $\bar{\gamma}$ and restore the substitutions in the reduction sequence to the d-substitutions accordingly. We trace the d-substitutions and apply (d 2 x) when they leave $n+1 \geq$-applicative position (that is, when they come to the $n+2$-applicative position, the $\pi \mathrm{A}$ position, or the $\pi \mathrm{B}$ position where π is the $n+1 \geq$-applicative position). We also change $n+1 \geq$-applicative (comp) to (dod) and $n+1 \geq$-applicative (perm) to (dod) and (gc). (Note that substitution $\langle y:=r\rangle$ in an $n+1 \geq$-applicative position of r_{1} comes from Δ.) Then, we have a reduction sequence Δ । $(\lambda x . t) s s_{1} \cdots s_{n} \xrightarrow{*} \Delta^{\prime}$ । r_{1}^{\prime} such that some of $n+1 \geq$-applicative $\langle y:=r\rangle$ in r_{1} are $\{y:=r\}$ in r_{1}^{\prime}. By applying (d 2 x) to those $\{y:=r\}$, we have a new reduction sequence $\Delta \mathrm{I}(\lambda x . t) s s_{1} \cdots s_{n} \xrightarrow{*} \Delta^{\prime} \mathrm{I} r_{1}$.
Next, we change or skip each reduction γ in the new sequence as follows, so that we have a reduction sequence $\Delta \mathrm{I}(t\langle x:=s\rangle) s_{1} \cdots s_{n} \xrightarrow{*} \Delta^{\prime} \mathrm{I} r_{2}$.
(a) $\gamma \equiv\left(R \mid \pi \mathrm{F} \pi^{\prime}\right)$ where π is an $n+1$-applicative position: (i) $\pi^{\prime} \equiv \mathrm{T}^{k}$: skipped if $(R)=($ abs $)$, and changed to $\left(R \mid \pi \mathrm{T} \pi^{\prime}\right)$ otherwise. (ii) $\pi^{\prime} \equiv \mathrm{T}^{k} \mathrm{~L} \pi^{\prime \prime}$: changed to ($R \mid \pi \mathrm{TT}^{k} \pi^{\prime \prime}$).
(b) $\gamma \equiv\left(R \mid \pi \mathrm{A} \pi^{\prime}\right)$ where π is an $n+1$-applicative position: changed to $\left(R \mid \pi \mathrm{B} \pi^{\prime}\right)$.
(c) otherwise: unchanged.

Using this modified reduction sequence, we have an infinite non-trivial reduction sequence starting from $\Delta \mathrm{I}(t\langle x:=s\rangle) s_{1} \cdots s_{n}$.

3 Void Lemma

To prove Void Lemma (Lemma 14), we introduce the notion of weight, but we need to define several auxiliary notions to define it.

Let t be a term. We write $d s f r(t)$ for a ds-free term obtained by replacing every subterm $s\{x:=r\}$ of t by $s\langle x:=r\rangle$. Let Δ । t be a def-term where $\Delta \equiv$ $x_{1}:=s_{1}, \ldots, x_{n}:=s_{n}$. We write $\operatorname{dsfr}(\Delta \mathrm{I} t)$ for a ds-free term $\operatorname{dsfr}\left(t\left\langle x_{n}:=s_{n}\right\rangle \cdots\right.$ $\left.\left\langle x_{1}:=s_{1}\right\rangle\right)$. For a ds-free term t, core (t) is a term that is obtained by removing 'irrelevant' substitutions from t as follows.

1. $\operatorname{core}(x) \triangleq x$
2. $\operatorname{core}(\lambda x . t) \triangleq \lambda x . \operatorname{core}(t)$
3. $\operatorname{core}(t s) \triangleq \operatorname{core}(t) \operatorname{core}(s)$
4. $\operatorname{core}(t\langle x:=s\rangle) \triangleq \operatorname{core}(t) \quad$ if $x \in \mathrm{D}$ and $x \notin \mathrm{FV}(\operatorname{core}(t))$
5. $\operatorname{core}(t\langle x:=s\rangle) \triangleq \operatorname{core}(t)\langle x:=\operatorname{core}(s)\rangle \quad$ if $x \in \mathrm{~V}$ or $x \in \mathrm{FV}(\operatorname{core}(t))$

Note that $t \xrightarrow{*} \operatorname{core}(t)$ by $(\mathrm{gc}) \mathrm{s}$ and $\mathrm{FV}(t) \cap \mathrm{V}=\mathrm{FV}($ core $(t)) \cap \mathrm{V}$.
Given a term $s\langle x:=r\rangle$, we write $s v(s\langle x:=r\rangle)$ for x and write $s b(s\langle x:=r\rangle)$ for $\langle x:=r\rangle$. Let t be a ds-free term and π be a position in t. Let $\rho_{1}, \ldots, \rho_{n}$ be an
increasing sequence of all positions in t such that $\rho_{i} \mathrm{~T} \sqsubseteq \pi(1 \leq i \leq n)$. We write $C L(\pi, t)$ for a term $(t / \pi)\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle$ where $\left\langle y_{i}:=r_{i}\right\rangle \equiv s b\left(t / \rho_{i}\right)$. This means that $\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle$ is a sequence of substitutions that contain position π in their scopes. We define a set of positions $\{\Lambda\} \cup\{\pi \mathrm{B} \mid s v(t / \pi) \in \mathrm{D}\}$ as $\mathcal{S}(t)$ and say t is locally semi $S N$ if core $(C L(\pi, t))$ is semi SN for every $\pi \in \mathcal{S}(t)$.

Lemma 4. Let t be a ds-free term and π, τ be positions in t. Suppose $t / \tau \equiv$ $r\langle x:=s\rangle, \tau \mathrm{T} \sqsubseteq \pi$, and there is no τ^{\prime} such that $\tau \mathrm{T} \sqsubset \tau^{\prime} \mathrm{T} \sqsubseteq \pi$. Then, if $x \in$ $\mathrm{FV}(t / \pi)$, there is a reduction sequence $t / \tau \xrightarrow{*} t^{\prime}$ such that $t^{\prime} / \rho \equiv(t / \pi)\langle x:=s\rangle$ for some ρ, and if $x \notin \mathrm{FV}(t / \pi)$, there is a reduction sequence $t / \tau \xrightarrow{*} t^{\prime}$ such that $t^{\prime} / \rho \equiv t / \pi$ for some ρ and t^{\prime} / ρ is not in the scope of $\langle x:=s\rangle$.

Proof. By induction on (length of π) - (length of $\tau \mathrm{T}$). In the base case (that is, $r \equiv t / \pi$), take t / τ for t^{\prime} if $x \in \mathrm{FV}(t / \pi)$, and take r for t^{\prime} (since (gc) : $t / \tau \rightarrow r$) if $x \notin \mathrm{FV}(t / \pi)$. In the case $r \equiv r_{2}\left\langle y:=r_{1}\right\rangle, t / \pi$ is a subterm of r_{1}, because there is no τ^{\prime} such that $\tau \mathrm{T} \sqsubset \tau^{\prime} \mathrm{T} \sqsubseteq \pi$. If $x \in \mathrm{FV}(t / \pi)$, we have (comp) : $r_{2}\left\langle y:=r_{1}\right\rangle\langle x:=s\rangle \rightarrow$ $r_{2}\langle x:=s\rangle\left\langle y:=r_{1}\langle x:=s\rangle\right\rangle$. By induction hypothesis, $r_{1}\langle x:=s\rangle \xrightarrow{*} t^{\prime \prime}$ where $t^{\prime \prime} / \rho \equiv$ $(t / \pi)\langle x:=s\rangle$. Therefore, $r_{2}\left\langle y:=r_{1}\right\rangle\langle x:=s\rangle \xrightarrow{*} r_{2}\langle x:=s\rangle\left\langle y:=t^{\prime \prime}\right\rangle$. If $x \notin \mathrm{FV}(t / \pi)$, we have (perm) : $r_{2}\left\langle y:=r_{1}\right\rangle\langle x:=s\rangle \rightarrow r_{2}\langle x:=s\rangle\left\langle y:=r_{1}\right\rangle$. Therefore, r_{1} is not in the scope of $\langle x:=s\rangle$. For other cases of r, straightforward by induction hypothesis.

Lemma 5. If $\Delta \mathbf{I} t$ is semi $S N$, then $d s f r(\Delta \mathbf{I} t)$ is locally semi $S N$.
Proof. Put $r \equiv d s f r(\Delta \mathrm{t})$. By (def) and (d2x), we have $\Delta \mathrm{I} t \xrightarrow{*} r$. So, r is semi SN. Take $\pi \in \mathcal{S}(r)$ and suppose $C L(\pi, r) \equiv(r / \pi)\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle$. Since $r / \pi \xrightarrow{*}$ $\operatorname{core}(r / \pi)$ by (gc), we have $r \xrightarrow{*} r_{\pi}[\operatorname{core}(r / \pi)]$. If $y_{n} \in \operatorname{FV}(\operatorname{core}(r / \pi))$, we have $r_{\pi}[\operatorname{core}(r / \pi)] \xrightarrow{*} r^{\prime}$ where $r^{\prime} / \rho \equiv \operatorname{core}(r / \pi)\left\langle y_{n}:=\operatorname{core}\left(r_{n}\right)\right\rangle$ for some ρ by Lemma 4 and the property of core. If $y_{n} \notin \mathrm{FV}(\operatorname{core}(r / \pi))$, we can get rid of $\left\langle y_{n}:=r_{n}\right\rangle$ by Lemma 4. By repeating this process, we have $r \xrightarrow{*} r_{\pi^{\prime}}^{\prime}[\operatorname{core}(C L(\pi, r))]$ for some r^{\prime} and π^{\prime}. Therefore, $\operatorname{core}(C L(\pi, r))$ is semi SN.

Lemma 6. If $\Delta_{1}\left|t_{1} \rightarrow \Delta_{2}\right| t_{2}$ and $\operatorname{dsfr}\left(\Delta_{1} \mid t_{1}\right)$ is locally semi $S N$, then $d s f r\left(\Delta_{2} \mid t_{2}\right)$ is locally semi $S N$.

Proof. By case analysis of the reduction rule.
We define totally ordered sets $\mathrm{W}_{n}, \mathrm{~F}_{n}(n=0,1,2, \ldots)$ as follows. In the following, the orders on pairs or ordered sequences are lexicographic and N denotes the set of natural numbers with the ordinary order.

$$
\begin{aligned}
\mathrm{W}_{0} \triangleq \emptyset \quad \mathrm{~F}_{0} \triangleq\{\varepsilon(\text { empty sequence })\} \\
\mathrm{W}_{n} \triangleq \mathrm{~W}_{n-1} \cup\left\{\langle k, f\rangle \mid k \in \mathrm{~N}, f \in \mathrm{~F}_{n-1}\right\} \\
\mathrm{F}_{n} \triangleq\left\{\left\langle w_{1}, h_{1}\right\rangle, \ldots,\left\langle w_{m}, h_{m}\right\rangle \mid w_{i} \in \mathrm{~W}_{n}, h_{i} \in \mathrm{~N},\left\langle w_{i}, h_{i}\right\rangle \geq\left\langle w_{i+1}, h_{i+1}\right\rangle\right\}
\end{aligned}
$$

(Note that $\mathrm{F}_{n-1} \subseteq \mathrm{~F}_{n}$.) For $f_{1}, f_{2} \in \mathrm{~F}_{n}, f_{1} \# f_{2}$ denotes the merge of two ordered sequences f_{1} and f_{2} (that is, f_{1} and f_{2} are concatenated and then sorted). Note that W_{n} is well-founded. (But $\bigcup_{n=0}^{\infty} \mathrm{W}_{n}$ is not well-founded.)

We define height $h_{y}(t)$ of a term t with respect to a variable y inductively as follows.

1. $h_{y}(x) \triangleq 2$
2. $h_{y}(\lambda x \cdot t) \triangleq h_{y}(t)+1$
3. $h_{y}(t s) \triangleq \max \left(h_{y}(t), h_{y}(s)\right)+1$
4. $h_{y}(t\langle x:=s\rangle) \triangleq h_{y}(t) \quad$ if $x \in \mathrm{D}$, or $x \in \mathrm{~V}$ and $y \notin \mathrm{FV}(s)$
5. $h_{y}(t\langle x:=s\rangle) \triangleq h_{y}(t) \cdot h_{y}(s) \quad$ if $x \in \mathrm{~V}$ and $y \in \mathrm{FV}(s)$

Let $\Sigma \equiv\left\langle x_{1}:=s_{1}\right\rangle, \ldots,\left\langle x_{m}:=s_{m}\right\rangle$ be a sequence of substitutions. We write $|\Sigma|$ for m. For a term t, we write Σt for a term $t\left\langle x_{m}:=s_{m}\right\rangle \cdots\left\langle x_{1}:=s_{1}\right\rangle$ and for a set of variables V, we define $\Sigma \mid V$ as follows.

1. $\varepsilon \mid V \triangleq \varepsilon$
2. $\Sigma,\langle x:=s\rangle|V \triangleq \Sigma|(\mathrm{FV}(s) \cup(V-\{x\})),\langle x:=s\rangle \quad$ if $x \in V$
3. $\Sigma,\langle x:=s\rangle|V \triangleq \Sigma| V \quad$ if $x \notin V$

For a ds-free term t, we define its weight $w(t)$, which is an element of W_{n} for some n, as follows. (In the following, Σ be a sequence of substitutions.)

1. $w(t) \triangleq w_{\varepsilon}(t)$
2. $w_{\Sigma}(t) \triangleq\langle\nu(\operatorname{core}(\Sigma t))+| \Sigma\left|, f_{\Sigma}(t)\right\rangle$
3. $f_{\Sigma}(x) \triangleq \varepsilon$ (empty sequence)
4. $f_{\Sigma}(\lambda x . t) \triangleq f_{\Sigma}(t)$
5. $f_{\Sigma}(t s) \triangleq f_{\Sigma}(t) \# f_{\Sigma}(s)$
6. $f_{\Sigma}(t\langle x:=s\rangle) \triangleq\left\langle w_{\Sigma \mid \mathrm{FV}(s)}(s), h_{x}(t)\right\rangle \# f_{\Sigma,\langle x:=s\rangle}(t) \quad$ if $x \in \mathrm{D}$
7. $f_{\Sigma}(t\langle x:=s\rangle) \triangleq f_{\Sigma}(s) \# f_{\Sigma}(t) \quad$ if $x \in \mathrm{~V}$

We will give some examples of how to calculate $w(t)$. In the following examples, we assume $x, y, u, w \in \mathrm{D}$ and $z \in \mathrm{~V}$ and put $k=\nu((x y)\langle x:=\lambda z \cdot z\rangle)$. We have:

$$
\begin{aligned}
& w((x y)\langle x:=\lambda z \cdot z\rangle) \\
& =\left\langle\nu((x y)\langle x:=\lambda z \cdot z\rangle), f_{\varepsilon}((x y)\langle x:=\lambda z \cdot z\rangle)\right\rangle \\
& =\left\langle k,\left\langle w_{\varepsilon}(\lambda z \cdot z), h_{x}(x y)\right\rangle \# f_{\langle x:=\lambda z \cdot z\rangle}(x y)\right\rangle \\
& =\left\langle k,\langle\langle 0, \varepsilon\rangle, 2\rangle \# f_{\langle x:=\lambda z \cdot z\rangle}(x) \# f_{\langle x:=\lambda z \cdot z\rangle}(y)\right\rangle=\langle k,\langle\langle 0, \varepsilon\rangle, 2\rangle\rangle
\end{aligned}
$$

Another example is:

$$
\begin{aligned}
& w((x w)\langle y:=x u\rangle\langle x:=\lambda z \cdot z\rangle) \\
& =\left\langle\nu((x w)\langle x:=\lambda z \cdot z\rangle), f_{\varepsilon}((x w)\langle y:=x u\rangle\langle x:=\lambda z \cdot z\rangle)\right\rangle \\
& =\left\langle k,\left\langle w_{\varepsilon}(\lambda z \cdot z), h_{x}((x w)\langle y:=x u\rangle)\right\rangle \# f_{\langle x:=\lambda z \cdot z\rangle}((x w)\langle y:=x u\rangle)\right\rangle \\
& =\left\langle k,\langle\langle 0, \varepsilon\rangle, 2\rangle \#\left\langle w_{\langle x:=\lambda z \cdot z\rangle}(x u), h_{y}(x w)\right\rangle \# f_{\langle x:=\lambda z \cdot z\rangle,\langle y:=x u\rangle}(x w)\right\rangle \\
& =\left\langle k,\langle\langle 0, \varepsilon\rangle, 2\rangle \#\left\langle\left\langle\nu((x u)\langle x:=\lambda z . z\rangle)+1, f_{\langle x:=\lambda z . z\rangle}(x u)\right\rangle, 2\right\rangle \# \varepsilon\right\rangle \\
& =\langle k,(\langle\langle k+1, \varepsilon\rangle, 2\rangle,\langle\langle 0, \varepsilon\rangle, 2\rangle)\rangle
\end{aligned}
$$

Though we omit the intermediate calculation steps, we have:

$$
w((x w)\langle x:=\lambda z . z\rangle\langle y:=(x u)\langle x:=\lambda z . z\rangle\rangle)=\langle k,(\langle\langle k,\langle\langle 0, \varepsilon\rangle, 2\rangle\rangle, 2\rangle,\langle\langle 0, \varepsilon\rangle, 2\rangle)\rangle
$$

Note that $w((x w)\langle y:=x u\rangle\langle x:=\lambda z . z\rangle)>w((x w)\langle x:=\lambda z . z\rangle\langle y:=(x u)\langle x:=\lambda z . z\rangle\rangle)$ in W_{3}.

Lemma 7. If t is locally semi $S N$, then $w(t)$ is defined.
Proof. For each $\langle x:=s\rangle$ in t such that $x \in \mathrm{D}, w_{\Sigma \mid \mathrm{FV}(s)}(s)$ is calculated for some Σ in the calculation process of $w(t)$. Suppose $\langle x:=s\rangle$ is in position π and $C L(\pi \mathrm{~B}, t) \equiv(t / \pi \mathrm{B})\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle$. Then, $s \equiv t / \pi \mathrm{B}$ and Σ is a subsequence of $\left\langle y_{1}:=r_{1}\right\rangle, \ldots,\left\langle y_{n}:=r_{n}\right\rangle$. Due to the term formation condition, $\mathrm{FV}\left(s^{\prime}\left\langle y:=r^{\prime}\right\rangle\right) \subseteq$ D if $\mathrm{FV}\left(s^{\prime}\right) \subseteq \mathrm{D}$ and $y \in \mathrm{D}$. Since $\mathrm{FV}(s) \subseteq \mathrm{D},\left\langle y_{i}:=r_{i}\right\rangle$ such that $y_{i} \in \mathrm{~V}$ can be removed by (gc). Therefore, $\operatorname{core}(C L(\pi \mathrm{~B}, t)) \xrightarrow{*} \operatorname{core}((\Sigma \mid \mathrm{FV}(s)) s)$. Since $\operatorname{core}(C L(\pi \mathrm{~B}, t))$ is semi $\mathrm{SN}, \nu(\operatorname{core}((\Sigma \mid \mathrm{FV}(s)) s))$ is defined.

Lemma 8. Let r_{1}, r_{2}, r_{3} be ds-free terms.

1. $w_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{2}\right)>w_{\Sigma}\left(r_{2}\left\langle z:=r_{1}\right\rangle\right)$
2. $f_{\Sigma,\left\langle z:=r_{1}\right\rangle,\left\langle y:=r_{2}\right\rangle}\left(r_{3}\right) \geq f_{\Sigma,\left\langle y:=r_{2}\left\langle z:=r_{1}\right\rangle\right\rangle,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\right) \quad$ if $z \in \mathrm{FV}\left(r_{2}\right)$
3. $f_{\Sigma,\left\langle z:=r_{1}\right\rangle,\left\langle y:=r_{2}\right\rangle}\left(r_{3}\right)=f_{\Sigma,\left\langle y:=r_{2}\right\rangle,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\right) \quad$ if $z \notin \mathrm{FV}\left(r_{2}\right)$
4. $f_{\Sigma}\left(r_{1}\right)=f_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right)$

Proof. 1. We have $w_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{2}\right)=\left\langle\nu\left(\operatorname{core}\left(\left(\Sigma,\left\langle z:=r_{1}\right\rangle\right) r_{2}\right)\right)+\right| \Sigma,\left\langle z:=r_{1}\right\rangle\left|, f_{1}\right\rangle$ and $w_{\Sigma}\left(r_{2}\left\langle z:=r_{1}\right\rangle\right)=\left\langle\nu\left(\operatorname{core}\left(\Sigma\left(r_{2}\left\langle z:=r_{1}\right\rangle\right)\right)\right)+\right| \Sigma\left|, f_{2}\right\rangle$ for some f_{1}, f_{2}. Since $\operatorname{core}\left(\left(\Sigma,\left\langle z:=r_{1}\right\rangle\right) r_{2}\right) \equiv \operatorname{core}\left(\Sigma\left(r_{2}\left\langle z:=r_{1}\right\rangle\right)\right)$ and $\left|\Sigma,\left\langle z:=r_{1}\right\rangle\right|>|\Sigma|$, we have the result.
2. Since $f_{\Sigma, \ldots}\left(r_{3}\right)$ is calculated recursively on r_{3}, for each s such that $\langle x:=s\rangle$ is in r_{3} and $x \in \mathrm{D}$, we need to compare $\nu\left(\operatorname{core}\left(\Sigma_{1} s\right)\right)+\left|\Sigma_{1}\right|$ and $\nu\left(\operatorname{core}\left(\Sigma_{2} s\right)\right)+\left|\Sigma_{2}\right|$ where $\Sigma_{1} \equiv \Sigma,\left\langle z:=r_{1}\right\rangle,\left\langle y:=r_{2}\right\rangle, \Sigma^{\prime} \mid \mathrm{FV}(s)$ and $\Sigma_{2} \equiv \Sigma,\left\langle y:=r_{2}\left\langle z:=r_{1}\right\rangle\right\rangle,\left\langle z:=r_{1}\right\rangle$, $\Sigma^{\prime} \mid \mathrm{FV}(s)$. Since $\operatorname{core}\left(\Sigma_{1} s\right) \xrightarrow{*} \operatorname{core}\left(\Sigma_{2} s\right)$ and $\left|\Sigma_{1}\right| \geq\left|\Sigma_{2}\right|$, we have the result.
3. Similar to the above case.
4. For any substitution $\langle x:=s\rangle$ in r_{1} and any Σ^{\prime}, we have $\Sigma^{\prime}\left|\mathrm{FV}(s)=\left(\Sigma^{\prime} \mid \mathrm{FV}\left(r_{1}\right)\right)\right|$ $\mathrm{FV}(s)$, because $\mathrm{FV}(s) \subseteq \mathrm{FV}\left(r_{1}\right)$.

Lemma 9. Let t_{1} be a ds-free term. If $(R): t_{1} \rightarrow t_{2}$ and t_{1} is locally semi $S N$, then $w\left(t_{1}\right)>w\left(t_{2}\right)$ if $(R) \neq($ perm $)$ and $w\left(t_{1}\right)=w\left(t_{2}\right)$ if $(R)=($ perm $)$.

Proof. Let $(R \mid \pi): t_{1} \rightarrow t_{2}$ be the reduction and ρ be a position in t_{1} such that

1. $\rho \sqsubseteq \pi$
2. $\rho \equiv \Lambda$, or there exists ρ^{\prime} such that $\rho \equiv \rho^{\prime} \mathrm{B}$ and $s v\left(t / \rho^{\prime}\right) \in \mathrm{D}$
3. for any $\rho^{\prime \prime}$ such that $\rho \sqsubset \rho^{\prime \prime} \mathrm{B} \sqsubseteq \pi, s v\left(t / \rho^{\prime \prime}\right) \in \mathrm{V}$

By comparing the calculation processes of $w\left(t_{1}\right)$ and $w\left(t_{2}\right)$, we find following three points where differences may occur. (Note that $w\left(t_{2}\right)$ is defined by Lemma 6.)
A. The main difference comes from $w_{\Sigma_{1}}\left(t_{1} / \rho\right)$ and $w_{\Sigma_{2}}\left(t_{2} / \rho\right)$ where $\Sigma_{1}=\Sigma_{2}$ if $(R) \neq(\mathrm{gc})$ and $\Sigma_{1} \mid \mathrm{FV}\left(t_{2} / \rho\right)=\Sigma_{2}$ if $(R)=(\mathrm{gc})$. (Note that only (gc) can erase free variables.) Since $w_{\Sigma_{i}}\left(t_{i} / \rho\right)=\left\langle\nu\left(\operatorname{core}\left(\Sigma_{i}\left(t_{i} / \rho\right)\right)\right)+\right| \Sigma_{i}\left|, f_{\Sigma_{i}}\left(t_{i} / \rho\right)\right\rangle$ and $\operatorname{core}\left(t_{i} / \pi\right)$ is a subterm of $\operatorname{core}\left(t_{i} / \rho\right)(i=1,2)$, we will compare them following the outline given below.

- If $(R) \neq($ perm $)$ and $(R) \neq(\mathrm{gc})$, we will show that $\nu\left(\operatorname{core}\left(t_{1} / \pi\right)\right)>$ $\nu\left(\operatorname{core}\left(t_{2} / \pi\right)\right)$, or $\nu\left(\operatorname{core}\left(t_{1} / \pi\right)\right)=\nu\left(\operatorname{core}\left(t_{2} / \pi\right)\right)$ and $f_{\Sigma}\left(t_{1} / \pi\right)>f_{\Sigma}\left(t_{2} / \pi\right)$.
- If $(R)=(\mathrm{gc})$, let $\nu_{i} \equiv \nu\left(\operatorname{core}\left(\Sigma_{i}\left(t_{i} / \rho\right)\right)\right)+\left|\Sigma_{i}\right|(i=1,2)$. We will show that $\nu_{1}>\nu_{2}$, or $\nu_{1} \geq \nu_{2}$ and $f_{\Sigma_{1}}\left(t_{1} / \pi\right)>f_{\Sigma_{2}}\left(t_{2} / \pi\right)$.
- If $(R)=($ perm $)$, we will show that $\nu\left(\operatorname{core}\left(t_{1} / \pi\right)\right)=\nu\left(\operatorname{core}\left(t_{2} / \pi\right)\right)$ and $f_{\Sigma}\left(t_{1} / \pi\right)=f_{\Sigma}\left(t_{2} / \pi\right)$.
B. Suppose $\rho \equiv \rho^{\prime}$ B. Other than the point A, there are two cases t_{1} / ρ may contribute to the value of $\nu\left(\operatorname{core}\left(\Sigma_{1} s_{1}\right)\right)$ that is a part of $w_{\Sigma_{1}}\left(s_{1}\right)$. (If so, there is a corresponding calculation $\nu\left(\operatorname{core}\left(\Sigma_{2} s_{2}\right)\right)$ that t_{2} / ρ may contribute to.)
- t_{1} / ρ is a subterm of s_{1} : In this case, t_{2} / ρ is a subterm of s_{2} and $\Sigma_{1} \mid \mathrm{FV}\left(s_{2}\right)$ $\equiv \Sigma_{2}$.
- $\Sigma_{1} \equiv \Sigma_{1}^{\prime},\left\langle y:=r_{1}\right\rangle, \Sigma$ and t_{1} / ρ is a subterm of r_{1} : In this case, $s_{1} \equiv s_{2}$, $\Sigma_{2} \equiv \Sigma_{2}^{\prime},\left\langle y:=r_{2}\right\rangle, \Sigma$, and t_{2} / ρ is a subterm of r_{2}.
In both cases, we have $\nu\left(\operatorname{core}\left(\Sigma_{1} s_{1}\right)+\left|\Sigma_{1}\right| \geq \nu\left(\operatorname{core}\left(\Sigma_{2} s_{2}\right)\right)+\left|\Sigma_{2}\right|\right.$ if $(R) \neq$ (perm), and $\nu\left(\operatorname{core}\left(\Sigma_{1} s_{1}\right)+\left|\Sigma_{1}\right|=\nu\left(\operatorname{core}\left(\Sigma_{2} s_{2}\right)\right)+\left|\Sigma_{2}\right|\right.$ if $(R)=$ (perm). This follows from the proof of the point A.
C. There may be a subterm $r_{1}\langle y:=s\rangle$ of t_{1} such that t_{1} / π is a subterm of r_{1} and $y \in \mathrm{D}$. Suppose $r_{1} \rightarrow r_{2}$ by this reduction. Then, we may have $h_{y}\left(r_{1}\right)<h_{y}\left(r_{2}\right)$ when $(R)=(\boldsymbol{\lambda})$ or $(R)=($ comp $)$ in the case 11 of the following case analysis, if $r_{1}\langle y:=s\rangle$ is a subterm of t_{1} / ρ. (If not, t_{1} / ρ does not contribute to $h_{y}\left(r_{1}\right)$, because $s v\left(t_{1} / \rho\right) \in \mathrm{D}$.) This implies $\left\langle w_{\Sigma}(s), h_{y}\left(r_{1}\right)\right\rangle<$ $\left\langle w_{\Sigma}(s), h_{y}\left(r_{2}\right)\right\rangle$, but in these cases we can verify $\nu\left(\operatorname{core}\left(t_{1} / \rho\right)\right)>\nu\left(\operatorname{core}\left(t_{2} / \rho\right)\right)$. Note also that $h_{y}\left(r_{1}\right)=h_{y}\left(r_{2}\right)$ in the case $(R)=($ perm $)$.

Now, we will do case analysis for the point A, but here we examine only a few cases. (In the following, we write r_{i}^{\prime} for $\operatorname{core}\left(r_{i}\right)(i=1,2,3)$.)

1. $(R)=(\boldsymbol{\lambda})$ and $t_{1} / \pi \equiv\left(\lambda y . r_{1}\right) r_{2}$: In this case, $t_{2} / \pi \equiv r_{1}\left\langle y:=r_{2}\right\rangle$, core $\left(t_{1} / \pi\right) \equiv$ $\left(\lambda y \cdot r_{1}^{\prime}\right) r_{2}^{\prime}$, and $\operatorname{core}\left(t_{2} / \pi\right) \equiv r_{1}^{\prime}\left\langle y:=r_{2}^{\prime}\right\rangle$. So, we have $(\boldsymbol{\lambda}): \operatorname{core}\left(t_{1} / \pi\right) \rightarrow$ $\operatorname{core}\left(t_{2} / \pi\right)$. Therefore, $\nu\left(\operatorname{core}\left(t_{1} / \pi\right)\right)>\nu\left(\operatorname{core}\left(t_{2} / \pi\right)\right)$.
2. $(R)=(\operatorname{var})$ and $t_{1} / \pi \equiv z\left\langle z:=r_{1}\right\rangle:$ In this case, $t_{2} / \pi \equiv r_{1}, \operatorname{core}\left(t_{1} / \pi\right) \equiv$ $z\left\langle z:=r_{1}^{\prime}\right\rangle$, and $\operatorname{core}\left(t_{2} / \pi\right) \equiv r_{1}^{\prime}$. So, we have $($ var $): \operatorname{core}\left(t_{1} / \pi\right) \rightarrow \operatorname{core}\left(t_{2} / \pi\right)$. Therefore, $\nu\left(\operatorname{core}\left(t_{1} / \pi\right)\right)>\nu\left(\operatorname{core}\left(t_{2} / \pi\right)\right)$.
3. $(R)=(\mathrm{app}), t_{1} / \pi \equiv\left(r_{2} r_{3}\right)\left\langle z:=r_{1}\right\rangle$, and $z \in \mathrm{D}$: In this case, $t_{2} / \pi \equiv\left(r_{2}\left\langle z:=r_{1}\right\rangle\right)$ $\left(r_{3}\left\langle z:=r_{1}\right\rangle\right)$.
(a) $z \in \mathrm{FV}\left(r_{1}^{\prime}\right)$ or $z \in \mathrm{FV}\left(r_{2}^{\prime}\right)$: In this case, $\operatorname{core}\left(t_{1} / \pi\right) \equiv\left(r_{2}^{\prime} r_{3}^{\prime}\right)\left\langle z:=r_{1}^{\prime}\right\rangle$ and $\operatorname{core}\left(t_{2} / \pi\right) \equiv\left(r_{2}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\right)\left(r_{3}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\right)$ or $\left(r_{2}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\right) r_{3}^{\prime}$ or $r_{2}^{\prime}\left(r_{3}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\right)$. So, we have $\operatorname{core}\left(t_{1} / \pi\right) \xrightarrow{+} \operatorname{core}\left(t_{2} / \pi\right)$ by (app) and 0 or $1(\mathrm{gc})$. Therefore, $\nu\left(\operatorname{core}\left(t_{1} / \pi\right)\right)>\nu\left(\operatorname{core}\left(t_{2} / \pi\right)\right)$.
(b) $z \notin \mathrm{FV}\left(r_{1}^{\prime}\right)$ and $z \notin \mathrm{FV}\left(r_{2}^{\prime}\right)$: In this case, $\operatorname{core}\left(t_{1} / \pi\right) \equiv \operatorname{core}\left(t_{2} / \pi\right) \equiv$ $r_{1}^{\prime} r_{2}^{\prime}$. So, we will show $f_{\Sigma}\left(t_{1} / \pi\right)>f_{\Sigma}\left(t_{2} / \pi\right)$.

$$
\begin{aligned}
& f_{\Sigma}\left(\left(r_{2} r_{3}\right)\left\langle z:=r_{1}\right\rangle\right) \\
& =\left\langle w_{1}, h_{x}\left(r_{2} r_{3}\right)\right\rangle \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{2} r_{3}\right) \\
& =\left\langle w_{1}, h_{x}\left(r_{2} r_{3}\right)\right\rangle \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{2}\right) \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\right) \\
& f_{\Sigma}\left(\left(r_{2}\left\langle z:=r_{1}\right\rangle\right)\left(r_{3}\left\langle z:=r_{1}\right\rangle\right)\right) \\
& =f_{\Sigma}\left(r_{2}\left\langle z:=r_{1}\right\rangle\right) \# f_{\Sigma}\left(r_{3}\left\langle z:=r_{1}\right\rangle\right) \\
& =\left\langle w_{1}, h_{x}\left(r_{2}\right)\right\rangle \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{2}\right) \#\left\langle w_{1}, h_{x}\left(r_{3}\right)\right\rangle \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\right)
\end{aligned}
$$

where $w_{1} \equiv w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right)$. Since $h_{x}\left(r_{2} r_{3}\right)>h_{x}\left(r_{2}\right)$ and $h_{x}\left(r_{2} r_{3}\right)>$ $h_{x}\left(r_{3}\right)$, we have $f_{\Sigma}\left(\left(r_{2} r_{3}\right)\left\langle z:=r_{1}\right\rangle\right)>f_{\Sigma}\left(\left(r_{2}\left\langle z:=r_{1}\right\rangle\right)\left(r_{3}\left\langle z:=r_{1}\right\rangle\right)\right)$.
4. $(R)=(\mathrm{app}), t_{1} / \pi \equiv\left(r_{2} r_{3}\right)\left\langle z:=r_{1}\right\rangle$, and $z \in \mathrm{~V}$: In this case, $t_{2} / \pi \equiv\left(r_{2}\left\langle z:=r_{1}\right\rangle\right)$ $\left(r_{3}\left\langle z:=r_{1}\right\rangle\right)$. Since $y \in \mathrm{~V}$, we have $\operatorname{core}\left(t_{1} / \pi\right) \equiv\left(r_{2}^{\prime} r_{3}^{\prime}\right)\left\langle z:=r_{1}\right\rangle$ and $\operatorname{core}\left(t_{2} / \pi\right) \equiv$ $\left(r_{2}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\right)\left(r_{3}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\right)$. So, we have (app) $: \operatorname{core}\left(t_{1} / \pi\right) \rightarrow \operatorname{core}\left(t_{2} / \pi\right)$. Therefore, $\nu\left(\operatorname{core}\left(t_{1} / \pi\right)\right)>\nu\left(\operatorname{core}\left(t_{2} / \pi\right)\right)$.
5. $(R)=($ abs $)$ and $t_{1} / \pi \equiv\left(\lambda z \cdot r_{2}\right)\left\langle z:=r_{1}\right\rangle:$ Similar to the case 3 and 4.
6. $(R)=(\mathrm{gc}), t_{1} / \pi \equiv r_{2}\left\langle z:=r_{1}\right\rangle$, and $z \in \mathrm{D}$: In this case, $t_{2} / \pi \equiv r_{2}$ and $z \notin \mathrm{FV}\left(r_{2}\right)$. So, we have $\operatorname{core}\left(\Sigma_{1}\left(t_{1} / \rho\right)\right) \equiv \operatorname{core}\left(\Sigma_{2}\left(t_{2} / \rho\right)\right)$ and $\left|\Sigma_{1}\right| \geq\left|\Sigma_{2}\right|$. Since $f_{\Sigma_{1}}\left(r_{2}\left\langle z:=r_{1}\right\rangle\right)=\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{x}\left(r_{2}\right)\right\rangle \# f_{\Sigma_{1},\left\langle z:=r_{1}\right\rangle}\left(r_{2}\right)$, we have $f_{\Sigma_{1}}\left(t_{1} / \pi\right)>f_{\Sigma_{2}}\left(t_{2} / \pi\right)$.
7. $(R)=(\mathrm{gc}), t_{1} / \pi \equiv r_{2}\left\langle z:=r_{1}\right\rangle$, and $z \in \mathrm{~V}$: We have $\operatorname{core}\left(t_{1} / \pi\right) \equiv r_{2}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle$. So, we have $\operatorname{core}\left(\Sigma_{1}\left(t_{1} / \rho\right)\right) \xrightarrow{+} \operatorname{core}\left(\Sigma_{2}\left(t_{2} / \rho\right)\right)$ by (gc) s. Since $\left|\Sigma_{1}\right| \geq\left|\Sigma_{2}\right|$, we have $\nu\left(\operatorname{core}\left(\Sigma_{1}\left(t_{1} / \rho\right)\right)\right)+\left|\Sigma_{1}\right|>\nu\left(\operatorname{core}\left(\Sigma_{2}\left(t_{2} / \rho\right)\right)\right)+\left|\Sigma_{2}\right|$.
8. $(R)=($ comp $), t_{1} / \pi \equiv r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle$ and $z, y \in \mathrm{D}$: In this case, $t_{2} / \pi \equiv$ $r_{3}\left\langle z:=r_{1}\right\rangle\left\langle y:=r_{2}\left\langle z:=r_{1}\right\rangle\right\rangle$ and $z \in \mathrm{FV}\left(r_{2}\right)$.
(a) $y \in \mathrm{FV}\left(r_{3}^{\prime}\right), z \in \mathrm{FV}\left(r_{2}^{\prime}\right): \operatorname{If} z \in \mathrm{FV}\left(r_{3}^{\prime}\right)$, then $\operatorname{core}\left(t_{1} / \pi\right) \equiv r_{3}^{\prime}\left\langle y:=r_{2}^{\prime}\right\rangle\left\langle z:=r_{1}^{\prime}\right\rangle$ and $\operatorname{core}\left(t_{2} / \pi\right) \equiv r_{3}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\left\langle y:=r_{2}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\right\rangle$. So, we have $(\operatorname{comp}): \operatorname{core}\left(t_{1} / \pi\right)$ $\rightarrow \operatorname{core}\left(t_{2} / \pi\right)$. If $z \notin \mathrm{FV}\left(r_{3}^{\prime}\right)$, then $\operatorname{core}\left(t_{1} / \pi\right) \equiv r_{3}^{\prime}\left\langle y:=r_{2}^{\prime}\right\rangle\left\langle z:=r_{1}^{\prime}\right\rangle$ and $\operatorname{core}\left(t_{2} / \pi\right) \equiv r_{3}^{\prime}\left\langle y:=r_{2}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\right\rangle$. So, we have (comp), (gc) : core $\left(t_{1} / \pi\right) \rightarrow$ $r_{3}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\left\langle y:=r_{2}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\right\rangle \rightarrow \operatorname{core}\left(t_{2} / \pi\right)$. In both cases, we have $\nu\left(\operatorname{core}\left(t_{1} / \pi\right)\right)$ $>\nu\left(\operatorname{core}\left(t_{2} / \pi\right)\right)$.
(b) otherwise: If $y \in \operatorname{FV}\left(r_{3}^{\prime}\right), z \notin \mathrm{FV}\left(r_{2}^{\prime}\right)$, and $z \in \operatorname{FV}\left(r_{3}^{\prime}\right)$, then $\operatorname{core}\left(t_{1} / \pi\right) \equiv$ $r_{3}^{\prime}\left\langle y:=r_{2}^{\prime}\right\rangle\left\langle z:=r_{1}^{\prime}\right\rangle$ and $\operatorname{core}\left(t_{2} / \pi\right) \equiv r_{3}^{\prime}\left\langle z:=r_{1}^{\prime}\right\rangle\left\langle y:=r_{2}^{\prime}\right\rangle$, otherwise, core $\left(t_{1} / \pi\right)$ $\equiv \operatorname{core}\left(t_{2} / \pi\right)$. Since $($ perm $): \operatorname{core}\left(t_{1} / \pi\right) \rightarrow \operatorname{core}\left(t_{2} / \pi\right)$ in the former case, we have $\nu\left(\operatorname{core}\left(t_{1} / \pi\right)\right)=\nu\left(\operatorname{core}\left(t_{2} / \pi\right)\right)$ in both cases. So, we will show $f_{\Sigma}\left(t_{1} / \pi\right)>f_{\Sigma}\left(t_{2} / \pi\right)$.

$$
\begin{aligned}
& f_{\Sigma}\left(r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle\right) \\
& =\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{z}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right)\right\rangle \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right) \\
& =\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{z}\left(r_{3}\right)\right\rangle \#\left\langle w_{\Sigma,\left\langle z:=r_{1}\right\rangle \mid \mathrm{FV}\left(r_{2}\right)}\left(r_{2}\right), h_{y}\left(r_{3}\right)\right\rangle \# \\
& \quad f_{\Sigma,\left\langle z:=r_{1}\right\rangle,\left\langle y:=r_{2}\right\rangle}\left(r_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{\mathcal{L}}\left(r_{3}\left\langle z:=r_{1}\right\rangle\left\langle y:=r_{2}\left\langle z:=r_{1}\right\rangle\right\rangle\right) \\
&=\left\langle w_{\Sigma_{1}}\left(r_{2}\left\langle z:=r_{1}\right\rangle\right), h_{y}\left(r_{3}\left\langle z:=r_{1}\right\rangle\right)\right\rangle \# f_{\mathcal{L},\left\langle y:=r_{2}\left\langle z:=r_{1}\right\rangle\right\rangle}\left(r_{3}\left\langle z:=r_{1}\right\rangle\right) \\
&=\left\langle w_{\Sigma_{1}}\left(r_{2}\left\langle z:=r_{1}\right\rangle\right), h_{y}\left(r_{3}\right)\right\rangle \#\left\langle w_{\Sigma_{2}}\left(r_{1}\right), h_{z}\left(r_{3}\right)\right\rangle \# \\
& f_{\mathcal{E},\left\langle y:=r_{2}\left\langle z:=r_{1}\right\rangle\right\rangle,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\right)
\end{aligned}
$$

where $\Sigma_{1} \equiv \Sigma \mid \mathrm{FV}\left(r_{2}\left\langle z:=r_{1}\right\rangle\right)$ and $\Sigma_{2} \equiv \Sigma,\left\langle y:=r_{2}\left\langle z:=r_{1}\right\rangle\right\rangle \mid \mathrm{FV}\left(r_{1}\right)$. We have $\Sigma,\left\langle z:=r_{1}\right\rangle\left|\mathrm{FV}\left(r_{2}\right) \equiv \Sigma\right|\left(\mathrm{FV}\left(r_{1}\right) \cup\left(\mathrm{FV}\left(r_{2}\right)-\{z\}\right)\right),\left\langle z:=r_{1}\right\rangle \equiv \Sigma_{1}$, $\left\langle z:=r_{1}\right\rangle$. We also have $\Sigma_{2} \equiv \Sigma \mid \mathrm{FV}\left(r_{1}\right)$, since $y \notin \mathrm{FV}\left(r_{1}\right)$. Therefore, by
Lemma 8, we have $f_{\Sigma}\left(r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle\right)>f_{\Sigma}\left(r_{3}\left\langle z:=r_{1}\right\rangle\left\langle y:=r_{2}\left\langle z:=r_{1}\right\rangle\right\rangle\right)$.
9. $(R)=($ comp $), t_{1} / \pi \equiv r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle, z \in \mathrm{D}$, and $y \in \mathrm{~V}$: This case is similar to the above, except that $\operatorname{core}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right) \equiv r_{3}^{\prime}\left\langle y:=r_{2}^{\prime}\right\rangle$ since $y \in \mathrm{~V}$, and that $f_{\Sigma}\left(t_{1} / \pi\right)>f_{\Sigma}\left(t_{2} / \pi\right)$ is proved as follows.

$$
\begin{aligned}
& f_{\Sigma}\left(r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle\right) \\
& =\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{z}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right)\right\rangle \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right) \\
& =\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{z}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right)\right\rangle \# f_{\mathcal{E},\left\langle z:=r_{1}\right\rangle}\left(r_{2}\right) \# f_{\mathcal{E},\left\langle:=r_{1}\right\rangle}\left(r_{3}\right) \\
& f_{\Sigma}\left(r_{3}\left\langle z:=r_{1}\right\rangle\left\langle y:=r_{2}\left\langle z:=r_{1}\right\rangle\right\rangle\right) \\
& =f_{\Sigma}\left(r_{2}\left\langle z:=r_{1}\right\rangle\right) \# f_{\Sigma}\left(r_{3}\left\langle z:=r_{1}\right\rangle\right) \\
& =\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{z}\left(r_{2}\right)\right\rangle \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{2}\right) \#\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{z}\left(r_{3}\right)\right\rangle \# \\
& f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\right)
\end{aligned}
$$

Since $z \in \operatorname{FV}\left(r_{2}\right)$ and $y \in \mathrm{~V}$, we have $h_{z}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right)>h_{z}\left(r_{2}\right)$ and $h_{z}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right)$ $>h_{z}\left(r_{3}\right)$. Therefore, $f_{\Sigma}\left(r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle\right)>f_{\Sigma}\left(r_{3}\left\langle z:=r_{1}\right\rangle\left\langle y:=r_{2}\left\langle z:=r_{1}\right\rangle\right\rangle\right)$.
10. $(R)=$ (comp), $t_{1} / \pi \equiv r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle, z \in \mathrm{~V}$, and $y \in \mathrm{D}$: This case is void, because $\mathrm{FV}\left(r_{2}\right) \subseteq \mathrm{D}$.
11. $(R)=($ comp $), t_{1} / \pi \equiv r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle$ and $z, y \in \mathrm{~V}$: By the remark after the definition of core, we have $z \in \mathrm{FV}\left(r_{2}^{\prime}\right)$. We also have core $\left(r_{3}\left(y:=r_{2}\right\rangle\right) \equiv$ $r_{3}^{\prime}\left\langle y:=r_{2}^{\prime}\right\rangle$ since $y \in \mathrm{~V}$. Therefore, this can be proved similarly to the case 8 a .
12. $(R)=($ perm $), t_{1} / \pi \equiv r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle$ and $z, y \in \mathrm{D}$: In this case, $t_{2} / \pi \equiv$ $r_{3}\left\langle z:=r_{1}\right\rangle\left\langle y:=r_{2}\right\rangle$ and $z \notin \mathrm{FV}\left(r_{2}\right)$. If $y \in \mathrm{FV}\left(r_{3}^{\prime}\right)$ and $z \in \mathrm{FV}\left(r_{3}^{\prime}\right)$, then (perm) : $\operatorname{core}\left(t_{1} / \pi\right) \rightarrow \operatorname{core}\left(t_{2} / \pi\right)$, otherwise, $\operatorname{core}\left(t_{1} / \pi\right) \equiv \operatorname{core}\left(t_{2} / \pi\right)$. In both cases, we have $\nu\left(\operatorname{core}\left(t_{1} / \pi\right)\right)=\nu\left(\operatorname{core}\left(t_{2} / \pi\right)\right)$. So, we will show $f_{\Sigma}\left(t_{1} / \pi\right)$ $=f_{\Sigma}\left(t_{2} / \pi\right)$.

$$
\begin{aligned}
& f_{\Sigma}\left(r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle\right) \\
& =\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{z}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right)\right\rangle \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right) \\
& =\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{z}\left(r_{3}\right)\right\rangle \#\left\langle w_{\Sigma,\left\langle z:=r_{1}\right\rangle \mid \mathrm{FV}\left(r_{2}\right)}\left(r_{2}\right), h_{y}\left(r_{3}\right)\right\rangle \# \\
& f_{\mathcal{E},\left\langle z:=r_{1}\right\rangle,\left\langle y:=r_{2}\right\rangle}\left(r_{3}\right) \\
& f_{\Sigma}\left(r_{3}\left\langle z:=r_{1}\right\rangle\left\langle y:=r_{2}\right\rangle\right) \\
& =\left\langle w_{\Sigma_{1}}\left(r_{2}\right), h_{y}\left(r_{3}\left\langle z:=r_{1}\right\rangle\right)\right\rangle \# f_{\Sigma,\left\langle y:=r_{2}\right\rangle}\left(r_{3}\left\langle z:=r_{1}\right\rangle\right) \\
& =\left\langle w_{\Sigma_{1}}\left(r_{2}\right), h_{y}\left(r_{3}\right)\right\rangle \#\left\langle w_{\Sigma_{2}}\left(r_{1}\right), h_{z}\left(r_{3}\right)\right\rangle \# f_{\Sigma,\left\langle y:=r_{2}\right\rangle,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\right)
\end{aligned}
$$

where $\Sigma_{1} \equiv \Sigma \mid \mathrm{FV}\left(r_{2}\right)$ and $\Sigma_{2} \equiv \Sigma,\left\langle y:=r_{2}\right\rangle \mid \mathrm{FV}\left(r_{1}\right)$. We have $\Sigma,\left\langle z:=r_{1}\right\rangle \mid$ $\mathrm{FV}\left(r_{2}\right) \equiv \Sigma \mid \mathrm{FV}\left(r_{2}\right) \equiv \Sigma_{1}$, since $z \notin \mathrm{FV}\left(r_{2}\right)$. We also have $\Sigma_{2} \equiv \Sigma \mid \mathrm{FV}\left(r_{1}\right)$, since $y \notin \mathrm{FV}\left(r_{1}\right)$. By Lemma 8 , we have the result.
13. $(R)=$ (perm), $t_{1} / \pi \equiv r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle, z \in \mathrm{D}$, and $y \in \mathrm{~V}$: In this case, $t_{2} / \pi \equiv r_{3}\left\langle z:=r_{1}\right\rangle\left\langle y:=r_{2}\right\rangle$ and $z \notin \mathrm{FV}\left(r_{2}\right)$. If $z \in \mathrm{FV}\left(r_{3}^{\prime}\right)$, then (perm) : $\operatorname{core}\left(t_{1} / \pi\right) \rightarrow \operatorname{core}\left(t_{2} / \pi\right)$, otherwise, core $\left(t_{1} / \pi\right) \equiv \operatorname{core}\left(t_{2} / \pi\right)$. In both cases, we have $\nu\left(\operatorname{core}\left(t_{1} / \pi\right)\right)=\nu\left(\operatorname{core}\left(t_{2} / \pi\right)\right)$. So, we will show $f_{\Sigma}\left(t_{1} / \pi\right)=f_{\Sigma}\left(t_{2} / \pi\right)$.

$$
\begin{aligned}
& f_{\Sigma}\left(r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle\right) \\
& =\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{z}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right)\right\rangle \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\left\langle y:=r_{2}\right\rangle\right) \\
& =\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{z}\left(r_{3}\right)\right\rangle \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{2}\right) \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\right) \\
& f_{\Sigma}\left(r_{3}\left\langle z:=r_{1}\right\rangle\left\langle y:=r_{2}\right\rangle\right) \\
& =f_{\Sigma}\left(r_{2}\right) \# f_{\Sigma}\left(r_{3}\left\langle z:=r_{1}\right\rangle\right) \\
& =f_{\Sigma}\left(r_{2}\right) \#\left\langle w_{\Sigma \mid \mathrm{FV}\left(r_{1}\right)}\left(r_{1}\right), h_{z}\left(r_{3}\right)\right\rangle \# f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{3}\right)
\end{aligned}
$$

Since $z \notin \mathrm{FV}\left(r_{2}\right)$, we have $f_{\Sigma,\left\langle z:=r_{1}\right\rangle}\left(r_{2}\right)=f_{\Sigma}\left(r_{2}\right)$ by Lemma 8 . So, we have $f_{\Sigma}\left(r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle\right)=f_{\Sigma}\left(r_{3}\left\langle z:=r_{1}\right\rangle\left\langle y:=r_{2}\right\rangle\right)$.
14. $(R)=$ (perm), $t_{1} / \pi \equiv r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle, z \in \mathrm{~V}$, and $y \in \mathrm{D}$: Symmetric to the above case.
15. $(R)=($ perm $), t_{1} / \pi \equiv r_{3}\left\langle y:=r_{2}\right\rangle\left\langle z:=r_{1}\right\rangle$ and $z, y \in \mathrm{~V}:$ Easy.

By this lemma, we have shown that weights of terms in a non-permutative reduction sequence decreases, but to conclude that the sequence is finite, it is necessary to show that all weights are in W_{n} for some n.

When $w \notin \mathrm{~W}_{n-1}$ and $w \in \mathrm{~W}_{n}$, we define the level of w as n and the level of w is denoted by $|w|$. We can calculate the level of a ds-free term t as follows.

1. $l v(x) \triangleq 1$
2. $l v(\lambda x . t) \triangleq l v(t)$
3. $l v(t s) \triangleq \max (l v(t), l v(s))$
4. $l v(t\langle x:=s\rangle) \triangleq \max (l v(t), l v(s)+1) \quad$ if $x \in \mathrm{D}$
5. $l v(t\langle x:=s\rangle) \triangleq \max (l v(t), l v(s)) \quad$ if $x \in \mathrm{~V}$

Lemma 10. Let t be a ds-free term and suppose $w(t)$ is defined. Then, $|w(t)|=$ $l v(t)$.

Proof. When $f \notin \mathrm{~F}_{n-1}$ and $f \in \mathrm{~F}_{n}$, we write $|f|$ for n. Then, by clause 2 of the definition of weight, we have $\left|w_{\Sigma}(t)\right|=\left|f_{\Sigma}(t)\right|+1$ if $w_{\Sigma}(t)$ is defined. By induction on t, we prove that $\left|w_{\Sigma}(t)\right|=l v(t)$ if $w_{\Sigma}(t)$ is defined. Here, we prove only the case $t\langle x:=s\rangle(x \in \mathrm{D})$. By clause 6 , we have $\left|f_{\Sigma}(t\langle x:=s\rangle)\right|=$ $\max \left(\left|w_{\Sigma \mid \mathrm{FV}(s)}(s)\right|,\left|f_{\Sigma,\langle x:=s\rangle}(t)\right|\right)$. Therefore, $\left|w_{\Sigma}(t\langle x:=s\rangle)\right|=\max \left(\left|w_{\Sigma \mid \mathrm{FV}(s)}(s)\right|+\right.$ $\left.1,\left|f_{\Sigma,\langle x:=s\rangle}(t)\right|+1\right)=\max (l v(s)+1, l v(t))=l v(t\langle x:=s\rangle)$.

Since the level may increase by reduction, we need to estimate the upper bound of the levels in a reduction sequence. We define a potential level plv (t) of a ds-free term t as follows. (In the following clauses, x in $\langle x:=s\rangle$ satisfies $x \in \mathrm{D}$.)

1. $\operatorname{plv}(x) \triangleq 1$
2. $\operatorname{plv}(\lambda x . t) \triangleq p l v(t)$
3. $p l v(t s) \triangleq \max (p l v(t), p l v(s))$
4. $p l v(y\langle x:=s\rangle) \triangleq p l v(s)+1$
5. $\operatorname{plv}((\lambda y . t)\langle x:=s\rangle) \triangleq p l v(t\langle x:=s\rangle)$
6. $\operatorname{plv}((\operatorname{tr})\langle x:=s\rangle) \triangleq \max (p l v(t\langle x:=s\rangle), p l v(r\langle x:=s\rangle))$
7. $p l v(t\langle y:=r\rangle\langle x:=s\rangle) \triangleq \max (p l v(t\langle y:=r\langle x:=s\rangle\rangle), p l v(t\langle x:=s\rangle)) \quad$ if $x \in \mathrm{FV}(r)$
8. $p l v(t\langle y:=r\rangle\langle x:=s\rangle) \triangleq \max (p l v(t\langle y:=r\rangle), p l v(t\langle x:=s\rangle)) \quad$ if $x \notin \mathrm{FV}(r)$
9. $\operatorname{plv}(t\langle y:=r\rangle) \triangleq \max (p l v(t), p l v(r)) \quad$ if $y \in \mathrm{~V}$

Lemma 11. plv is well-defined.
Proof. Let t be a ds-free term. When t is of the form $t_{0}\left\langle x_{n}:=t_{n}\right\rangle \cdots\left\langle x_{1}:=t_{1}\right\rangle$ where t_{0} is not of the form $r_{1}\left\langle y:=r_{2}\right\rangle$, we define prefix length of t as n. We can prove the well-definedness of $p l v(t)$ by double induction on the size of t and the prefix length of t.

Lemma 12. Let t_{1} be a ds-free term. If $t_{1} \rightarrow t_{2}$, then $p l v\left(t_{1}\right) \geq p l v\left(t_{2}\right)$.
Proof. By case analysis of the reduction rule.
Lemma 13. Let t be a ds-free term and suppose $w(t)$ is defined. Then, $|w(t)| \leq$ $p l v(t)$.

Proof. Since $l v(t) \leq p l v(t)$ implies this lemma by Lemma 10 , we prove it by induction on the definition of $p l v(t)$. The critical case is clause 7 . By induction hypothesis, we have

$$
l v(t\langle y:=r\langle x:=s\rangle\rangle) \leq p l v(t\langle y:=r\langle x:=s\rangle\rangle), \quad l v(t\langle x:=s\rangle) \leq p l v(t\langle x:=s\rangle)
$$

Since $l v(t\langle y:=r\rangle) \leq l v(t\langle y:=r\langle x:=s\rangle\rangle)$ and $l v(t\langle y:=r\rangle\langle x:=s\rangle)=\max (l v(t\langle y:=r\rangle)$, $l v(t\langle x:=s\rangle)$), we have $l v(t\langle y:=r\rangle\langle x:=s\rangle) \leq p l v(t\langle y:=r\rangle\langle x:=s\rangle)$.

Lemma 14 (Void Lemma). If $\Delta \mathrm{I} s$ and $\Delta \mathrm{I} t$ are semi $S N$ and $x \notin \mathrm{FV}(t)$, then $\Delta, x:=s \mid t$ is semi $S N$.

Proof. Given a non-trivial reduction sequence starting from $\Delta, x:=s \mathrm{I} t$, we have a ds-free term t_{0} such that $\Delta, x:=s$ । $t \xrightarrow{*} t_{0}$ and $\bar{\gamma}: t_{0} \rightarrow t_{1} \rightarrow t_{2} \rightarrow \cdots$ is a non-permutative reduction sequence. First, we will show that t_{0} is locally semi SN. Let $\Delta \equiv x_{1}:=s_{1}, \ldots, x_{n}:=s_{n}$ and define $V(r) \triangleq\{x \in \mathrm{D} \mid$ $r_{2}\left\{x:=r_{1}\right\}$ or $r_{2}\left\langle x:=r_{1}\right\rangle$ is a subterm of $\left.r\right\}$. Without loss of generality, we can assume $\left\{x_{1}, \ldots, x_{n}\right\}, V\left(s_{1}\right), \ldots, V\left(s_{n}\right),\{x\}, V(s), V(t)$ are mutually disjoint. Put $r \equiv \operatorname{dsfr}(\Delta, x:=s$ । t) and take any $\pi \in \mathcal{S}(r)$. If $\pi \equiv \Lambda$ or $s v(r / \pi) \in$ $V(t)$, put $r^{\prime} \equiv d s f r(\Delta \mathbf{\prime} t)$. Otherwise, put $r^{\prime} \equiv d s f r(\Delta \mathbf{I} s)$. Let π^{\prime} be Λ if $\pi \equiv \Lambda$, and π^{\prime} be a position such that $\operatorname{sv}\left(r^{\prime} / \pi^{\prime}\right) \equiv \operatorname{sv}(r / \pi)$ otherwise. Then, $\operatorname{core}(C L(\pi, r)) \equiv \operatorname{core}\left(C L\left(\pi^{\prime}, r^{\prime}\right)\right)$, because $x \notin \mathrm{FV}(t)$. Since $\Delta \mathrm{t} s$ and $\Delta \mathrm{t} t$ are semi SN, core $\left(C L\left(\pi^{\prime}, r^{\prime}\right)\right)$ is semi SN by Lemma 5 . Therefore, r is locally semi SN . So, t_{0} is locally semi SN by Lemma 6.

By Lemma 13 and Lemma 12, we have $\left|w\left(t_{i}\right)\right| \leq p l v\left(t_{0}\right)$. Therefore, $\bar{\gamma}$ is finite by Lemma 9 .

4 Type System and Reducibility

We recall simply typed $\lambda \mathrm{x}$. We define types (A, B) of simply typed $\lambda \mathrm{x}$ by

$$
A, B::=o \mid A \rightarrow B
$$

where o ranges over atomic types. A declaration is an expression of the form $x: A$ where x is a variable and A is a type, and a typing judgement is an expression of the form $\Gamma \vdash t: A$ where Γ is a sequence of declarations whose variables are different each other, t is an original λ x-term, and A is a type. The inference rules to derive typing judgements of simply typed $\lambda \mathrm{x}$ are given as follows and t is said to be a typable term if a typing judgement of the form $\Gamma \vdash t: A$ is derivable for some Γ and A.

$$
\begin{gathered}
\stackrel{\overline{\Gamma_{1}, x: A, \Gamma_{2} \vdash x: A}(\mathrm{var})}{ } \begin{array}{c}
\Gamma, x: A \vdash t: B \\
\Gamma \vdash \lambda x \cdot t: A \rightarrow B \\
(\mathrm{abs}) \quad \frac{\Gamma \vdash t: A \rightarrow B \quad \Gamma \vdash s: A}{\Gamma \vdash t s: B}(\mathrm{app}) \\
\frac{\Gamma \vdash s: A \quad \Gamma, x: A \vdash t: B}{\Gamma \vdash t\langle x:=s\rangle: B}(\mathrm{xsub})
\end{array}
\end{gathered}
$$

We have defined typability on original λx-terms, but we will define our reducible set as a set of def-terms $\Delta \mathrm{I} t$ such that $\mathrm{FV}(t) \subseteq \mathrm{D}$.

We introduce the following relation $<$ on def-terms.

$$
\Delta \mathrm{ו} t<\Delta, x:=s \text { । } t \quad \text { if } x \notin \mathrm{FV}(t)
$$

We write \leq for the reflexive and transitive closure of $<$. We associate a set of def-terms for each type and sequence of definitions as follows.

$$
\left.\begin{array}{rl}
{[o]_{\Delta} \triangleq\{\Delta \mathrm{I} t \mid} & \mathrm{FV}(t) \subseteq \mathrm{D} \text { and } \Delta \mathrm{I} t \text { is semi SN }\} \\
{[A \rightarrow B]_{\Delta} \triangleq\left\{\Delta \mathrm{I} t \left\lvert\, \begin{array}{l}
\mathrm{FV}(t) \subseteq \mathrm{D}, \Delta \text { is semi } \mathrm{SN}, \text { and } \\
\text { for all } \Sigma \text { such that } \Delta \mathrm{\imath} t \leq \Sigma \mathrm{I} t \text { and } \Sigma \text { is semi SN }, \\
\text { and for all } \Sigma \mathrm{\imath} s \in[A]_{\Sigma}, \\
\Sigma \mathrm{I} t s \in[B]_{\Sigma}
\end{array}\right.\right.}
\end{array}\right\}
$$

We say $\Delta \mathrm{I} t$ is reducible if $\Delta \mathrm{I} t \in[A]_{\Delta}$ for some A.
In the following, we prove that a reducible def-term is semi SN and that a typable term is reducible. First, we prove the former part (Proposition 1).

Proposition 1. (1) If $\Delta \mathrm{I} t \in[C]_{\Delta}$, then $\Delta \mathrm{I} t$ is semi $S N$.
(2) Let $\Delta \equiv y_{1}:=r_{1}, \ldots, y_{m}:=r_{n}$. If $\Delta \mathrm{\imath} s_{1}, \ldots, \Delta$ । $s_{n}(n \geq 0)$, and Δ are semi $S N$ and $x \notin\left\{y_{1}, \ldots, y_{m}\right\}$, then $\Delta \mathrm{I} x s_{1} \cdots s_{n} \in[C]_{\Delta}$.

Proof. We prove (1) and (2) simultaneously by induction on C.

1. $C \equiv o:(1)$ Clear. (2) Since $\Delta \mathrm{\imath} x s_{1} \cdots s_{n}$ is semi SN by Lemma $1, \Delta$ । $x s_{1} \cdots s_{n} \in[o]_{\Delta}$.
2. $C \equiv A \rightarrow B$: (1) Take a new variable y. Then, Δ । $y \in[A]_{\Delta}$ by induction hypothesis. So, we have $\Delta \mathrm{I} t y \in[B]_{\Delta}$. By induction hypothesis, $\Delta \mathrm{I} t y$ is semi SN . Since a reduction sequence starting from $\Delta \mathrm{I} t$ can be lifted to a reduction sequence starting from $\Delta \mathrm{I} t y, \Delta \mathrm{I} t$ is semi SN. (2) Take any Σ such that Δ । $x s_{1} \cdots s_{n} \leq \Sigma$ । $x s_{1} \cdots s_{n}$ and Σ is semi SN, and take any $\Sigma \mathrm{I} r \in[A]_{\Sigma}$. By induction hypothesis, $\Sigma \mathbf{I} r$ is semi SN. By Lemma 14, $\Sigma \mathfrak{\imath} s_{1}, \ldots, \Sigma \boldsymbol{\imath} s_{n}$ are semi SN. Therefore, $\Sigma \boldsymbol{\imath} x s_{1} \cdots s_{n} r \in[B]_{\Sigma}$ by induction hypothesis.

Next, we prove that a typable term is reducible (Theorem 1).
Lemma 15. If $\Delta \mathrm{I} t \in[C]_{\Delta}, \Delta \mathrm{t} t \leq \Sigma \mathrm{I} t$, and Σ is semi $S N$, then $\Sigma \mathrm{I} t \in[C]_{\Sigma}$.
Proof. By induction on type C, using Lemma 14 in the base case.
Lemma 16. If $\Delta \mathrm{I} t \in[C]_{\Delta}$ and $t \rightarrow t^{\prime}$, then $\Delta \mathrm{I} t^{\prime} \in[C]_{\Delta}$.
Proof. By induction on type C.
Lemma 17. If $\Delta, x:=s$ । $t s_{1} \cdots s_{n} \in[C]_{\Delta, x:=s}$ and $x \notin \bigcup_{i=1}^{n} \mathrm{FV}\left(s_{i}\right)$, then $\Delta \mathrm{I}(t\{x:=s\}) s_{1} \cdots s_{n} \in[C]_{\Delta}$, therefore, $\Delta \mathrm{I}(t\langle x:=s\rangle) s_{1} \cdots s_{n} \in[C]_{\Delta}$.

Proof. We prove the first part of the lemma by induction on type C.

1. $C \equiv o$: By Proposition $1, \Delta, x:=s _t s_{1} \cdots s_{n}$ is semi SN. We have $\Delta, x:=s$ । $t s_{1} \cdots s_{n} \xrightarrow{*} \Delta \mathrm{I}(t\{x:=s\})\left(s_{1}\{x:=s\}\right) \cdots\left(s_{n}\{x:=s\}\right) \xrightarrow{*} \Delta \mathrm{I}(t\{x:=s\}) s_{1} \cdots s_{n}$, since $x \notin \bigcup_{i=1}^{n} \mathrm{FV}\left(s_{i}\right)$. Therefore, $\Delta \mathrm{I}(t\{x:=s\}) s_{1} \cdots s_{n}$ is semi SN.
2. $C \equiv A \rightarrow B$: We put $t^{\prime} \equiv(t\{x:=s\}) s_{1} \cdots s_{n}$. Take any Σ such that Δ । $t^{\prime} \leq$ $\Sigma \boldsymbol{\prime} t^{\prime}$ and Σ is semi SN, and take any $\Sigma \mathbf{\imath} r \in[A]_{\Sigma}$. We can take $y \in \bar{D}$ such that $y \notin \bigcup_{i=1}^{n} \mathrm{FV}\left(s_{i}\right) \cup \mathrm{FV}(r)$. Then, by Lemma 15 , we have $\Sigma, y:=$ $s \mid r \in[A]_{\Sigma, y:=s}$. Then, we have $\Sigma, y:=s \mid t_{x}^{y} s_{1} \cdots s_{n} r \in[B]_{\Sigma, y:=s}$. Therefore, $\Sigma \mathrm{I} t^{\prime} r \in[B]_{\Sigma}$ by induction hypothesis.

Therefore, $\Delta \mathrm{I}(t\{x:=s\}) s_{1} \cdots s_{n} \in[C]_{\Delta}$. By Lemma 16, $\Delta \mathrm{I}(t\langle x:=s\rangle) s_{1} \cdots s_{n} \in$ $[C]_{\Delta}$.

Here is a subtle point. We say t is inner if t is a ds-free term such that $x \in \mathrm{~V}$ for every substitution $\langle x:=s\rangle$ in t.

Lemma 18. Let t be an inner term and suppose $x \in \mathrm{D}$ and $z \in \mathrm{~V}$. If Δ । $(t\langle x:=s\rangle) s_{1} \cdots s_{n} \in[C]_{\Delta}$, then $\Delta \mathrm{I}\left(t_{x}^{z}\langle z:=s\rangle\right) s_{1} \cdots s_{n} \in[C]_{\Delta}$.

Proof. Since $t_{x}^{z}\langle z:=s\rangle$ satisfies the term formation condition and the conditions for the application of reduction rules does not change, we have the result when $C \equiv o$. The rest of the lemma can be proved by induction on type C.

Lemma 19. If $\Delta \mathrm{I}(t\langle x:=s\rangle) s_{1} \cdots s_{n} \in[C]_{\Delta}$, then $\Delta \mathrm{I}(\lambda x . t) s s_{1} \cdots s_{n} \in[C]_{\Delta}$.
Proof. By induction on type C, using Lemma 3 in the base case.

Lemma 20. Let $\Delta \equiv \Delta_{1}, x:=s, \Delta_{2}$. If $\Delta \mathrm{I} s_{1}, \ldots, \Delta \mathrm{l} s_{n}(n \geq 0), \Delta$ are semi $S N$ and $\Delta_{1} \mathrm{I} s$ is reducible, then $\Delta \mathrm{I} x s_{1} \cdots s_{n} \in[C]_{\Delta}$.

Proof. Since $\Delta_{1} \mathrm{I} s$ is semi SN by Proposition 1, it is easy to see that $\Delta_{1}, x:=s \mid x$ is semi SN. Therefore, $\Delta \mathrm{I} x$ is semi SN by Lemma 14. Now, suppose $\Delta \mathrm{I} x s_{1} \cdots s_{n}$ is not semi SN. By Lemma 1, we have two cases.

1. one of $\Delta \mathrm{I} x, \Delta \mathrm{I} s_{1}, \ldots, \Delta \mathrm{I} s_{n}$ is not semi SN : Contradiction.
2. there is an infinite reduction sequence that begins with $\gamma_{1}, \ldots, \gamma_{m},(\boldsymbol{\lambda} \mid \sigma)$ where $(\boldsymbol{\lambda} \mid \sigma)$ is the first $(\boldsymbol{\lambda})$ applied at n-applicative position: To apply $(\boldsymbol{\lambda})$ at n-applicative position, x should be instantiated, that is, $\gamma_{i}: \Delta^{\prime}$ I $t_{\sigma}\left[x\left\langle x:=s^{\prime}\right\rangle\right] \rightarrow \Delta^{\prime} \mathrm{I} t_{\sigma}\left[s^{\prime}\right]$ for some i where σ is an n-applicative position and $\Delta \mathrm{I} s \xrightarrow{*} \Delta^{\prime} \mathrm{I} s^{\prime}$. Since $\Delta_{1} \mathrm{I} s$ is reducible, $\Delta \mathrm{I} s^{\prime}$ is reducible by Lemma 15, 16, and 17. Therefore, $\Delta \mathrm{I} s^{\prime} s_{1} \cdots s_{n}$ is semi SN. By applying the reduction sequence $\gamma_{1}, \ldots, \gamma_{i-1}$ to $\Delta \mathrm{I} s^{\prime} s_{1} \cdots s_{n}$, we have Δ^{\prime} । $t_{\sigma}\left[s^{\prime}\right]$. Contradiction.

Therefore, $\Delta \mathrm{I} x s_{1} \cdots s_{n}$ is semi SN. The rest of the lemma can be proved by induction on type C.

We can assume an injective map $\iota: \mathrm{V} \rightarrow \mathrm{D}$ and write \widehat{x} for $\iota(x)$. We write \widehat{t} for a term obtained by renaming each free occurrence of $x \in \mathrm{~V}$ in t by \widehat{x}. Let $\Delta \equiv \widehat{x_{1}}:=s_{1}, \ldots, \widehat{x_{n}}:=s_{n}$ be a definition sequence and $\Gamma \equiv x_{i_{1}}: A_{i_{1}}, \ldots$, $x_{i_{m}}: A_{i_{m}}\left(1 \leq i_{1}<\cdots<i_{m} \leq n\right)$ be a declaration sequence. We say Δ is a reducible instance of Γ if Δ^{\prime} ı $s_{i_{j}} \in\left[A_{i_{j}}\right]_{\Delta^{\prime}}\left(\left.\Delta^{\prime} \equiv \Delta\right|_{i_{j}-1}\right)$ for each j in 1..m.

Theorem 1. Let Δ be a definition sequence and suppose $\Gamma \vdash r: C$ is derivable. If Δ is a reducible instance of Γ, then $\Delta \mathrm{I} \widehat{r} \in[C]_{\Delta}$.

Proof. By induction on the derivation of $\Gamma \vdash r: C$.

1. (var): By Proposition 1 or Lemma 20.
2. (abs): In this case, $r \equiv \lambda x . t$ and $C \equiv A \rightarrow B$. Take any Δ^{\prime} such that $\Delta \mathrm{I} \widehat{\lambda x . t} \leq$ Δ^{\prime} । $\widehat{\lambda x . t}$ and Δ^{\prime} is semi SN, and take any $\Delta^{\prime} \boldsymbol{\imath} s \in[A]_{\Delta^{\prime}}$. Since $\Delta^{\prime}, \widehat{x}:=s$ is a reducible instance of $\Gamma, x: A$, we have $\Delta^{\prime}, \widehat{x}:=s$ । $\widehat{t} \in[B]_{\Delta^{\prime}, \widehat{x}:=s}$ by induction hypothesis. Since \widehat{t} is inner, we have Δ^{\prime} । $\widehat{(\lambda x . t)} s \in[B]_{\Delta^{\prime}}$ by Lemma 17, 18, and 19. Therefore, $\Delta \mathrm{I} \widehat{\lambda x . t} \in[A \rightarrow B]_{\Delta}$.
3. (app): In this case, $r \equiv t s$ and $C \equiv A$. By induction hypothesis, $\Delta \mathrm{I} \widehat{t} \in$ $[A \rightarrow B]_{\Delta}$ and $\Delta \mathrm{t} \widehat{s} \in[A]_{\Delta}$. Therefore, $\Delta \mathrm{t} \widehat{t s} \in[B]_{\Delta}$.
4. (xsub): In this case, $r \equiv t\langle x:=s\rangle$ and $C \equiv B$. Since $\Delta \mathrm{I} \widehat{s} \in[A]_{\Delta}$ by induction hypothesis, $\Delta, \widehat{x}:=\widehat{s}$ is a reducible instance of $\Gamma, x: A$. So, $\Delta, \widehat{x}:=\widehat{s} \mid \widehat{t} \in$ $[B]_{\Delta, \widehat{x}:=\widehat{s}}$ by induction hypothesis. Since \widehat{t} is inner, we have $\left.\Delta \mathrm{t} t \widehat{\langle x:=s}\right\rangle \in[B]_{\Delta}$ by Lemma 17 and 18 .

Corollary 1. If t is typable in $\lambda \mathrm{x}$, then t is semi $S N$, therefore, t is $S N$ with respect to $\lambda \mathrm{x}+($ comp $)$.

5 Intersection Type System

We extend the type system $\lambda \mathrm{x}$ by introducing the intersection type $A \cap B$ and adding the following typing rules.

$$
\frac{\Gamma \vdash t: A \quad \Gamma \vdash t: B}{\Gamma \vdash t: A \cap B} \quad \frac{\Gamma \vdash t: A \cap B}{\Gamma \vdash t: A} \quad \frac{\Gamma \vdash t: A \cap B}{\Gamma \vdash t: B}
$$

But in this section, we regard Γ in a typing judgement $\Gamma \vdash t: A$ as a finite set of declarations whose variables are different each other. We call this type system $\lambda \mathrm{x} \cap$, and call the type system $\lambda \mathrm{x} \cap-$ (xsub) (where terms are restricted to pure λ-terms) $\lambda \cap$.

Theorem 2 (PSN). Let t be a pure λ-term. If t is $S N$ with respect to β-rule, then t is semi $S N$, therefore, t is $S N$ with respect to $\lambda \mathrm{x}+$ (comp).

Proof. By the well-known result (e.g. [11]), t is typable in $\lambda \cap$. So, t is typable in $\lambda \mathrm{x} \cap$. By defining $[A \cap B]_{\Delta} \triangleq[A]_{\Delta} \cap[B]_{\Delta}$, we can extend Corollary 1 to $\lambda \mathrm{x} \cap$. Therefore, t is semi SN.

Lengrand et al. [9] have shown that strong normalizability with respect to $\lambda \mathrm{x}$ is characterized by a type system $\lambda \mathrm{x} \cap$ extended with a rule called (drop). By adjusting their proof method to our case, we will show that semi SN is characterized by $\lambda \mathrm{x} \cap$.

We define preorder \leq on types as the smallest reflexive and transitive relation that satisfies the following.

1. $A \cap B \leq A$
2. $A \cap B \leq B$
3. if $C \leq A$ and $C \leq B$, then $C \leq A \cap B$

We define relation \sim on types as follows: $A \sim B$ iff $A \leq B$ and $B \leq A$. We define relation \leq on finite sets of declarations as follows: $\Gamma \leq \Gamma^{\prime}$ iff

$$
\text { for each } x: A^{\prime} \in \Gamma^{\prime} \text {, there exists } A \text { such that } x: A \in \Gamma \text { and } A \leq A^{\prime}
$$

We define $\Gamma_{1} \cap \Gamma_{2} \triangleq\left\{x: A_{1} \cap A_{2} \mid x: A_{1} \in \Gamma_{1}, x: A_{2} \in \Gamma_{2}\right\} \cup\left\{x: A \mid x: A \in \Gamma_{1}, x: A \notin\right.$ $\left.\Gamma_{2}\right\} \cup\left\{x: A \mid x: A \notin \Gamma_{1}, x: A \in \Gamma_{2}\right\}$.

Lemma 21. If $\Gamma^{\prime} \leq \Gamma, A \leq A^{\prime}$, and $\Gamma \vdash t: A$, then $\Gamma^{\prime} \vdash t: A^{\prime}$.
As usual, we can prove the Generation Lemma.

Lemma 22 (Generation Lemma).

1. $\Gamma \vdash x: A$ iff there exists $x: A^{\prime} \in \Gamma$ such that $A^{\prime} \leq A$.
2. $\Gamma \vdash t s: B$ iff there exist $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ such that $B \geq B_{1} \cap \cdots \cap B_{n}$, $\Gamma \vdash t: A_{i} \rightarrow B_{i}$, and $\Gamma \vdash s: A_{i}(1 \leq i \leq n)$.
3. $\Gamma \vdash \lambda$ x.t: C iff there exist $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ such that $C \sim\left(A_{1} \rightarrow B_{1}\right) \cap$ $\cdots \cap\left(A_{n} \rightarrow B_{n}\right)$ and $\Gamma, x: A_{i} \vdash t: B_{i}(1 \leq i \leq n)$.
4. $\Gamma \vdash t\langle x:=s\rangle: B$ iff there exists A such that $\Gamma \vdash s: A$ and $\Gamma, x: A \vdash t: B$.

Lemma 23. If s_{1}, \ldots, s_{n} are typable, then for any type A there exists Γ such that $\Gamma \vdash x s_{1} \cdots s_{n}: A$.

Proof. Suppose $\Gamma_{1} \vdash s_{1}: A_{1}, \ldots, \Gamma_{n} \vdash s_{n}: A_{n}$. Then, we have $\left(\cap_{i=1}^{n} \Gamma_{i}\right) \cap$ $x: A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow A \vdash x s_{1} \cdots s_{n}: A$.

Lemma 24. Let t be a β-normal pure λ-term.

1. If t is not an abstraction, then for any type A there exists Γ such that $\Gamma \vdash t: A$ in $\lambda \cap$.
2. If t is an abstraction, then t is typable in $\lambda \cap$.

Proof. By induction on t.
We introduce the following rules.

$$
\begin{aligned}
\left(\mathrm{var}^{\mathrm{c}}\right) & x\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\langle x:=s\rangle \rightarrow s\left\langle y_{n}:=r_{n}\lceil x:=s\rceil\right\rangle \cdots\left\langle y_{1}:=r_{1}\lceil x:=s\rceil\right\rangle \\
\left(\mathrm{gc}^{\mathrm{c}}\right) & t\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\langle x:=s\rangle \rightarrow t\left\langle y_{n}:=r_{n}\lceil x:=s\rceil\right\rangle \cdots\left\langle y_{1}:=r_{1}\lceil x:=s\rceil\right\rangle \\
& \text { if } x \notin \mathrm{FV}(t)
\end{aligned}
$$

where $t\lceil x:=s\rceil$ is defined as follows.

1. $t\lceil x:=s\rceil \triangleq t\langle x:=s\rangle \quad$ if $x \in \mathrm{FV}(t)$
2. $t\lceil x:=s\rceil \triangleq t \quad$ if $x \notin \mathrm{FV}(t)$

Then, we define a strategy \rightsquigarrow for $\lambda \mathrm{x}+\left(\mathrm{var}^{\mathrm{c}}\right)+\left(\mathrm{gc}^{\mathrm{c}}\right)$ as follows. (In the following, $\mathcal{C}[]$ and $\mathcal{A}[]$ are contexts of the form $\mathcal{C}[] \equiv\left([]\left\langle x_{n}:=s_{n}\right\rangle \cdots\left\langle x_{1}:=s_{1}\right\rangle\right) t_{1} \cdots t_{m}$ and $\mathcal{A}[] \equiv[] t_{1} \cdots t_{m}$ and $n f(s)$ means that s is normal with respect to \rightsquigarrow.)

1. $\lambda x . t \rightsquigarrow \lambda x . t^{\prime} \quad$ if $t \rightsquigarrow t^{\prime}$
2. $\mathcal{A}\left[x s_{1} \cdots s_{n} t\right] \rightsquigarrow \mathcal{A}\left[x s_{1} \cdots s_{n} t^{\prime}\right] \quad$ if $n f\left(x s_{1} \cdots s_{n}\right)$ and $t \rightsquigarrow t^{\prime}$
3. $\mathcal{A}[(\lambda x . t) s] \rightsquigarrow \mathcal{A}[t\langle x:=s\rangle]$
4. $\mathcal{C}[(\lambda y . t)\langle x:=s\rangle] \rightsquigarrow \mathcal{C}[\lambda y . t\langle x:=s\rangle]$
5. $\mathcal{C}[(t r)\langle x:=s\rangle] \rightsquigarrow \mathcal{C}[(t\langle x:=s\rangle)(r\langle x:=s\rangle)]$
6. $\mathcal{A}\left[x\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\langle x:=s\rangle\right] \rightsquigarrow \mathcal{A}\left[s\left\langle y_{n}:=r_{n}\lceil x:=s\rceil\right\rangle \cdots\left\langle y_{1}:=r_{1}\lceil x:=s\rceil\right\rangle\right]$
7. $\mathcal{A}\left[z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\langle x:=s\rangle\right] \rightsquigarrow \mathcal{A}\left[z\left\langle y_{n}:=r_{n}\lceil x:=s\rceil\right\rangle \cdots\left\langle y_{1}:=r_{1}\lceil x:=s\rceil\right\rangle\right]$ if $x \not \equiv z$ and $x \in \operatorname{FV}\left(z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\right)$
8. $\mathcal{A}\left[z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\langle x:=s\rangle\right] \rightsquigarrow \mathcal{A}\left[z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\right]$ if $x \notin \mathrm{FV}\left(z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\right)$ and $n f(s)$
9. $\mathcal{A}\left[z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\langle x:=s\rangle\right] \rightsquigarrow \mathcal{A}\left[z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\left\langle x:=s^{\prime}\right\rangle\right]$ if $x \notin \mathrm{FV}\left(z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\right)$ and $s \rightsquigarrow s^{\prime}$

Lemma 25 (Subject Expansion). If $t \rightsquigarrow s$ and $\Gamma \vdash s: A$,
then $\begin{cases}\Gamma^{\prime} \vdash t: A \text { for some } \Gamma^{\prime} \leq \Gamma & \text { if } t \text { is not an abstraction } \\ \Gamma^{\prime} \vdash t: A^{\prime} \text { for some } \Gamma^{\prime} \leq \Gamma \text { and } A^{\prime} & \text { if } t \text { is an abstraction }\end{cases}$
Proof. By considering the derivation of $\mathcal{A}[s]$ or $\mathcal{C}[s]$, we can easily prove the following two claims:

Suppose that, for any Γ and A such that $\Gamma \vdash s: A$, there exists $\Gamma^{\prime} \leq \Gamma$ such that $\Gamma^{\prime} \vdash t: A$. If $\Gamma \vdash \mathcal{A}[s]: C$, then there exists $\Gamma^{\prime} \leq \Gamma$ such that $\Gamma^{\prime} \vdash \mathcal{A}[t]: C$.
and
Suppose that $\Gamma \vdash s: A$ implies $\Gamma \vdash t: A$ for any Γ and A. If $\Gamma \vdash \mathcal{C}[s]: C$, then $\Gamma \vdash \mathcal{C}[t]: C$.
We prove the lemma by induction on the definition of \rightsquigarrow. The base cases are $3-7$. First, we prove these base cases when $\mathcal{A}[] \equiv \mathcal{C}[] \equiv[]$.
3. Suppose $\Gamma \vdash t\langle x:=s\rangle$: B. By Lemma 22, we have $\Gamma \vdash s: A$ and $\Gamma, x: A \vdash t: B$ for some A. Therefore, $\Gamma \vdash(\lambda x . t) s: B$
4. Suppose $\Gamma \vdash \lambda y$. $t\langle x:=s\rangle: C$. By Lemma 22, there exist $A_{1}, \ldots, A_{n}, B_{1}, \ldots$, B_{n} such that $C \sim\left(A_{1} \rightarrow B_{1}\right) \cap \cdots \cap\left(A_{n} \rightarrow B_{n}\right)$ and $\Gamma, y: A_{i} \vdash t\langle x:=s\rangle: B_{i}$ $(1 \leq i \leq n)$. So, by Lemma 22, there exists C_{i} such that $\Gamma, y: A_{i} \vdash s: C_{i}$ and $\Gamma, y: A_{i}, x: C_{i} \vdash t: B_{i}$. Since $y \notin \mathrm{FV}(s)$, we have $\Gamma \vdash s: C_{i}$. Hence, $\Gamma \vdash(\lambda y . t)\langle x:=s\rangle: A_{i} \rightarrow B_{i}$. Therefore, $\Gamma \vdash(\lambda y . t)\langle x:=s\rangle: C$.
5. Suppose $\Gamma \vdash(t\langle x:=s\rangle)(r\langle x:=s\rangle): B$. By Lemma 22, there exist A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n} such that $B \geq B_{1} \cap \cdots \cap B_{n}, \Gamma \vdash t\langle x:=s\rangle: A_{i} \rightarrow B_{i}$, and $\Gamma \vdash$ $r\langle x:=s\rangle: A_{i}(1 \leq i \leq n)$. So, by Lemma 22, there exist C_{i}, C_{i}^{\prime} such that $\Gamma \vdash s: C_{i}, \Gamma, x: C_{i} \vdash t: A_{i} \rightarrow B_{i}, \Gamma \vdash s: C_{i}^{\prime}$, and $\Gamma, x: C_{i}^{\prime} \vdash r: A_{i}$. We put $D_{i} \equiv C_{i} \cap C_{i}^{\prime}$. Then, by Lemma 21, we have $\Gamma \vdash s: D_{i}, \Gamma, x: D_{i} \vdash t: A_{i} \rightarrow B_{i}$, and $\Gamma, x: D_{i} \vdash r: A_{i}$. Hence, $\Gamma \vdash(t r)\langle x:=s\rangle: B_{i}$. Therefore, $\Gamma \vdash(t r)\langle x:=s\rangle$: B.
6. Suppose $\Gamma \vdash s\left\langle y_{n}:=r_{n}\lceil x:=s\rceil\right\rangle \cdots\left\langle y_{1}:=r_{1}\lceil x:=s\rceil\right\rangle$: B. By Lemma 22, there exist A_{1}, \ldots, A_{n} such that $\Gamma, y_{1}: A_{1}, \ldots, y_{i-1}: A_{i-1} \vdash r_{i}\lceil x:=s\rceil: A_{i}(1 \leq$ $i \leq n)$ and $\Gamma, y_{1}: A_{1}, \ldots, y_{n}: A_{n} \vdash s: B$. We put $I \equiv\left\{i \mid x \in \mathrm{FV}\left(r_{i}\right)\right\}$. If $i \in I$, there exists B_{i} such that $\Gamma, y_{1}: A_{1}, \ldots, y_{i-1}: A_{i-1} \vdash s: B_{i}$ and $\Gamma, y_{1}: A_{1}, \ldots, y_{i-1}: A_{i-1}, x: B_{i} \vdash r_{i}: A_{i}$. Since $\left\{y_{1}, \ldots, y_{n}\right\} \cap \mathrm{FV}(s)=\emptyset$, we have $\Gamma \vdash s: B$. We put $C \equiv\left(\cap_{i \in I} B_{i}\right) \cap B$ if $I \neq \emptyset$ and $C \equiv B$ otherwise. Then, we have $\Gamma \vdash s: C$. Hence, $\Gamma \vdash x\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\langle x:=s\rangle: C$. Therefore, $\Gamma \vdash x\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\langle x:=s\rangle: B$.
7. Suppose $\Gamma \vdash z\left\langle y_{n}:=r_{n}\lceil x:=s\rceil\right\rangle \cdots\left\langle y_{1}:=r_{1}\lceil x:=s\rceil\right\rangle$: B. By Lemma 22, there exist A_{1}, \ldots, A_{n} such that $\Gamma, y_{1}: A_{1}, \ldots, y_{i-1}: A_{i-1} \vdash r_{i}\lceil x:=s\rceil: A_{i}(1 \leq i \leq$ $n)$ and $\Gamma, y_{1}: A_{1}, \ldots, y_{n}: A_{n} \vdash z: B$. We put $I \equiv\left\{i \mid x \in \mathrm{FV}\left(r_{i}\right)\right\}$. Then, $I \neq \emptyset$. If $i \in I$, there exists B_{i} such that $\Gamma, y_{1}: A_{1}, \ldots, y_{i-1}: A_{i-1} \vdash s: B_{i}$ and $\Gamma, y_{1}: A_{1}, \ldots, y_{i-1}: A_{i-1}, x: B_{i} \vdash r_{i}: A_{i}$. Since $\left\{y_{1}, \ldots, y_{n}\right\} \cap \mathrm{FV}(s)=\emptyset$, we have $\Gamma \vdash s: B_{i}$. We put $C \equiv \cap_{i \in I} B_{i}$. Then, we have $\Gamma \vdash s: C$. Therefore, $\Gamma \vdash z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\langle x:=s\rangle: B$.
By the above two claims, we have the result in the base case. For the induction step, we first prove when $\mathcal{A}[] \equiv[]$.

1. Suppose $\Gamma \vdash \lambda x . t^{\prime}: C$. By Lemma 22, there exist $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ such that $C \sim\left(A_{1} \rightarrow B_{1}\right) \cap \cdots \cap\left(A_{n} \rightarrow B_{n}\right)$ and $\Gamma, x: A_{i} \vdash t^{\prime}: B_{i}(1 \leq i \leq n)$. By induction hypothesis, we have $\Gamma^{\prime}, x: A_{1}^{\prime} \vdash t: B_{1}^{\prime}$ for some $\Gamma^{\prime}, x: A_{1}^{\prime} \leq$ $\Gamma, x: A_{1}$ and B_{1}^{\prime}. Therefore, $\Gamma^{\prime} \vdash \lambda x$.t : $A_{1}^{\prime} \rightarrow B_{1}^{\prime}$.
2. Suppose $\Gamma \vdash x s_{1} \cdots s_{n} t^{\prime}: B$. By Lemma 22 , there exist $A_{1}^{\prime}, \ldots, A_{n}^{\prime}, B_{1}, \ldots, B_{n}$ such that $B \geq B_{1} \cap \cdots \cap B_{n}, \Gamma \vdash x s_{1} \cdots s_{n}: A_{i}^{\prime} \rightarrow B_{i}$, and $\Gamma \vdash t^{\prime}: A_{i}^{\prime}$ $(1 \leq i \leq n)$. By induction hypothesis, we have $\Gamma_{i} \vdash t: A_{i}$ for some $\Gamma_{i} \leq \Gamma$ and A_{i}. By Lemma 23, there exists Γ_{i}^{\prime} such that $\Gamma_{i}^{\prime} \vdash x s_{1} \cdots s_{n}: A_{i} \rightarrow B_{i}$. Hence, $\Gamma_{i} \cap \Gamma_{i}^{\prime} \vdash x s_{1} \cdots s_{n} t: B_{i}$. Therefore, $\cap_{i=1}^{n}\left(\Gamma_{i} \cap \Gamma_{i}^{\prime}\right) \vdash x s_{1} \cdots s_{n} t: B$.
3. Suppose $\Gamma \vdash z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle$: B. Since $n f(s), \Gamma^{\prime} \vdash s: C$ for some Γ^{\prime} and C by Lemma 24. Therefore, $\Gamma \cap \Gamma^{\prime} \vdash z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\langle x:=s\rangle: B$ since $x \notin \operatorname{FV}\left(z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\right)$.
4. Suppose $\Gamma \vdash z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\left\langle x:=s^{\prime}\right\rangle$: B. By Lemma 22, there exists A^{\prime} such that $\Gamma \vdash s^{\prime}: A^{\prime}$ and $\Gamma, x: A^{\prime} \vdash z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle: B$. By induction hypothesis, we have $\Gamma^{\prime} \vdash s: A$ for some $\Gamma^{\prime} \leq \Gamma$ and A. Since $x \notin \mathrm{FV}\left(z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\right)$, we have $\Gamma, x: A \vdash z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle: B$. Therefore, $\Gamma \cap \Gamma^{\prime} \vdash z\left\langle y_{n}:=r_{n}\right\rangle \cdots\left\langle y_{1}:=r_{1}\right\rangle\langle x:=s\rangle: B$.

We are done by applying the first claim to the above cases other than case 1.
Theorem 3. Let t be an original $\lambda \mathrm{x}$-term. Then, the followings are equivalent. (1) t is semi $S N$.
(2) t is $S N$ with respect to $\lambda \mathrm{x}+\left(\mathrm{var}^{\mathrm{c}}\right)+\left(\mathrm{gc}^{\mathrm{c}}\right)$.
(3) t is typable in $\lambda \mathrm{x} \cap$.

Proof. (1) $\Rightarrow(2)$: Since $\left(\right.$ var $\left.^{\mathrm{c}}\right)$ (resp. $\left.\left(\mathrm{gc}^{\mathrm{c}}\right)\right)$ is decomposed into a several applications of (comp) or (perm) followed by (var) (resp. (gc)), a reduction sequence that consists of $\lambda \mathrm{x}+\left(\mathrm{var}^{\mathrm{c}}\right)+\left(\mathrm{gc}^{\mathrm{c}}\right)$ can be converted to a non-permutative sequence. $(2) \Rightarrow(3)$: Since \rightsquigarrow is a strategy for $\lambda \mathrm{x}+\left(\mathrm{var}^{\mathrm{c}}\right)+\left(\mathrm{gc}^{\mathrm{c}}\right)$, there is a normal form of t with respect to \rightsquigarrow. Because the normal form is a pure λ-term, it is typable in $\lambda \cap$ by Lemma 24. Therefore, t is typable in $\lambda \mathrm{x} \cap$ by Lemma 25 .
$(3) \Rightarrow(1)$: By Theorem 2 .

6 Conclusion

In this paper, we have developed a novel method for proving the strong normalizability of simply typed $\lambda \mathrm{x}$ with a composition rule. Using this method, we have proved the new result. Our composition rule is the first full composition rule in $\lambda \mathrm{x}$ that is controlled by a very simple condition. The characteristic feature of our calculus is that we can freely push a substitution into a term in our calculus, which is justified by the notion of semi SN.

We believe we can apply our method to other calculi of explicit substitutions and simplify the proof of SN or introduce a composition rule.

We also remark that some part of our idea has evolved from our proof of SN of $\lambda \varepsilon$ [12]. The proof is very complicated, but now we can simplify it using the method developed in this paper.

Acknowledgements We thank Masahiko Sato and Kentaro Kikuch for helpful discussions.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitutions. Journal of Functional Programming, 1:375-416, 1991.
2. R. Bloo and H. Geuvers. Explicit substitution On the edge of strong normalization. Theoretical Computer Science, 211:375-395, 1999.
3. R. Bloo and K.H. Rose. Preservation of strong normalization in named lambda calculi with explicit substitution and garbage collection. In van Vliet J. C., editor, Proc. CSN’95 (Computer Science in Netherlands), 1995. (ftp://ftp.diku.dk/ diku/semantics/papers/D-246.ps).
4. R. David and B Guillaume. A λ-calculus with explicit weakening and explicit substitution. Math. Struct. in Comp. Science, 11(1):169-206, 2001.
5. R. David and B Guillaume. Strong Normalization of the Typed $\lambda_{w s}$-Calculus. In Proc. CSL2003, LNCS 2803, pages 155-168, 2003.
6. R. Di Cosmo, D. Kesner, and E. Polonovski. Proof Nets and Explicit Substitutions. In Proc. FOSSACS 2000, LNCS 1784, pages 63-81, 2000.
7. M.-C.-F. Ferreira, D. Kesner, and L. Puel. λ-calculi with explicit weakening and explicit substitution which preserve β-strong normalization. In Proc. ALP96, LNCS 1139, pages 284-298, 1996.
8. D. Kesner. Confluence properties of extensional and non-extensional λ-calculi with explicit substitution. In Proc. Seventh RTA, LNCS 1103, pages 184-199, 1996.
9. S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel. Intersection types for explicit substitutions. Information and Computation, 189(1):17-42, 2004.
10. P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate. In Proc. TLCA'95, LNCS 902, pages 328-349, 1995.
11. G. Pottinger. A type assignment for the strongly normalizable λ-terms. In To H.B. Curry: Essays on COmbinatory Logic, Lambda Calculus and Formalism, pages 561578, 1980.
12. M. Sato, T. Sakurai, and R. Burstall. Explicit Environments. Fundamenta Informaticae, 45(1-2):79-115, 2001.
