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Abstract

We prove that all strongly outer ZN -actions on a UHF algebra of infinite type
are strongly cocycle conjugate to each other. We also prove that all strongly outer,
asymptotically representable ZN -actions on a unital simple AH algebra with real rank
zero, slow dimension growth and finitely many extremal tracial states are cocycle
conjugate to each other.

1 Introduction

Classification of group actions is one of the most fundamental subjects in the theory of
operator algebras. For AFD factors, a complete classification is known for actions of
countable amenable groups. However, classification of automorphisms or group actions on
C∗-algebras is still a far less developed subject, partly because of K-theoretical difficulties.
In this paper we prove the uniqueness of strongly outer ZN -actions on UHF algebras of
infinite type (Theorem 5.4) as well as the uniqueness of strongly outer, asymptotically
representable ZN -actions on certain unital simple AH algebras (Theorem 4.8).

A. Kishimoto [5] proved that any strongly outer Z-actions on any UHF algebras have
the Rohlin property and that they are strongly cocycle conjugate to each other. H. Naka-
mura [15] showed that any strongly outer Z2-actions on UHF algebras have the Rohlin
property. T. Katsura and the author [4] gave a complete classification of strongly outer
Z2-actions on UHF algebras by using the Rohlin property. In particular, it was shown that
strongly outer Z2-actions on any UHF algebra of infinite type are unique up to cocycle
conjugacy. The present paper generalizes these results. We show that strong outerness is
equivalent to the Rohlin property for ZN -actions on UHF algebras of infinite type (The-
orem 4.5) and that all strongly outer ZN -actions on any UHF algebra of infinite type are
strongly cocycle conjugate to each other (Theorem 5.4).

We briefly review other classification results of ZN -actions known so far. For AT alge-
bras, A. Kishimoto [7, 8] showed the Rohlin property for a certain class of automorphisms
and obtained a cocycle conjugacy result. The author [12] extended this result to unital
simple AH algebras with real rank zero and slow dimension growth. A certain class of
Z2-actions on unital simple AF algebras were also classified in [12]. Y. Sato [18] proved
that strongly outer Z-actions on the Jiang-Su algebra Z are unique up to strong cocycle
conjugacy. Y. Sato and the author [14] obtained the uniqueness of strongly outer Z2-
actions on Z. For Kirchberg algebras, complete classification of aperiodic automorphisms
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was given by H. Nakamura [16]. M. Izumi and the author [3] classified a large class of
Z2-actions and also showed the uniqueness of ZN -actions on O2, O∞ and O∞⊗B with B
being a UHF algebra of infinite type (see also [11]).

This paper is organized as follows. In Section 2, we collect for reference basic nota-
tions, terminologies and definitions. In Section 3, it is shown that ZN -actions with the
Rohlin property on a UHF algebra of infinite type are mutually cocycle conjugate (The-
orem 3.4). It is also shown that asymptotically representable ZN -actions with the Rohlin
property on a unital simple AH algebra with real rank zero and slow dimension growth
are mutually cocycle conjugate (Theorem 3.7). In Section 4, we prove that strongly outer
ZN -actions on UHF algebras of infinite type have the Rohlin property (Theorem 4.5).
The same statement is also obtained for approximately representable, strongly outer ZN -
actions on certain AH algebras (Theorem 4.7). This, together with the result of Section 3,
implies the uniqueness of asymptotically representable, strongly outer ZN -actions on AH
algebras (Theorem 4.8). In Section 5, we show a kind of cohomology vanishing theorem
(Lemma 5.3) and complete the proof of the uniqueness of strongly outer ZN -actions on
UHF algebras of infinite type (Theorem 5.4).

2 Preliminaries

The cardinality of a set F is written by |F |. For a Lipschitz continuous function f , we
denote its Lipschitz constant by Lip(f).

Let A be a C∗-algebra. For a, b ∈ A, we mean by [a, b] the commutator ab − ba.
The set of tracial states on A is denoted by T (A). When A is unital, we mean by U(A)
the set of all unitaries of A. For u ∈ U(A), the inner automorphism induced by u is
written by Adu. An automorphism α ∈ Aut(A) is called outer, when it is not inner.
When φ is a homomorphism between C∗-algebras, K0(φ) and K1(φ) mean the induced
homomorphisms on K-groups.

Let A and B be unital C∗-algebras. We denote by Hom(A,B) the set of all unital
homomorphisms from A to B. Two unital homomorphisms φ,ψ ∈ Hom(A,B) are said
to be asymptotically unitarily equivalent, if there exists a continuous family of unitaries
(ut)t∈[0,∞) in B such that

φ(a) = lim
t→∞

Adut(ψ(a))

for all a ∈ A. When there exists a sequence of unitaries (un)n∈N in B such that

φ(a) = lim
n→∞

Adun(ψ(a))

for all a ∈ A, φ and ψ are said to be approximately unitarily equivalent. An automorphism
α ∈ Aut(A) is said to be asymptotically (resp. approximately) inner if α is asymptotically
(resp. approximately) unitarily equivalent to the identity map.

Let α : Γ y A be an action of a discrete group Γ on a unital C∗-algebra A. The
fixed point subalgebra of A is Aα. The canonical implementing unitaries in the reduced
crossed product C∗-algebra A oα Γ are written by (λα

g )g∈Γ. The set of all automorphisms
φ ∈ Aut(Aoα Γ) satisfying φ(λα

g )λα∗
g ∈ A for any g ∈ Γ is denoted by AutΓ̂(Aoα Γ). Two

automorphisms φ,ψ ∈ AutΓ̂(A oα Γ) are said to be Γ̂-asymptotically unitarily equivalent,
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if there exists a continuous family of unitaries (ut)t∈[0,∞) in A such that

φ(x) = lim
t→∞

Adut(ψ(x))

for all x ∈ A oα Γ. In an analogous way, one can define Γ̂-approximately unitarily equiv-
alence. An automorphism φ ∈ AutΓ̂(A oα Γ) is said to be Γ̂-asymptotically (resp. Γ̂-
approximately) inner if α is Γ̂-asymptotically (resp. Γ̂-approximately) unitarily equivalent
to the identity map.

We recall several definitions from [3, 14].

Definition 2.1 ([3, Definition 2.2]). Let Γ be a countable discrete group and let A be a
unital C∗-algebra. An action α : Γ y A is said to be asymptotically representable, if there
exists a continuous family of unitaries (vg(t))t∈[0,∞) in U(A) for each g ∈ Γ such that

lim
t→∞

∥vg(t)vh(t) − vgh(t)∥ = 0,

lim
t→∞

∥αg(vh(t)) − vghg−1(t)∥ = 0,

and
lim
t→∞

∥vg(t)avg(t)∗ − αg(a)∥ = 0

hold for all g, h ∈ Γ and a ∈ A.
Approximate representability is defined in an analogous way (see [2, Definition 3.6]).

Definition 2.2 ([14, Definition 2.7]). Let α : Γ y A be an action of a countable discrete
group Γ on a unital C∗-algebra A such that τ ◦αg = τ for any τ ∈ T (A) and g ∈ Γ. We say
that α is strongly outer if the weak extension of αg to an automorphism of πτ (A)′′ is outer
for any g ∈ Γ \ {e} and τ ∈ T (A), where πτ is the GNS representation of A associated
with τ . Strong outerness of cocycle actions is defined in the same way.

Definition 2.3 ([14, Definition 2.1]). Let α : Γ y A and β : Γ y B be actions of a
countable discrete group Γ on unital C∗-algebras A and B.

(1) The two actions α and β are said to be conjugate, when there exists an isomorphism
µ : A → B such that αg = µ−1 ◦ βg ◦ µ for all g ∈ Γ.

(2) A family of unitaries (ug)g∈Γ in A is called an α-cocycle, if one has ugαg(uh) = ugh

for all g, h ∈ Γ. When (ug)g is an α-cocycle, the perturbed action αu : Γ y A is
defined by αu

g = Adug ◦ αg.

(3) The two actions α and β are said to be cocycle conjugate, if there exists an α-cocycle
(ug)g∈Γ in A such that αu is conjugate to β.

(4) The two actions α and β are said to be strongly cocycle conjugate, if there exist
an α-cocycle (ug)g∈Γ in A and a sequence of unitaries (vn)∞n=1 in A such that αu is
conjugate to β and limn→∞∥ug − vnαg(v∗n)∥ = 0 for all g ∈ Γ.
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Let A be a separable C∗-algebra. Set

c0(A) = {(an)n ∈ ℓ∞(N, A) | lim
n→∞

∥an∥ = 0}, A∞ = ℓ∞(N, A)/c0(A).

We identify A with the C∗-subalgebra of A∞ consisting of equivalence classes of constant
sequences. We let

A∞ = A∞ ∩ A′

and call it the central sequence algebra of A. A sequence (xn)n ∈ ℓ∞(N, A) is called
a central sequence if ∥[a, xn]∥ → 0 as n → ∞ for all a ∈ A. A central sequence is a
representative of an element in A∞. When α is an automorphism on A or an action of a
discrete group on A, we can consider its natural extension on A∞ and A∞. We denote it
by the same symbol α.

We denote the canonical basis of ZN by ξ1, ξ2, . . . , ξN , that is,

ξi = (0, 0, . . . , 1, . . . , 0, 0),

where 1 is in the i-th component. We regard ZN−1 as a subgroup of ZN via the map
(n1, n2, . . . , nN−1) 7→ (n1, n2, . . . , nN−1, 0).

We would like to recall the definition of the Rohlin property for ZN -actions on unital
C∗-algebras (see [15, Section 2]). Let ξ1, ξ2, . . . , ξN be the canonical basis of ZN as above.
For m = (m1,m2, . . . ,mN ) and n = (n1, n2, . . . , nN ) in ZN , m ≤ n means mi ≤ ni for all
i = 1, 2, . . . , N . For m = (m1,m2, . . . ,mN ) ∈ NN , we let

mZN = {(m1n1,m2n2, . . . ,mNnN ) ∈ ZN | (n1, n2, . . . , nN ) ∈ ZN}.

For simplicity, we denote ZN/mZN by Zm. Moreover, we may identify Zm = ZN/mZN

with
{(n1, n2, . . . , nN ) ∈ ZN | 0 ≤ ni ≤ mi−1 ∀i = 1, 2, . . . , N}.

Definition 2.4. Let α be an action of ZN on a unital C∗-algebra A. Then α is said to have
the Rohlin property, if for any m ∈ N there exist R ∈ N and m(1),m(2), . . . ,m(R) ∈ NN

with m(1), . . . ,m(R) ≥ (m, m, . . . ,m) satisfying the following: For any finite subset F of
A and ε > 0, there exists a family of projections

e(r)
g (r = 1, 2, . . . , R, g ∈ Zm(r))

in A such that

R∑
r=1

∑
g∈Z

m(r)

e(r)
g = 1, ∥[a, e(r)

g ]∥ < ε, ∥αξi
(e(r)

g ) − e
(r)
g+ξi

∥ < ε

for any a ∈ F , r = 1, 2, . . . , R, i = 1, 2, . . . , N and g ∈ Zm(r) , where g + ξi is understood
modulo m(r)ZN .

Remark 2.5. Clearly, we can restate the definition of the Rohlin property as follows.
For any m ∈ N there exist R ∈ N, m(1), m(2), . . . ,m(R) ∈ NN with m(1), . . . ,m(R) ≥
(m,m, . . . ,m) and a family of projections

e(r)
g (r = 1, 2, . . . , R, g ∈ Zm(r))
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in A∞ = A∞ ∩ A′ such that

R∑
r=1

∑
g∈Z

m(r)

e(r)
g = 1, αξi

(e(r)
g ) = e

(r)
g+ξi

for any r = 1, 2, . . . , R, i = 1, 2, . . . , N and g ∈ Zm(r) , where g + ξi is understood modulo
m(r)ZN .

We can also restate the Rohlin property as follows ([15, Remark 2]). For any n,m ∈ N
with 1 ≤ n ≤ N , there exist R ∈ N, natural numbers m(1),m(2), . . . ,m(R) ≥ m and a
family of projections

e
(r)
j (r = 1, 2, . . . , R, j = 0, 1, . . . ,m(r)−1)

in A∞ = A∞ ∩ A′ such that

R∑
r=1

m(r)−1∑
j=0

e
(r)
j = 1, αξn(e(r)

j ) = e
(r)
j+1, αξi

(e(r)
j ) = e

(r)
j

for any r = 1, 2, . . . , R, i = 1, 2, . . . , N with i ̸= n and j = 0, 1, . . . ,m(r)−1, where the
index j+1 is understood modulo m(r).

3 ZN-actions with the Rohlin property

In this section we prove that all ZN -actions on a UHF algebra of infinite type with the
Rohlin property are cocycle conjugate to each other (Theorem 3.4). We also prove that
all asymptotically representable ZN -actions with the Rohlin property on a unital simple
AH algebra with real rank zero and slow dimension growth are cocycle conjugate to each
other (Theorem 3.7).

Lemma 3.1. Let α : ZN y A be a strongly outer action of ZN on a UHF algebra A.

(1) Let α′ : ZN−1 y A be the ZN−1-action generated by the first N−1 generators of α
and let α̃ξN

denote the canonical extension of the last generator of α to Aoα′ ZN−1.
Then Ki(α̃ξN

) = id for i = 0, 1.

(2) The crossed product A oα ZN is a unital simple AT algebra of real rank zero with a
unique trace.

(3) Let ιN : C∗(ZN ) → A oα ZN be the canonical inclusion. Then

Ki(ιN ) ⊗ idQ : Ki(C∗(ZN )) ⊗ Q → Ki(A oα ZN ) ⊗ Q

is an isomorphism for i = 0, 1.

Proof. The proof is by induction on N . When N = 1, (1) and (3) are clear. (2) follows
from (1) and [14, Corollary 5.9] (or [5, Theorem 1.3]).
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Suppose that the assertions hold for N−1. From the commutative diagram

C∗(ZN−1) id−−−−→ C∗(ZN−1)

ιN−1

y ιN−1

y
A oα′ ZN−1 −−−−→

α̃ξN

A oα′ ZN−1,

one obtains Ki(ιN−1) = Ki(α̃ξN
) ◦ Ki(ιN−1). By (3) for N−1, Ki(ιN−1) ⊗ idQ is an

isomorphism, and so Ki(α̃ξN
) ⊗ idQ is the identity on Ki(A oα′ ZN−1) ⊗ Q. By (2) for

N−1, Ki(A oα′ ZN−1) is torsion free. Therefore Ki(α̃ξN
) = id for i = 0, 1. Thus (1) for

N has been shown.
(2) for N follows from (2) for N−1, (1) for N and [14, Corollary 5.9].
Finally we prove (3). Thanks to the naturality of the Pimsner-Voiculescu exact se-

quence and (1), we have the following commutative diagram:

0 −−−−→ Ki(C∗(ZN−1)) −−−−→ Ki(C∗(ZN )) −−−−→ K1−i(C∗(ZN−1)) −−−−→ 0

Ki(ιN−1)

y Ki(ιN )

y K1−i(ιN−1)

y
0 −−−−→ Ki(A oα′ ZN−1) −−−−→ Ki(A oα ZN ) −−−−→ K1−i(A oα′ ZN−1) −−−−→ 0

for i = 0, 1, where the horizontal sequences are exact. These two sequences are still exact
when one takes tensor products with Q. By (3) for N−1, Ki(ιN−1)⊗idQ is an isomorphism.
It follows that Ki(ιN ) ⊗ idQ is also an isomorphism.

Lemma 3.2. Let α : ZN y A be a strongly outer action of ZN on a UHF algebra A of
infinite type and let D = K0(A).

(1) Let α′ : ZN−1 y A be the ZN−1-action generated by the first N−1 generators of α
and let α̃ξN

denote the canonical extension of the last generator of α to Aoα′ ZN−1.
Then α̃ξN

is asymptotically inner.

(2) For each i = 0, 1, Ki(A oα ZN ) is isomorphic to D2N−1
.

(3) Let ιN : C∗(ZN ) → A oα ZN be the canonical inclusion. Then

Ki(ιN ) ⊗ idD : Ki(C∗(ZN )) ⊗ D → Ki(A oα ZN ) ⊗ D ∼= D2N−1

is an isomorphism for i = 0, 1.

Proof. Note that D⊗D ∼= D and Ext(D,D) = 0, because A is of infinite type. The proof
is by induction on N . When N = 1, the assertions trivially hold.

Suppose that the lemma is known for N−1. We would like to show that α̃ξN
is

asymptotically inner. By Lemma 3.1, A oα′ ZN−1 is a unital simple AT algebra of real
rank zero with a unique trace τ and α̃ξN

is approximately inner. By virtue of [9, Theorem
3.1], it suffices to show that the OrderExt invariant of α̃ξN

is trivial. By (2) for N−1,

Ext(Ki(A oα′ ZN−1),K1−i(A oα′ ZN−1)) ∼= Ext(D2N−2
, D2N−2

) = 0
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for i = 0, 1. Let

B = {f : [0, 1] → A oα′ ZN−1 | α̃ξN
(f(0)) = f(1)}

be the mapping torus of α̃ξN
. We have the short exact sequence:

0 −−−−→ C0((0, 1), A oα′ ZN−1) −−−−→ B
π−−−−→ A oα′ ZN−1 −−−−→ 0

Since the Ext group is trivial, one has Ki(B) ∼= D2N−1
. Let R : K1(B) → R be the rotation

map defined in [9, Lemma 2.1]. For any unitary u ∈ C∗(ZN−1)⊗Mn, the constant function
ιN−1(u) on the closed interval [0, 1] belongs to B ⊗ Mn, because ιN−1(u) is fixed by α̃ξN

.
Hence R([ιN−1(u)]) = 0, where ιN−1(u) is identified with the constant function on [0, 1].
Therefore there exists a homomorphism ρ : Im K1(ιN−1) → Ker R such that K1(π)◦ρ = id.
By (3) for N−1,

K1(ιN−1) ⊗ idD : K1(C∗(ZN−1)) ⊗ D → K1(A oα′ ZN−1) ⊗ D

is an isomorphism, and K1(A oα′ ZN−1)⊗D is naturally identified with K1(A oα′ ZN−1).
It follows that ρ extends to a homomorphism from K1(A oα′ ZN−1) to Ker R satisfying
K1(π) ◦ ρ = id. By [9, Proposition 2.5], we can conclude that the OrderExt invariant of
α̃ξN

is trivial, thereby completing the proof of (1) for N .
(2) for N readily follows from the Pimsner-Voiculescu exact sequence and Ext(D,D) =

0. (3) can be shown in a similar way to Lemma 3.1 (3).

Lemma 3.3. Let Γ be a countable discrete amenable group and let α : Γ y A be an
approximately representable action on a unital C∗-algebra A. Suppose that A oα Γ is a
unital simple AH algebra with real rank zero and slow dimension growth. For any finite
subset F ⊂ A oα Γ and ε > 0, there exist a finite subset G ⊂ A oα Γ and δ > 0 satisfying
the following. If u : [0, 1] → A oα Γ is a path of unitaries such that

u(0) ∈ A, u(1) ∈ A, ∥[a, u(t)]∥ < δ

for any a ∈ G and t ∈ [0, 1], then there exists a path of unitaries w : [0, 1] → A such that

Lip(w) < 11π, w(0) = u(0), w(1) = u(1),

and
∥[a, w(t)]∥ < ε

for any a ∈ F and t ∈ [0, 1].

Proof. Since α is approximately representable, we can find a family of unitaries (vg)g∈Γ in
A∞ such that

vgvh = vgh, αg(vh) = vghg−1 and vgav∗g = αg(a)

for all g, h ∈ Γ and a ∈ A. Define a unital homomorphism φ : A oα Γ → A∞ by

φ(a) = a and φ(λα
g ) = vg

for every a ∈ A and g ∈ Γ. It is easy to see that φ(λα
g xλα∗

g ) = αg(φ(x)) holds for any
g ∈ Γ and x ∈ A oα Γ.

7



Suppose that we are given a finite subset F ⊂ A oα Γ and ε > 0. Without loss of
generality, we may assume that F is of the from F0 ∪ {λα

g | g ∈ Γ0}, where F0 is a finite
subset of A and Γ0 is a finite subset of Γ. Applying [12, Lemma 3.10] to F and ε > 0, we
obtain a finite subset G ⊂ Aoα Γ and δ > 0. Let u : [0, 1] → Aoα Γ be a path of unitaries
satisfying u(0) ∈ A, u(1) ∈ A and

∥[a, u(t)]∥ < δ

for any a ∈ G and t ∈ [0, 1]. By [12, Lemma 3.10], there exists a path of unitaries
w : [0, 1] → A oα Γ such that

Lip(w) < 11π, w(0) = u(0), w(1) = u(1),

and
∥[a, w(t)]∥ < ε

for any a ∈ F and t ∈ [0, 1]. Define w̃ : [0, 1] → U(A∞) by w̃(t) = φ(w(t)). Then we get

Lip(w̃) < 11π, w̃(0) = u(0), w̃(1) = u(1),

∥[a, w̃(t)]∥ < ε

for any a ∈ F and t ∈ [0, 1], which completes the proof.

Theorem 3.4. Let α and β be ZN -actions on a UHF algebra of infinite type with the
Rohlin property. Then α and β are cocycle conjugate. In particular, they are asymptotically
representable.

Proof. The proof is by induction on N . The case N=1 was shown in [5, Theorem 1.3].
Suppose that the theorem is known for N−1. Let A be a UHF algebra of infinite type
and let α, β be ZN -actions on A with the Rohlin property. Let α′ and β′ be the ZN−1-
actions generated by the first N−1 generators of α and β, respectively. From the induction
hypothesis, by conjugating β if necessary, we may assume that there exists an α′-cocycle
(ug)g∈ZN−1 in A such that β′

g = Ad ug ◦ α′
g. Moreover, α′ and β′ are asymptotically

representable. It is easy to check

βξN
◦ α′

g = (AdβξN
(u∗

g)ug) ◦ α′
g ◦ βξN

for all g ∈ ZN−1 and (βξN
(u∗

g)ug)g is an α′-cocycle. Let Bα and Bβ be the crossed product
of A by the ZN−1-actions α′ and β′, respectively. By Lemma 3.1 (2), Bα and Bβ are unital
simple AT algebras of real rank zero. One can define the isomorphism π : Bβ → Bα by
π(a) = a for all a ∈ A and π(λβ′

g ) = ugλ
α′
g for all g ∈ ZN−1. The automorphisms αξN

and
βξN

of A extend to automorphisms α̃ξN
and β̃ξN

of Bα and Bβ , respectively.
We apply the argument of [8, Theorem 5.1] to automorphisms π ◦ β̃ξN

◦π−1 and α̃ξN
of

Bα. By Lemma 3.2 (1), both α̃ξN
and β̃ξN

are asymptotically inner. Hence π◦β̃ξN
◦π−1 and

α̃ξN
are asymptotically unitarily equivalent. Since α′ is asymptotically representable, by

[3, Theorem 4.8], we can conclude that they are TN−1-asymptotically unitarily equivalent.
Besides these two automorphisms have the Rohlin property as single automorphisms and
the Rohlin projections can be chosen from (A∞)α′

, because α and β have the Rohlin
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property as ZN -actions (see Remark 2.5). Therefore, by using Lemma 3.3 instead of
[8, Lemma 4.4], the usual intertwining argument shows the following (see [3, Theorem
4.11] and [12, Theorem 6.1] for similar arguments): There exist an approximately inner
automorphism µ ∈ AutTN−1(Bα) and a unitary v ∈ A such that

µ ◦ π ◦ β̃ξN
◦ π−1 ◦ µ−1 = Ad v ◦ α̃ξN

. (3.1)

By restricting this equality to A, we get

(µ|A) ◦ βξN
◦ (µ|A)−1 = Ad v ◦ αξN

. (3.2)

For each g ∈ ZN−1, let wg ∈ A be the unitary satisfying µ(λα′
g ) = wgλ

α′
g . Then (wg)g is

an α′-cocycle and

(µ|A) ◦ βg ◦ (µ|A)−1 = (µ|A) ◦ Adug ◦ αg ◦ (µ|A)−1 = Adµ(ug)wg ◦ αg (3.3)

holds for every g ∈ ZN−1. It is not so hard to see that (µ(ug)wg)g is also an α′-cocycle.
From (3.1), one can see that

(µ ◦ π ◦ β̃ξN
◦ π−1 ◦ µ−1)(λα′

g ) = (µ ◦ π ◦ β̃ξN
◦ π−1)(µ−1(w∗

g)λ
α′
g )

= µ(βξN
(µ−1(w∗

g))βξN
(u∗

g)ugλ
α′
g )

= (Ad v ◦ αξN
)(w∗

gµ(u∗
g))µ(ug)wgλ

α′
g

= vαξN
(w∗

gµ(u∗
g))v

∗µ(ug)wgλ
α′
g

is equal to
(Ad v ◦ α̃ξN

)(λα′
g ) = vλα′

g v∗ = vαg(v∗)λα′
g

for any g ∈ ZN−1. Hence one obtains

vαξN
(µ(ug)wg) = µ(ug)wgαg(v).

Thus, (µ(ug)wg)g and v give rise to an α-cocycle. It follows from (3.2) and (3.3) that α
and β are cocycle conjugate.

There exists an asymptotically representable ZN -action on A with the Rohlin property,
and so any ZN -action on A with the Rohlin property is asymptotically representable.

Lemma 3.5. Let A be a unital simple AH algebra with real rank zero and slow dimension
growth. Then there exists an asymptotically inner automorphism σ ∈ Aut(A) with the
Rohlin property such that the crossed product A oσ Z is again a unital simple AH algebra
with real rank zero and slow dimension growth.

Proof. By [1], one can find an increasing sequence {An}n of unital subalgebras of A such
that the following hold.

•
∪

n An is dense in A.

• An is of the form
⊕kn

i=1 pn,iMl(n,i)(C(Xn,i))pn,i, where Xn,i is a compact Hausdorff
space with topological dimension at most three and pn,i is a projection.

9



• There exists a unital embedding πn : Mn ⊕ Mn+1 → An+1 ∩ A′
n.

Let xn be a unitary of Mn(C) such that Sp(xn) = {ζk | k = 0, 1, . . . , n−1}, where ζ =
exp(2π

√
−1/n). Let yn = πn(xn ⊕ xn+1). Define an automorphism σ of A by σ =

limn→∞ Ad(y1y2 . . . yn). Then σ is an asymptotically inner automorphism with the Rohlin
property. It is easy to see that A oσ Z is an inductive limit of the C∗-algebras An ⊗C(T).
Thus A oσ Z is a unital AH algebra with slow dimension growth. Simplicity also follows
because the action σ is outer. By [17, Theorem 4.5], it has real rank zero. The proof is
completed.

Lemma 3.6. Let A be a unital simple AH algebra with real rank zero and slow dimension
growth. Let α : ZN y A be an asymptotically representable action of ZN with the Rohlin
property. Then the crossed product A oα ZN is a unital simple AH algebra with real rank
zero and slow dimension growth.

Proof. The proof is by induction on N . Let α ∈ Aut(A) be an asymptotically inner auto-
morphism with the Rohlin property. By the lemma above, there exists an asymptotically
inner automorphism σ ∈ Aut(A) with the Rohlin property such that the crossed prod-
uct A oσ Z is again a unital simple AH algebra with real rank zero and slow dimension
growth. By [12, Theorem 4.9], (the Z-actions generated by) α and σ are cocycle conjugate.
In particular, A oα Z is isomorphic to A oσ Z.

Suppose that the lemma is known for N−1. Let α : ZN y A be an asymptotically
representable action of ZN with the Rohlin property. Let α′ be the ZN−1-action generated
by the first N−1 generators of α. From the induction hypothesis, A oα′ ZN−1 is a unital
simple AH algebra with real rank zero and slow dimension growth. Let α̃ξN

∈ Aut(A oα′

ZN−1) be the natural extension of the automorphism αξN
of A. Since α is asymptotically

representable and has the Rohlin property as a ZN -action, α̃ξN
is asymptotically inner

and has the Rohlin property as a single automorphism. By the same argument as above,
we can conclude that

A oα ZN ∼= (A oα′ ZN−1) oα̃ξN
Z

is a unital simple AH algebra with real rank zero and slow dimension growth.

Theorem 3.7. Let A be a unital simple AH algebra with real rank zero and slow dimen-
sion growth and let α, β be asymptotically representable ZN -actions on A with the Rohlin
property. Then α is cocycle conjugate to β.

Proof. One can prove this in a similar fashion to Theorem 3.4, by using Lemma 3.6 instead
of Lemma 3.1 (2). We omit the proof.

4 Rohlin type theorem

In this section we prove that any strongly outer action of ZN on a UHF algebra of infinite
type has the Rohlin property (Theorem 4.5). We also prove that any strongly outer,
approximately representable action of ZN on a unital simple AH algebra with real rank
zero, slow dimension growth and finitely many extremal traces has the Rohlin property
(Theorem 4.7). Combining this with Theorem 3.7, we can conclude that all strongly outer,
asymptotically representable actions of ZN on such a unital simple AH algebra are cocycle
conjugate (Theorem 4.8).
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Lemma 4.1. Let Γ be a countable discrete amenable group and let α : Γ y A be an
approximately representable action on a unital C∗-algebra A. Suppose that β ∈ AutΓ̂(Aoα

Γ) is approximately inner. Then for any separable subset C ⊂ A∞, there exists a unitary
u ∈ (A∞)α such that β(x) = uxu∗ for all x ∈ C.

Proof. By [3, Remark 4.9], β is Γ̂-approximately inner. Thus there exists a sequence (vn)n

of unitaries of A such that
β(x) = lim

n→∞
vnxv∗n

holds for any x ∈ A oα Γ. Then one can prove the assertion in the same way as [12,
Lemma 4.3].

Lemma 4.2. For any N ∈ N, l ∈ N and ε > 0, there exist m ∈ NN and k ∈ N such that
the following hold: Let α : ZN−1 y A be an approximately representable action of ZN−1

on a unital C∗-algebra A. Suppose that β ∈ AutTN−1(A oα ZN−1) is approximately inner.
Let e ∈ A∞ be a projection satisfying

eαg(βj(e)) = 0 ∀(g, j) ∈ Zm \ {(0, 0)},

where Zm is regarded as a subset of ZN . Then there exists a projection p ∈ A∞ satisfying
the following.

(1) ∥p − αξi
(p)∥ < ε for any i = 1, 2, . . . , N−1.

(2) pβj(p) = 0 for any j = 1, 2, . . . , l−1.

(3) ∥p − βl(p)∥ < ε.

(4)
∑l−1

j=0 βj(p) ≤
∑

(g,j)∈Zm
αg(βj(e)).

(5) [p] is equal to k[e] in K0(A∞) and kl ≥ (1−ε)|Zm|.

Proof. The proof is by induction on N . The case N=1 was shown in the same way as
[5, Lemma 4.3] (see also [12, Theorem 4.4]). Suppose that the lemma is known for N−1.
Suppose that we are given l ∈ N and ε > 0. Choose k1, k2 ∈ N so that

1
k1

+
1√
k1

< ε and
l(k1 + k2)

l(2k1 + k2 − 1) + 1
>

√
1 − ε.

Choose δ > 0 so that (2k1+k2−1)δ < ε and δ < 1−
√

1 − ε. Applying the lemma to
N−1, l=1 and δ > 0, we get m′ ∈ NN−1 and k′ ∈ N. We would like to show that
m = (m′, l(2k1+k2−1) + 1) ∈ NN and k′(k1 + k2) ∈ N meet the requirement.

Suppose that we are given an approximately representable action α : ZN−1 y A on a
unital C∗-algebra A and an approximately inner automorphism β ∈ AutTN−1(Aoα ZN−1).
Note that for any g ∈ ZN−1 and x ∈ A∞ one has

β(αg(x)) = β(λα
g xλα∗

g ) = β(λα
g )λα∗

g λα
g β(x)λα∗

g λα
g βg(λα∗

g ) = αg(β(x)),

because β(λα
g )λα∗

g is in A. Let e ∈ A∞ be a projection satisfying

eαg(βj(e)) = 0 ∀(g, j) ∈ Zm \ {(0, 0)},
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where Zm is regarded as a subset of ZN . Notice that the ZN−2-action generated by the first
N−2 generators of α is approximately representable and that the canonical extension of
αξN−1

to the crossed product by the ZN−2-action is approximately inner. By the induction
hypothesis, we can find a projection q ∈ A∞ satisfying the following.

• ∥q − αξi
(q)∥ < δ for any i = 1, 2, . . . , N−1.

• q ≤
∑

g∈Zm′ αg(e).

• [q] is equal to k′[e] in K0(A∞) and k′ ≥ (1−δ)|Zm′ |.

We remark that the second condition implies

qβj(q) = 0 ∀j = 1, 2, . . . , l(2k1+k2−1).

We construct the desired projection p in the same way as [5, Lemma 2.1]. By using Lemma
4.1 for C = {q}, we obtain a unitary u ∈ (A∞)α such that β(q) = uqu∗. For s, t ∈ Z with
0 ≤ s < t, we set

us,t = βt−1(u) . . . βs+2(u)βs+1(u)βs(u)βs(q) ∈ A∞.

Then us,t satisfies u∗
s,tus.t = βs(q), us,tu

∗
s,t = βt(q) and ∥us,t − αξi

(us,t)∥ < δ for any
i = 1, 2, . . . , N−1. Define

p =
k1−1∑
i=1

(
i

k1
βl(i−1)(q) +

k1 − i

k1
βl(k1+k2+i−1)(q)

+

√
i(k1 − i)

k1

(
ul(i−1),l(k1+k2+i−1) + u∗

l(i−1),l(k1+k2+i−1)

))

+
k1+k2∑
i=k1

βl(i−1)(q).

It is easy to see
∥p − αξi

(p)∥ < (2(k1 − 1) + k2 + 1)δ < ε

for any i = 1, 2, . . . , N−1. From the construction, clearly we have pβj(p) = 0 for any
j = 1, 2, . . . , l−1 and

∥p − βl(p)∥ <
1
k1

+
1√
k1

< ε.

Furthermore,
l−1∑
j=0

βj(p) ≤
l(2k1+k2−1)∑

i=0

βi(q) ≤
∑

(g,j)∈Zm

αg(βj(e)).

Finally,
[p] = (k1 + k2)[q] = k′(k1 + k2)[e] = k[e]

in K0(A∞) and

kl = k′(k1 + k2)l > (1−δ)|Zm′ | · (1−ε)1/2(l(2k1+k2−1) + 1) > (1−ε)|Zm|.
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Lemma 4.3. Let A be a unital simple separable C∗-algebra with tracial rank zero and
suppose that A has finitely many extremal tracial states. Let (α, u) be a strongly outer
cocycle action of ZN on A such that τ ◦ αg = τ for any τ ∈ T (A) and g ∈ ZN . Then, for
any m ∈ NN , there exists a central sequence of projections (en)n in A such that

lim
n→∞

τ(en) = |Zm|−1

for all τ ∈ T (A) and
lim

n→∞
∥αg(en)αh(en)∥ = 0

for all g ̸= h in Zm.

Proof. One can prove this in a similar fashion to [14, Theorem 3.4], using [12, Proposition
4.1] instead of [14, Proposition 3.3]. We omit the detail.

Lemma 4.4. Let A be a unital simple AH algebra with real rank zero and slow dimension
growth and suppose that A has finitely many extremal tracial states. Let α : ZN−1 y A
be an approximately representable action of ZN−1 and let β ∈ AutTN−1(A oα ZN−1) be
an approximately inner automorphism. Suppose that the cocycle ZN -action generated by
α and β on A is strongly outer. Then for any m ∈ N, there exist projections e and f in
(A∞)α such that

βm(e) = e, βm+1(f) = f

and
m−1∑
j=0

βj(e) +
m∑

j=0

βj(f) = 1.

Proof. We first prove the following claim. For any m ∈ N, there exist projections p, q ∈
(A∞)α and a partial isometry w ∈ (A∞)α such that

w∗w = q, ww∗ ≤ p, q +
m−1∑
j=0

βj(p) = 1 and βm(p) = p.

By virtue of Lemma 4.2 and Lemma 4.3, we can find projections p, q ∈ (A∞)α such that

q +
m−1∑
j=0

βj(p) = 1, βm(p) = p

and
lim

n→∞
τ(pn) = 1/m

for any τ ∈ T (A), where (pn)n is a central sequence of projections representing p. For each
i = 1, 2, . . . , N−1, there exists a sequence of unitaries (ui,n)n in A such that ui,n → 1 as
n → ∞ and ui,nαξi

(pn)u∗
i,n = pn for any n. The cocycle ZN−1-action on pnApn generated

by Adui,n ◦ αξi
is strongly outer. Let k ∈ N and set K = Z(k,k,...,k) ⊂ ZN−1. One can

apply Lemma 4.3 and obtain a central sequence (p̃n)n of projections in A such that

p̃n ≤ pn, lim
n→∞

τ(p̃n) =
1

mkN−1
and lim

n→∞
∥p̃nαg(p̃n)∥ = 0
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for all τ ∈ T (A) and g ∈ K \ {0}. Let p̃ ∈ A∞ be the image of (p̃n)n. By [12, Lemma
3.3], there exists a partial isometry v ∈ A∞ such that v∗v = q and vv∗ ≤ p̃. We define a
partial isometry ṽ ∈ A∞ by

w =
1√

kN−1

∑
g∈K

αg(v).

Then one has
w∗w = q, ww∗ ≤ p and ∥w − αξi

(w)∥ < 2/
√

k

for any i = 1, 2, . . . , N−1. By a standard trick on central sequences, we may assume that
w belongs to (A∞)α, thereby completing the proof of the claim.

We prove the lemma. Suppose that we are given m ∈ N. Let k, l be sufficiently large
natural numbers. By the claim above, we can find projections p, q ∈ (A∞)α and a partial
isometry w ∈ (A∞)α such that

w∗w = q, ww∗ ≤ p, q +
klm−1∑

j=0

βj(p) = 1 and βklm(p) = p.

Define p̃, w̃ ∈ (A∞)α by

p̃ =
k−1∑
j=0

βjlm(p) and w̃ =
1√
k

k−1∑
j=0

βjlm(w).

Then p̃ is a projection and w̃ is a partial isometry satisfying

q +
lm−1∑
j=0

βj(p̃) = 1, βlm(p̃) = p̃

and
w̃∗w̃ = q, w̃w̃∗ ≤ p̃, ∥βlm(w̃) − w̃∥ ≤ 2√

k
.

Let D be the C∗-algebra generated by w̃, β(w̃), . . . , βlm−1(w̃). Then D is isomorphic to
Mlm+1 and the unit 1D of D is equal to q + w̃w̃∗ + · · · + βlm−1(w̃w̃∗). From the spectral
property of β restricted to D, if k and l are sufficiently large, we can obtain projections
e0, . . . , em−1, f0, . . . , fm of D such that

m−1∑
i=1

ei +
m∑

i=1

fi = 1D, β(ei) ≈ ei+1, β(fi) ≈ fi+1,

where em = e0 and fm+1 = f0 (see [5, 6] for details). We define projections e′i in (A∞)α

by

e′i = ei +
l−1∑
j=0

βi+jm(p̃ − w̃w̃∗).

Then the projections e′0, . . . , e
′
m−1, f0, . . . , fm ∈ (A∞)α meet the requirement approxi-

mately. The usual reindexation trick completes the proof.
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Theorem 4.5. Let A be a UHF algebra of infinite type and let α : ZN y A be an action
of ZN . The following are equivalent.

(1) α has the Rohlin property.

(2) α is uniformly outer.

(3) α is strongly outer.

Proof. (1)⇒(2) is obvious. (2)⇒(3) follows from [6, Lemma 4.4]. We prove (3)⇒(1). The
proof is by induction on N . The case N=1 was shown in [5]. Suppose that the assertion
is known for N−1. Let α : ZN y A be a strongly outer action of ZN . Let α′ be the ZN−1-
action generated by the first N−1 generators of α. From the induction hypothesis, α′ has
the Rohlin property. It follows from Theorem 3.4 that α′ is asymptotically representable.
Let α̃ξN

∈ AutTN−1(A oα′ ZN−1) be the natural extension of the automorphism αξN
of A.

By Lemma 3.1 (1) (or Lemma 3.2 (1)), α̃ξN
is approximately inner. Hence we can apply

Lemma 4.4 to α′ and α̃ξN
and obtain Rohlin projections for αξN

in (A∞)α′
. The same

argument works for other generators ξi instead of ξN . By Remark 2.5, we can conclude
that α has the Rohlin property.

Remark 4.6. In the proof above we have shown the uniqueness of α up to cocycle con-
jugacy. In the next section it will be strengthened to strong cocycle conjugacy (Theorem
5.4).

Theorem 4.7. Let A be a unital simple AH algebra with real rank zero and slow dimension
growth and suppose that A has finitely many extremal tracial states. Let α : ZN y A be
an approximately representable action of ZN . The following are equivalent.

(1) α has the Rohlin property.

(2) α is uniformly outer.

(3) α is strongly outer.

Proof. One can prove this in the same way as Theorem 4.5.

The following is an immediate consequence of Theorem 3.7 and Theorem 4.7.

Theorem 4.8. Let A be a unital simple AH algebra with real rank zero and slow dimension
growth and suppose that A has finitely many extremal tracial states. Let α, β : ZN y
A be strongly outer, asymptotically representable actions of ZN . Then they are cocycle
conjugate.

5 Cohomology vanishing

In this section, we prove a cohomology vanishing theorem (Lemma 5.3). As an application,
we show Theorem 5.4 and Theorem 5.5.

For a unital C∗-algebra A, we say that K0(A) has no infinitesimal if for any x ∈
K0(A) \ {0} there exists τ ∈ T (A) such that τ(x) ̸= 0.
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In the next lemma, we use KK-theory. Let A, B and C be C∗-algebras. For a
homomorphism φ : A → B, KK(φ) means the induced element in KK(A,B). We write
KK(idA) = 1A. For x ∈ KK(A,B) and i = 0, 1, we let Ki(x) denote the homomorphism
from Ki(A) to Ki(B) induced by x. For x ∈ KK(A,B) and y ∈ KK(B,C), we denote
the Kasparov product by x · y ∈ KK(A,C).

Let Γ be a countable discrete amenable group. We denote the canonical generators in
C∗(Γ) by (λg)g∈Γ. Let α : Γ y A be an action of Γ on a unital C∗-algebra A. We let
HomΓ̂(C∗(Γ), AoαΓ) denote the set of all φ ∈ Hom(C∗(Γ), AoαΓ) such that φ(λg)λα∗

g ∈ A
for any g ∈ Γ.

Lemma 5.1. Let γ : ZN y Z be an action of ZN on the Jiang-Su algebra and let A be
a unital C∗-algebra such that K0(A) has no infinitesimal and K1(A) = 0. Then for any
φ,ψ ∈ HomTN (C∗(ZN ), (A ⊗Z) oid⊗γ ZN ), one has KK(φ) = KK(ψ).

Proof. Let ι : C∗(ZN ) → Z oγ ZN be the canonical embedding. In the same way as [3,
Lemma 5.3], one can see that KK(ι) gives a KK-equivalence. It follows that KK(idA ⊗ι)
also gives a KK-equivalence between A⊗C∗(ZN ) and A⊗(Zoγ ZN ) ∼= (A⊗Z)oid⊗γ ZN .

Let S = C0((0, 1)) and let T = C ⊕ S. Put [N ] = {1, 2, . . . , N}. The N -fold tensor
product T ⊗N has 2N direct sum components and each of them is isomorphic to a tensor
product of several copies of S. For I ⊂ [N ], we let SI ⊂ T ⊗N denote the tensor product
of S’s of the i-th tensor product component for all i ∈ I, so that

T ⊗N =
⊕

I⊂[N ]

SI .

Note that S∅ is isomorphic to C. Let z ∈ KK(C∗(Z), T ) be an invertible element. We
denote the N -fold tensor product of z by zN ∈ KK(C∗(ZN ), T ⊗N ).

Take φ ∈ HomTN (C∗(ZN ), (A ⊗Z) oid⊗γ ZN ). Define a ∈ KK(T ⊗N , A ⊗ T ⊗N ) by

a = z−1
N · KK(φ) · (1A ⊗ KK(ι)−1) · (1A ⊗ zN ).

As in [3, Section 6], under the identification

KK(T ⊗N , A ⊗ T ⊗N ) =
⊕

I,J⊂[N ]

KK(SI , A ⊗ SJ),

we denote the KK(SI , A ⊗ SJ) component of a by a(I, J). By [3, Lemma 6.15, 6.16], for
each K ⊂ [N ], there exists bK ∈ KK(SK , A) such that

a(I, J) =

{
bI\J ⊗ 1SJ

J ⊂ I

0 otherwise

and b∅ = KK(h), where h : C → A is the unital homomorphism. We would like to show
bK = 0 for K ̸= ∅. When |K| is odd, KK(SK , A) ∼= K1(A) is zero, and so bK is zero.
Suppose that |K| is even (and nonzero). For any tracial state τ on (A⊗Z) oid⊗γ ZN and
x ∈ K0(A ⊗ T ⊗N ), it is easy to see that

(τ ◦ K0((1A ⊗ z−1
N ) · (1A ⊗ KK(ι))))(x) = τ(x∅),
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where x∅ ∈ K0(A) is the K0(A⊗S∅) summand of x ∈ K0(A⊗T ⊗N ) and A⊗S∅ is identified
with A. Therefore, letting ωK be the generator of K0(SK), we have

(τ ◦ K0(a · (1A ⊗ z−1
N ) · (1A ⊗ KK(ι))))(ωK)

=
∑
J⊂K

(τ ◦ K0((1A ⊗ z−1
N ) · (1A ⊗ KK(ι))) ◦ K0(a(K,J)))(ωK)

= (τ ◦ K0((1A ⊗ z−1
N ) · (1A ⊗ KK(ι))) ◦ K0(a(K, ∅)))(ωK)

= (τ ◦ K0(bK))(ωK),

where the restriction of τ to A is also denoted by τ . On the other hand, τ ◦ φ is a trace
on C∗(ZN ) ∼= C(TN ), and so

(τ ◦ K0(φ) ◦ K0(z−1
N ))(ωK) = 0.

Combining these equalities, we get (τ ◦ K0(bK))(ωK) = 0 for any τ . Since K0(A) has
no infinitesimal, K0(bK)(ωK) is zero. It follows that K0(bK) is zero, because ωK is the
generator of K0(SK). Hence bK is zero. We have thus shown the lemma.

In the next lemma, we let C0 denote the class of unital simple stably finite C∗-algebras
introduced in [14, Definition 2.5].

Lemma 5.2. Let γ : ZN y Z be a strongly outer action of ZN on the Jiang-Su algebra.
Then Z oγ ZN belongs to C0 and has a unique tracial state.

Proof. The proof is by induction on N . Assume that the lemma is known for N−1. Let
γ : ZN y Z be a strongly outer action of ZN . Let γ′ be the ZN−1-action generated by
the first N−1 generators of γ. Let γ̃ξN

∈ AutTN−1(Z oγ′ ZN−1) be the natural extension
of the automorphism γξN

of Z. As mentioned in the proof of Lemma 5.1, the canonical
inclusion of C∗(ZN−1) into Z oγ′ ZN−1 gives a KK-equivalence. Therefore Ki(γ̃ξN

) = id
for i = 0, 1. By [14, Theorem 5.8], we get the conclusion.

Lemma 5.3. Let γ : ZN y Z be a strongly outer, approximately representable action of
ZN on the Jiang-Su algebra and let A be a unital simple infinite dimensional AF algebra
such that K0(A) has no infinitesimal. Then, for any id⊗γ-cocycle (ug)g∈ZN in A⊗Z and
ε > 0, there exists a unitary v ∈ A ⊗Z such that

∥uξi
− v(id⊗γξi

)(v∗)∥ < ε

for each i = 1, 2, . . . , N .

Proof. Set B = (A⊗Z)oid⊗γ ZN . By Lemma 5.2 and [14, Definition 2.5], B ∼= A⊗ (Z oγ

ZN ) belongs to C0. By [14, Lemma 2.4], B has tracial rank zero. Since the K-groups of
B are torsion free, B is a unital simple AT algebra with real rank zero.

Let ι : C∗(ZN ) → B be the canonical embedding. Define a homomorphism ιu :
C∗(ZN ) → B by ιu(λg) = ugλ

id⊗γ
g for g ∈ ZN . By means of Lemma 5.1, one has

KK(ι) = KK(ιu). It is clear that for any τ ∈ T (B) and g ∈ ZN

τ(ι(λg)) = τ(λid⊗γ
g ) =

{
0 g ̸= 0
1 g = 0
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and

τ(ιu(λg)) = τ(ugλ
id⊗γ
g ) =

{
0 g ̸= 0
1 g = 0.

It follows that τ ◦ ι equals τ ◦ ιu for any τ ∈ T (B). Hence, by [10, Theorem 3.4] or [13,
Theorem 4.8], the two homomorphisms ι and ιu are approximately unitarily equivalent.
Since id⊗γ is approximately representable, by [3, Corollary 4.10], we can conclude the
proof.

The following is the main result of this paper.

Theorem 5.4. Let A be a UHF algebra of infinite type. Then any two strongly outer
actions of ZN on A are strongly cocycle conjugate to each other.

Proof. By Theorem 3.4 and Theorem 4.5, any two strongly outer actions of ZN on A are
cocycle conjugate to each other. It follows from the lemma above that they are strongly
cocycle conjugate to each other.

For certain simple AF algebras, we can strengthen Theorem 4.8 as follows.

Theorem 5.5. Let A be a unital simple AF algebra such that K0(A) has no infinites-
imal. Suppose that A has finitely many extremal tracial states. Let α, β : ZN y A be
strongly outer, asymptotically representable actions of ZN . Then they are strongly cocycle
conjugate.

Proof. This is an immediate consequence of Theorem 4.8 and Lemma 5.3.
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