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Abstract

We classify a large class of Z2-actions on the Kirchberg algebras employing the
Kasparov group KK as the space of classification invariants.

1 Introduction

Separable purely infinite simple nuclear C*-algebras are said to be Kirchberg algebras.
They form one of the most prominent classes of C*-algebras from the viewpoint of classi-
fication, and they are completely classified by K K-theory (see [12], [22], and [25]). In this
respect, they are compared to AFD factors, whose classification result is already classics in
operator algebras. For AFD factors, their symmetries are also well-understood, namely, a
complete classification is known for actions of countable amenable groups on AFD factors.
However, classification of group actions on C*-algebras is still a far less developed subject,
partly because of K-theoretical difficulties.

For Kirchberg algebras, H. Nakamura [20] showed that aperiodic automorphisms are
completely classified by their K K-classes up to, what we call, K K-trivial cocycle conju-
gacy. He followed a strategy developed by Kishimoto [15], [10] in the case of AT-algebras,
and one of the main ingredients of the proof is the Rohlin property (see the review paper
[7] for the outline of the strategy). While Nakamura’s result can be considered as clas-
sification of outer actions of the integer group Z, the Rohlin property is also formulated
for finite group actions. In [3] and [9], the first-named author completely classified finite
group actions with the Rohlin property on Kirchberg algebras. However, unlike the Z
case where the Rohlin property is automatic, there are several outer finite group actions
without the Rohlin property.

One of the purposes of this paper is to develop classification theory of discrete amenable
group actions on the Kirchberg algebras. However, we should admit that this is too
ambitious a goal now. The difficulties in the finite group case, in contrast to the Z case,
are rather common in topology. For example, it is well-known that the classifying space
of a non-trivial finite group is never finite dimensional while that of Z is a nice space
T = R/Z. To avoid this kind of difficulties, in this paper we work on the Z? case as a first
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step beyond the Z case. Indeed, the second-named author has already obtained successful
results on classification of Z2-actions on the UHF algebras [11] and Z"-actions on the
Cuntz algebra Oy [18].

General outer actions of Z? on the Kirchberg algebras are still out of reach, and we con-
centrate on locally K K-trivial actions in this paper; we assume that each automorphism
appearing in the actions has the trivial K K-class. Then the only remaining classification
invariant should be a global one. It turns out that such an invariant is identified with
an element of the Kasparov group KK, and it is indeed a complete invariant (Theorem
8.6). For example, our main theorem says that there are exactly n — 1 cocycle conjugacy
classes of outer Z?-actions on the Cuntz algebra O, for finite n.

We briefly describe the basic idea of our approach now. For an outer Z?-action o on a
Kirchberg algebra A, Nakamura’s theorem says that the automorphism «y ¢y is completely
characterized by its K K-class. Therefore our task is to classify the other automorphism
@(p,1) commuting with the given fixed one a(y ). This problem is more or less equivalent
to classifying the automorphisms of the crossed product A Mo 0) 7Z commuting with the
dual T-action. Roughly speaking, this means that for classification of Z2-actions it suffices
to develop a T-equivariant version of Kirchberg and Phillips’ characterization of the K K-
theory of Kirchberg algebras, and a T-equivariant version of Nakamura’s classification
theorem of aperiodic automorphisms. Of course, this is not possible for a general T-
action. However, for an asymptotically representable action of a discrete amenable group
I', we can prove the f‘—equivariant versions for the crossed product by I' equipped with the
dual coaction. As a byproduct, we can show a uniqueness result for outer asymptotically
representable actions of Z" on Kirchberg algebras (Theorem 6.6). For algebras with
sufficiently simple K-theory such as the Cuntz algebras Oy and O, every outer Z!-
action turns out to be asymptotically representable, which implies the uniqueness of the
cocycle conjugacy classes of outer ZV-actions on these algebras. This is a generalization
of the main result in [18], and our proof is new even in the case of Os.

The price we have to pay for working on the crossed product A x, (1.0) Z 1s that we need
to show a second cohomology vanishing theorem for cocycle Z2-actions (Theorem 7.11).
In the case of von Neumann algebras, this is known to be one of the standard steps toward
classification results for group actions. To overcome the problem, we follow Ocneanu’s
idea in the von Neumann algebra case though we need a special care of K-theory in our
setting.

The authors would like to thank Akitaka Kishimoto, Sergey Neshveyev, and Toshihiko
Masuda for stimulating discussions.

2 Preliminaries

We denote by K the C*-algebra of all compact operators on ¢?(Z). For a C*-algebra A,
we write the multiplier algebra of A by M(A). We let U(A) denote the set of all unitaries
of M(A). For u € U(A), the inner automorphism induced by w is written by Adw.
An automorphism a € Aut(A) is called outer, when it is not inner. An automorphism
a € Aut(A) is called aperiodic, when o™ is outer for all n € N. A single automorphism
« is often identified with the Z-action induced by «. The quotient group of Aut(A4) by
the inner automorphism group is denoted by Out(A). For a,b € A, we mean by [a, b] the



commutator ab — ba. For a Lipschitz continuous map f between metric spaces, Lip(f)
denotes the Lipschitz constant of f.

Let A, B and C be C*-algebras. For a homomorphism p: A — B, Ky(p) and K;(p)
mean the induced homomorphisms on K-groups, and K K (p) means the induced element
in KK(A,B). We write KK(ida) = 14. For v € KK(A,B) and i = 0,1, we let K;(x)
denote the homomorphism from K;(A) to K;(B) induced by z. For x € KK (A, B) and
y € KK(B,(C), we denote the Kasparov product by z-y € KK(A,C). When both A and
B are unital, we denote by Hom(A, B) the set of all unital homomorphisms from A to
B. Two unital homomorphisms p,o € Hom(A, B) are said to be asymptotically unitarily
equivalent, if there exists a continuous family of unitaries {u}yc[0,o) in B such that

p(a) = lim Adwu(o(a))
t—o00
for all a € A. When there exists a sequence of unitaries {uy }nen in B such that

pla) = lim Adu,(o(a))
n—oo
for all @ € A, p and o are said to be approximately unitarily equivalent.

Let G be a countable discrete amenable group. The canonical generators in C*(G) is
denoted by {Ag}4eq. The homomorphism dg : C*(G) — C*(G) ® C*(G) sending A4 to
Ag ® Ag is called the coproduct. Let o : G ~ A be an action of G on a C*-algebra A.
When qy is outer for all g € G except for the neutral element, the action « is called outer.
We let A® denote the fixed points subalgebra of A. The canonical implementing unitaries
in the crossed product C*-algebra A X, G are written by {)\g}geg. The dual coaction &
of a is the homomorphism from A x, G to (A x, G) ® C*(G) defined by

dfa) =a®1 and &(Ay) =7 ® A,
fora € A and g € G.

Definition 2.1. Let a : G ~ A and # : G ~ B be actions of a discrete group G on
C*-algebras A and B.

(1) We say that « is locally K K-trivial, if KK (ay) =14 for all g € G.

(2) The two actions a and 3 are said to be conjugate, when there exists an isomorphism
p: A — B such that ag = = o By 0pu for all g € G.

(3) The two actions « and [ are said to be outer conjugate, when there exist an
isomorphism p : A — B and a family of unitaries {ug}seq in M(A) such that
Adugoay,=ptoB,opuforallgeq.

(4) A family of unitaries {ugy}geq in M(A) is called an a-cocycle, if one has ugoy(up) =
ugn for all g,h € G. When {ugy}, is an a-cocycle, the perturbed action o : G ~ A
is defined by ay = Adug o ay.

(5) The two actions « and 3 are said to be cocycle conjugate, if there exists an a-cocycle
{ug}geq in M(A) such that a* is conjugate to (3.



(6) The two actions o and 3 are said to be strongly cocycle conjugate, if there exist an
a-cocycle {uy}seq in M(A) and a sequence of unitaries {v, }52; in M(A) such that
a" is conjugate to § and limy, o||ug — vhay(vy)| = 0 for all g € G.

(7) Suppose A equals B. The two actions « and (3 are said to be K K-trivially cocycle
conjugate, if there exist 1 € Aut(A) with KK () = 1 and an a-cocycle {ug}geq in
M (A) such that o = p=! o By 0 pu for all g € G.

(8) Suppose A equals B. The two actions o and 3 are said to be strongly K K-trivially
cocycle conjugate, if there exist p and {ug}seq as in (7) such that there exists a
sequence of unitaries {v,}52; in M(A) satisfying lim, o||ug — vnag(vy)| = 0 for
all g € G.

Let a and § be actions of a discrete group GG on unital C*-algebras A and B, respec-
tively. We let Homg (A, B) denote the set of all p € Hom(A, B) such that poag = G50p
for every g € G. Two homomorphisms p, o € Homg (A, B) are said to be G-asymptotically
unitarily equivalent, if there exists a continuous family of unitaries {u;}sc[0,00) in B such
that

pla) = lim Adwu(o(a))
t—o0

for all « € A and
Jim [lug — 5y )| = 0

for all ¢ € G. In an analogous way, one can define G-approximately unitarily equivalence.
We let Homp (A 3o G, B x5 G) denote the set of all p € Hom(A x4 G, B xg G) such
that

(p®idex(a) o =fBop
and let Aut(A xq G) = Homp(A o G, A xq G) N Aut(A xq G). Two homomorphisms
p,o € Homp(A x4 G, B xg G) are said to be G—asymptotically unitarily equivalent, if
there exists a continuous family of unitaries {Ut}te[o,oo) in B such that

p(z) = lim Adu(o(z))

for all z € A x, G. In an analogous way, one can define G’—approximately unitarily
equivalence.
Next, we give the definition of asymptotic representability of group actions.

Definition 2.2. Let G be a countable discrete group and let A be a unital C*-algebra. An
action o : G ~ A is said to be asymptotically representable, if there exists a continuous
family of unitaries {v,(t)};c(0,00) in U(A) for each g € G such that

i oy (1) (2) — vgn (1) = 0.

Jm llag (0(8)) = vgng ()] = 0,

and
Jim oy (avg (£)" — g a)]| = 0

hold for all g,h € G and a € A.



Approximate representability is defined in an analogous way (see [, Definition 3.6]).

We now recall the definition of cocycle actions. Let A be a C*-algebra and let G be a
discrete group. A pair (o, u) of a map o : G — Aut(A) and a map u: G x G — U(A) is
called a cocycle action of G on A, if

agoap =Adu(g,h)oag,

and
u(97 h)u(gh7 k) = ag(u(h7 k))u(g7 hk)

hold for any g, h,k € G. A cocycle action («,u) is said to be outer, if ay is outer for every
g € G except for the neutral element. Two cocycle actions («,u) and (3,v) of G on a
C*-algebra A are said to be equivalent, if there exists a map w: G — U(A) such that

ag = Adw(g) o fy

and
u(g, h) = ag(w(h))w(g)v(g, h)w(gh)*
for every g,h € G.
Let A be a separable C*-algebra and let w € SN\ N be a free ultrafilter. We set

¢#(4) = {(an) € (N, A) | Tim ||| = 0},

AY =1°(N,A)/c*(A).
We identify A with the C*-subalgebra of A consisting of equivalence classes of constant
sequences. We let
A, =ANA"
When « is an automorphism on A or a (cocycle) action of a discrete group on A, we can
consider its natural extension on A“ and A,. We denote it by the same symbol «.

A simple C*-algebra A is said to be purely infinite, if for every nonzero elements
x,y € A, there exist a,b € A such that y = axb. There are various remarkable properties
fulfilled by purely infinite C*-algebras [3], and we use them freely in the sequel as far as
they are found in [25, Chapter 4]. Note that if A is purely infinite and simple, then so is
A¥. A purely infinite simple unital C*-algebra is said to be in the Cuntz standard form,
if [1] equals zero in Ky(A). The following fact is also used frequently.

Theorem 2.3 ([17, Lemma 10]). Let o : G ~ A be an outer action of a countable discrete
group G on a unital purely infinite simple C*-algebra A. Then, the reduced crossed product
C*-algebra A X, G is also purely infinite simple.

A simple purely infinite nuclear separable C*-algebra is called a Kirchberg algebra.
We recall several facts from the classification theory of Kirchberg algebras mainly due to
Kirchberg, Phillips and Rgrdam.

Theorem 2.4 ([12],[13, Proposition 1.4]). Let A be a unital purely infinite simple C*-
algebra and let C C A be a unital separable subalgebra. For any nuclear unital completely
positive map p : C — A, there exists a sequence of nonunitary isometries {sp}22 in A
such that p(x) = limy, o0 Shasy, for all x € C.



Theorem 2.5 ([13, Proposition 3.4]). When A is a unital Kirchberg algebra, A, is purely
infinite and simple.

Theorem 2.6 ([22, Theorem 4.1.1]). Let A be a unital separable nuclear simple C*-algebra
and let B be a unital separable C*-algebra that satisfies B = B ® Og.

(1) For every x € KK(A,B) satisfying Ko(x)([1]) = [1], there exists p € Hom(A, B)
such that KK (p) = x.

(2) If p,o € Hom(A, B) satisfy KK(p) = KK(o), then p and o are asymptotically
unitarily equivalent.

We next summarize a few results of [20].

Theorem 2.7. Let A be a unital simple separable C*-algebra and let o € Aut(A) be an
outer automorphism. Then, the extensions of a to A“ and A, are both outer.

Proof. This follows from [20, Lemma 2] and its proof. O

Theorem 2.8 ([20, Theorem 1]). For an automorphism « of a unital Kirchberg algebra
A, the following conditions are equivalent.

(1) « is aperiodic, that is, o™ is outer for every n € Z \ {0}.
(2) « has the Rohlin property.

Theorem 2.9 ([20, Theorem 5]). Let A be a unital Kirchberg algebra and let o, § € Aut(A)
be aperiodic automorphisms. The following are equivalent.

(1) KK(a) = KK(8).
(2) a and B are KK -trivially cocycle conjugate.
As an immediate consequence of the theorem above, we have the following.

Lemma 2.10. Let A be a unital Kirchberg algebra and let o be an aperiodic automorphism.
The following are equivalent.

(1) KK(a) =14.
(2) « is asymptotically representable.

Proof. (2)=-(1) is trivial, and so we show the other implication. If KK («a) = 14, by
Theorem 2.9, the automorphism « is cocycle conjugate to an automorphism of the form

n=1 n=1

where u, is a unitary in O, with finite spectrum, which shows the statement. ]



3 Equivariant Kirchberg’s theorem

Throughout this section, let A denote a unital Kirchberg algebra and let a : G ~ A be
an approximately representable outer action of a discrete countable amenable group G.
We show an equivariant version of Theorem 2.4 and 2.5. In what follows we often regard
AY¥ x4 G as a subalgebra of (A x,G)“ and identify (A,)* with AYN(Ax,G) C (Ax,G)%.

Theorem 3.1. Let C' C A¥ be a unital separable nuclear globally a-invariant C*-subalgebra.
For any p € Homg(C, A%), there exists an isometry s € (A¥)% such that p(x) = s*xs for
all z € C.

Proof. We regard C x, G as a subalgebra of A x, G. We let p: C xo G — AY x, G
denote the extension of p determined by /3()\3‘) =)y forall g € G.

It suffices to show the following: for any finite subsets F; C C, Fo C G and € > 0,
there exists an isometry s € A“ such that

[p(z) — s*ws|| < e and ||Af — s"Ags|| < e

for all x € Fy and g € F5. By Theorem 2.3 and Theorem 2.7, A“ x, G is purely infinite
and simple. Then Kirchberg’s theorem ([12],[13, Proposition 1.4]) shows that there exists
an isometry t € A“ x, G such that

() — tat] < ¢

for all z € F1 U{\J | g € F2}. Choose a unital separable a-invariant subalgebra D of A“
so that C,p(C) C D and t € D x4 G. Since a : G ~ A is approximately representable,
we can find a family of unitaries {wg}gec in A* such that

WeWh = Wop, g(Wh) = wepg—1 and ay(z) = werw,
for all g,h € G and = € D. Define a homomorphism
©:(DxeG)@C*(G) = AY %0 G

by
plrel) =1z, p(\f ®1) =w, and p(1 ® Ay) = wyAg

for every z € D and g € G. From

lp(x) @1 - (t"@1)(z®1)(t®1)]| <e, forallxzelF

and
[Ag @ Ag = (" @1)(A\g @A)t @ 1)[| <e, forall ge P,
one has
1p(z) —p(t@ 1) ze(t @ 1)|| <e
for all z € F1 U{X] | g € F2}. Hence s = p(t ® 1) € A” meets the requirement. O

Corollary 3.2. (1) The C*-algebra (A®)® is purely infinite and simple.

(2) The C*-algebra (Ay)®™ is purely infinite and simple.



Proof. We show only (2). (1) can be shown in a similar way. It is easy to verify (A, )* # C
(see the proof of Proposition 3.5). Let a € (A,)® be a positive element of norm one and
let C' C A¥ be the C*-algebra generated by A and a. Since A is simple, C' is isomorphic
to A® C*(a,1). Hence there exists a homomorphism p : C' — A“ such that p(z) = z for
x € A and p(a) = 1. From Theorem 3.1, one obtains an isometry s € (A¥)® such that
s*xs = x for all x € A and s*as = 1. For any = € A,

I[s,z]||? = ||(s2 — xs)*(sz — z5)|| = ||z*x — z*s*zs — s*x*sx + s*z*zs| = 0,
and so s belongs to (A,)®. Therefore (A4,)® is purely infinite and simple. O

We will need the following lemma in Section 4.

Lemma 3.3. Let € > 0 be a positive real number and let FF C A xo G be a finite subset.
If u:10,1] x [0,1] = U(A) is a continuous map satisfying

€

27

for allx € F and s,t € [0, 1], then there exists a continuous map v : [0,1] x [0,1] — U(A)
such that

[fuls, t), z][] <

v(s,0) =u(s,0), wv(s,1)=u(s,1), Lip(v(s,-)) <6
and
Ifo(s, ), 2]l <e
for all z € F and s,t € [0,1].

Proof. By Corollary 3.2 (2), the a-fixed point subalgebra (A,)® of A, contains a unital
copy of Ou. Therefore the assertion follows from [20, Theorem 7] and its proof. O

The next lemma follows from [14, Lemma 1.1] and [20, Lemma 3].

Lemma 3.4. Let {8;} be a countable family of outer automorphisms of A. Then there
exists a non-zero projection p € A, such that p is orthogonal to 3;(p) for all i.

The following proposition is an analogue of [10, Theorem 4.8]. Note that we do not
need amenability of G and approximate representability of a for this proposition.

Proposition 3.5. Let 3 be an automorphism of A such that Bay is not inner for all
g € G. Then (3 is not the identity on (Ay)®.

Proof. Let F C G be a finite subset and let n € N. It suffices to construct a € A, such
that

lall =1, [lag(a) —all < 1/n and ||3(a) —al| = 1
for every g € F.

Let Gg C G be the subgroup generated by F' and let [ : Gy — Z be the length function
with respect to F'U F~1. Applying the lemma above to {a, | g € Gy \ {e}} U {anBay |
g,h € Go}, we get a non-zero projection p € A, such that {ay(p), B(an(p))}grea, is a set
of mutually orthogonal projections. Then

n — min{n, [
3 {n,1(g9)}

n

a = ag(p) € Aw

9€Go

is the desired element. O



The following theorem is an equivariant version of [20, Theorem 1].

Theorem 3.6. Let 3 be an automorphism of A such that the map (n,g) — "oy induces
an injective homomorphism from 7 x G to Out(A). Then for any N € N, there exist
projections eg, €1, ...,eN—1, fo, f1,---, fn in (Ay)® such that

N-1 N
Z e; + ij =1, ﬁ(el) = €i+1 and ﬁ(fj) = fj+1
i=0 j=0

for alli = 0,1,....N —1 and j = 0,1,..., N, where ey and fni1 mean ey and fy,
respectively.

Proof. The proposition above shows that the restriction of 5" to (A, )% is a non-trivial

automorphism for every n # 0, and hence it is outer thanks to [20, Lemma 2]|. This
means that we can choose a Rohlin tower for 3 in (A,)®. We omit the detail, because the
argument is exactly the same as [20, Theorem 1]. O

The following corollary is an immediate consequence of the theorem above and [19,
Remark 2]. See [19, Section 2] (or [18, Section 2]) for the definition of the Rohlin property
of ZN-actions.

Corollary 3.7. When G is ZV, the action « has the Rohlin property.

In Corollary 6.4, we will show that asymptotic representability of « is not necessary
for the statement above.

4 Asymptotically representable actions

Throughout this section, we assume that A is a unital separable nuclear C*-algebra and
that « is an asymptotically representable action of a countable amenable group G on A. We
fix vy = (vy(t))1>0 € U(CP([0,00), A)) as in Definition 2.2. We denote the crossed product
A %o G by B and the implementing unitary representation of G in B by {)\g‘} C B. Let
C*(G) be the group C*-algebra of GG, which is generated by the left regular representation
{Ag}gec. Let & be the dual coaction of «, which is a homomorphism from B to B® C*(G)
determined by

A~

Gr) =r®@1 and &(Ay) = A7 @A,

for z € A and g € G. Then & satisfies coassociativity
((3( ® idC*(G)) ol = (ldB ®5g) o &,

where ég : C*(G) — C*(G) ® C*(G) is the coproduct of C*(G) determined by dg(Ag) =
Ag ® Ag.

Let Cy = Cy([0, 00), B) = Cy([0, 00))®B. We regard B as a subalgebra of C®([0, 00), B)
and set C® to be the C*-subalgebra of C*([0,00), B) generated by C?([0, 00), A) and {\},.
The action « of G on A gives rise to an action of G on C?([0, 00), A)/Co([0, ), A) and the
crossed product by G is isomorphic to C® /Co in a canonical way. We denote the coaction
of C*(G) on C*/Cy by a>. We let  denote the quotient map 7 : C* — C?/Cy.



Define a unital homomorphism ¢ from B ® C*(G) to C*/Cy by
plr®1) =7(z), p(A\y ®1) =7(vg) and p(1® Ay) = m(v,A7)
for z € A and g € G. It is easy to show the following.
Lemma 4.1. The homomorphism ¢ satisfies
pod=m|B

and
G 0y = (¢ ®ides(g)) © (idp ®dc).

For simplicity, we often omit m and identify € B with n(z) in what follows. In

particular, one has & = &*°|B.

Since B ® C*(G) is nuclear, there exists a unital completely positive map ¢ from
B ® C*(G) to C® satisfying m o p = . We fix such ¢. For t > 0, we set ¢; = x¢ o @,
where y; : C®* — B is the point evaluation map at t. The family {@+}+>0 is an asymptotic

morphism from B ® C*(G) to B.

Lemma 4.2. For any compact subsets K C B® C*(G), K' C B and a positive number

€, there exists tg > 0 such that the following hold for all t > t.
(1) Forallz,y € K, ||¢(2)@e(y) — elay)ll <e.
(2) Forallz € K, ||a(¢i(x)) — (& ® idex () (idB @d6) (z)]| < e.
(3) Forallz € K', ||@g¢(a(x)) — x| < e.

Proof. This immediately follows from Lemma 4.1.

Lemma 4.3. Let p be a unital endomorphism of B. Assume
I(Adwo d o p)(a) — ((p® ide(@y) 0 D)@ < e,

[((Adw o & o p) @ide+())(@(z)) — (((p @ ides(g)) © &) @ ide+()) (@) <e,
for some x € B and w € U(B ® C*(G)). Then the following inequalities hold:

I[(idp ®éc) (w*)(w @ 1)(a @ ide=())(w), (& ®ide(g)) 0 o p)(@)]|] < 3e,
1(6° 0 Adp(w) o p)(z) — (Adp(w) © p) @ idc+ () (a(x))]| < 4e.
Proof. From (4.1) and (4.2), we get

[(Ad(w ® 1) 0 Ad(& @ idg+(g)y(w)) o (& @ ide=(@))) (G(p(z)))
—((p @ ido(e) ®iden(@)) © (G ® idgs () (@(x))]| < 2e.

(4.5)

On the other hand, applying idp ®d¢ to the inside of the norm of (4.1) and using coasso-

ciativity, we get

1(Ad((idp ®dG)(w)) o (& @ ide=(@))) (G(p(x)))
— ((p®@idge (@) ®@idex(@)) © (& @ ide=(g))) (G@(2))|| < e.

10

(4.6)



Then, (4.5) and (4.6) imply (4.3).
Direct computation implies
1@ o Ad p(w) 0 p)(z) — ((Ad p(w) 0 p) @ ide+()) ((z
= [[Ad((p(w*) @ 1)a™(p(w))) (@ (p(z)) — (p @ idex(
< e+ [[Ad((p(w") @ 1)a™ (p(w))) (@™ (p(x)) — Adw(a™
= &+ [[Ad(w (p(w®) @ 1)a>(p(w)))(6(p(z))) — &

where we used (4.1). Thanks to Lemma 4.1, we have
w(p(w) @ 1)a™(p(w))
= ((pd) @ idgw (@) (W) (p(w”) @ 1) ((p ® ide=(@)) © ([dp @dc)) (w)
= (p @ide=())((@ @ ide= () (w™) (w” @ 1) (idp @) (w))-

Now Lemma 4.1 and (4.3) imply (4.4). O

~—
~—

4

Lemma 4.4. Let p be a unital endomorphism of B and let {wo(s)}s>0 be a continuous
family of unitaries in B ®@ C*(G) such that

Tim [[Adwo(s)(6(p(2)) — (p @ ide () (@(x)) | = 0
for all x € B. Then we have the following.

(1) There exists a continuous family of unitaries {w(t)}+>0 in B such that

lim [|a((Adw(t) o p)(2)) = (Adw(t) o p) ®ides(g))(@(2))]| = 0.

t—o0

(2) Assume further that wo(0) = 1 and that for a finite subset F' of B and a positive
number ¢, the inequality

I[wo(s), d(p(x))]ll < e
holds for all s >0 and v € F. Then w(t) can be chosen so that w(0) =1 and
I[w(®), p(2)]|| <€
forallt >0 and x € F.

Proof. (1) We choose an increasing sequence {F,,}7° , of finite subsets of B whose union
is dense in B. We may assume that the following hold for any non-negative integer n,
z € F,, and s > n:

| Adwo(s)(@(p(2)) — (p @ ide-())(@(@)) ]| < 277,
I((Adwo(s) 0 &0 p) ® o)) (6(x)) — (((p ® idon(@)) © &) ® iderm () (@(a))]] < 27

We set wi(s,t) = @¢(wp(s)). Thanks to Lemma 4.2 and Lemma 4.3, for each non-negative
integer n, there exists ¢, > 0 such that the following hold: for all ¢ > t,,, s € [n,n+ 1] and
x € F,, we have

|lw1(s,t) wi(s,t) — 1| <277, lw1 (s, t)wy(s,t)" — 1| < 27"

11



and
(G o Adwi(5.1) 0 p)(x) — (Adwn(s, 1) 0 p) ® idee () (@ ()| < 272,

We may assume that the sequence {t,}7°, is increasing. Let L be the piecewise linear
path in [0, 00)? starting from (0, %) and connecting the following points by line segments
in order:

(O,to), (l,to), (1,t1), (2,751), ceey (n,tn), (n + 1,tn), (n + 1,tn+1), e

Then the function wi(s,t) is continuous on L and wi(s,t) is invertible for all (s,t) €
L. Let f be a homeomorphism from [0,00) onto L with f(0) = (0,tp). Then w(t) =
w1 (f(t)|wi(f(t))]~! gives the desired family of unitaries.

(2) Since ¢ o & = 7| B, we have

Ile(wo(s)), p(@)]I| < [llwo(s), a(p(x))]]l-
Thus the statement follows from the above construction with a slight modification. O
By using this lemma, we can prove the following theorem.

Theorem 4.5. Let p be a unital endomorphism of B such that &op and (p®idg=(g)) o &
are asymptotically unitarily equivalent. Then there exists a unital endomorphism py of B
such that p1 is asymptotically unitarily equivalent to p and

Qo P1 = (p1 & idC’*(G)) o G.

Proof. We choose an increasing sequence {F),}>°; of finite subsets of B whose union is
dense in B. Thanks to Lemma 4.4, there exists a continuous family of unitaries {w(¢)}+>0
in B satisfying

lim [la((Adw(t) o p)(x)) = (Adw(t) o p) @idce(g))(@(@))] = 0

t—o00

for all z € B. We set p(© = p, w®(t) = w(t) and ty = 0.
‘We choose t; > 0 such that

la((Adw(#) o p)(2)) = (Adw(t) 0 p) @ ide-()) (@ ()] < 27!

holds for all t > t; and x € Fy. Let p() = Adw(©@(#;) 0 p©@ and uM (t) = w® (£)w® (t1)*
for t > t1. Then we have u(! (t1) =1 and

la((AdulD(t) o pM)(2)) — (AdulM(t) 0 pV) @ ide= () (G())]| < 27
for all t > t1 and x € Fi. Besides,
Jim [la((Ad ulD(t) 0 pM)(2)) — (AduM(t) 0 pV) @ id s () (G(x))]] = 0

holds for all z € B.
For t > t1, let vV (¢) = (uM()* ®1C*(G))d( uM(t)). Then {vM(t)};>4, is a continuous
family of unitaries in B ® C*(G) with v} (t;) = 1 satisfying

10D (@), a(pM (@) <1 forallt >t and z € Fy

12



and
lim IAd oD (#)(a(pV () — (V) @ idee())(@(x))|| =0 for all = € B.

Thus thanks to Lemma 4.4, there exists a continuous family of unitaries {w™ (¢)};>¢, in
B with w(M(t;) = 1 satisfying

1[w® (), V(@) <1 forallt >t and z € Fy
and

tlirgoua((Adw(l)(t) o pM)(z)) = (AdwD(t) 0 pM) @ ide- () (a(2))| = 0 for all z € B.

Repeating this argument, we can construct a sequence of unital endomorphisms { ,0(”) "0
an increasing sequence of positive numbers {t,,}7°, and a sequence of continuous families
of unitaries {{w™ (t)}1>1, 152, with w(™ (t,) = 1 for n > 0 satisfying

6o (@) — (6 @ i) @) < 2 for all 2 € F,

and
1[w™ (t), p™ (2)]|] < 27" for all t > ¢, and x € F),.
We construct a continuous family of unitaries {w'(t)};>0 in B as follows. For t € [to, 1],
we set w'(t) = w®(t). For t € [ty,tnr1] with n > 1, we set w/(t) = w™ (t)w'(t,). Note
that p(™ = Adw'(t,) o p holds.
Let x € F,, and n < m. For t > t,,,, we choose an integer [ > m such that ¢ € [t;, {;11].
Then one has

[Adw' (t)(p(x)) — Adw'(tm) (p(z)) |

-1
< [JAdw! ()(p(x)) = Adw'(t) (p(2)| + Y |Ad W' (tr41) (p(x)) — Ad ' (1) (p()) |
k=m
= [[Ad w® () (p" () — 1 ()| + ZHAdw (th1) (0™ (@) = oM ()
-1
< 2—l+1 + 2—k+1 < 2—m+2’

which implies that lim; ..o Adw'(t)(p(x)) exists for any z in the dense subset (J;7 | F,
of B. This shows that there exists a unital endomorphism p; of B satisfying & o p; =
(p1 &® idC*(G)) o & and

lim Adw'(t)(p(x)) = p1(z)

t—o0

for all z € B, which completes the proof. O

Remark 4.6. Let v : G ~ C be an asymptotically representable action of G on a
unital separable nuclear C*-algebra C' and let D = C x, G. In a similar fashion to the
theorem above, we can show the following: if p : D — B is an isomorphism such that
& o p and (p ®idg«(g)) o4 are asymptotically unitarily equivalent, then there exists an
isomorphism p; : D — B such that p; is asymptotically unitarily equivalent to p and
dopr = (p1®ide-(q)) 0.
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Remark 4.7. When « : G ~ A is an approximately representable action of G, one
can prove the following in an analogous fashion to the theorem above: if p is a unital
endomorphism of B such that & o p and (p ® idg«(g)) o & are approximately unitarily
equivalent, then there exists a unital endomorphism p; of B such that p; is approximately
unitarily equivalent to p and & o p1 = (p1 ® ide=()) © &.

Moreover, when v : G ~ C is an approximately representable action of G on a uni-
tal separable nuclear C*-algebra C' and D = C ., G, one can prove the following in a
similar way: if p : D — B is an isomorphism such that & o p and (p ® idg«(y) o 7 are
approximately unitarily equivalent, then there exists an isomorphism p; : D — B such
that p; is approximately unitarily equivalent to p and & o p1 = (p1 ® idc*(G)) o &. This is
a generalization of [%, Corollary 3.9].

Theorem 4.8. Let v : G ~ C be an action of G on a unital separable nuclear C*-algebra
C and let D = C x G. For any two homomorphisms p,o € Homx(D, B), the following
conditions are equivalent.

(1) The two homomorphisms p and o are G—asymptotically unitarily equivalent.
(2) The two homomorphisms p and o are asymptotically unitarily equivalent.

Proof. The implication (1)=(2) is trivial. We would like to show that (2) implies (1),
assuming that « is asymptotically representable. Suppose that {wo(s)}s>0 is a continuous
family of unitaries in B = A x, G satisfying

lim Adwy(s)(p(x)) = o(x)

§—00

for all x € D. We choose an increasing sequence {F,}>° of finite subsets of D whose
union is dense in D. We may assume

[((Adwo(s) 0 p) ®idc=(c)) (F(2)) — (0 @ ido=(@)) (Y (@) < 27"
holds for all s > n and x € F,,. From
dop=(p@idec)) o7

and
doo = (0c®idew(q)) o7,

we have
[[(wo(s) ® )a(p(z)) — alo(x))(wols) ® 1)} <27"
for all s > n and z € F,,. Then, Lemma 4.1 implies

lp(wo(s) ® Dp() — o) p(wp(s) @ D < 27"

for all s > n and x € F,. Let £ : B — A be the canonical conditional expectation
determined by F(uy) = 0 for g € G \ {e}. Note that since p(B ® C) C C*(A U {vy})/Co,
the two asymptotic morphisms {@;}+>0 and {E o ¢;}+>0 are equivalent on B ® C, that is,

Jim [ gy (z @ 1) — E(@i(z @ 1))[| = 0
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for all x € B. We set w1(s,t) = E(@i(wp(s) @ 1)) € A.
Thanks to Lemma 4.2, for each non-negative integer n, there exists ¢,, > 0 such that
the following hold: for any ¢t > ¢, s € [n,n + 1] and = € F,,, one has

llwi(s,t) wi(s,t) — 1| <27, ||wi(s,t)wi(s,t)* = 1] <27"

and
s (s,£)p(a) — o (@)wn (s, )] < 27

The rest of the proof is the same as that of Lemma 4.4. O

Remark 4.9. When a : G ~ A is an approximately representable action of G, one can
prove the following in an analogous fashion to the theorem above: for any two homomor-
phisms p, o € Homy (D, B), the following conditions are equivalent.

(1) The two homomorphisms p and o are G-approximately unitarily equivalent.
(2) The two homomorphisms p and o are approximately unitarily equivalent.

When {ug4}geq is an a-cocycle in A, one can define a homomorphism ¢, : C*(G) — B
by w(Ag) = ugAy for g € G. Clearly ¢, belongs to Hom(C*(G), B), where C*(G) is
regarded as the crossed product of C by the trivial action of G. The perturbed action
a1 G~ A'is the action defined by ag = Adug o .

Corollary 4.10. Suppose that oo : G ~ A is approximately representable and {ug}g, {vg}g
are a-cocycles in A.

(1) There exists a sequence of unitaries {sp o, in A satisfying
nh_{lgo SnlgQg(s,,) = vg
for all g € G if and only if 1, and v, are approximately unitarily equivalent.

ere exists p € Auta suc at p o Ly and L, are approximately unitarily

2) If th sts i € Auts(B h that d matel itaril
equivalent, then the two actions o and o are strongly cocycle conjugate. When
G =7Z" and B is purely infinite simple, the converse also holds.

Proof. (1) Suppose that there exists a sequence of unitaries {s,}2>; in A such that
limy, .00 Spugay(sy,) = vy for all g € G. It follows that

nlirgo Sntu(Ag)sy = nILIEO SnlgAg Sy, = nlggo Snllgrg(Sp) Ny = VgAg = tu(Ag),
which means that ¢, and ¢, are approximately unitarily equivalent.

Conversely, if ¢+, and ¢,, are approximately unitarily equivalent, then by Remark 4.9, ¢,
and ¢, are @—approximately unitarily equivalent. Thus there exists a sequence of unitaries
{sn}p2; in A such that lim, oo sptu(Ag)sy = tu(Ag) for all g € G. Hence spugay(s)) =
SpugAg spAg™ goes to vy AGAL™ = vy as n goes to infinity.

(2) Take a finite subset F' C G and ¢ > 0 arbitrarily. By Remark 4.9, u o ¢, and ¢,
are é—approximately unitarily equivalent. Therefore there exists a sequence of unitaries
{sn}52; in A such that

Jim [l ps(a2g )55 = v X5 = 0
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for all g € G. Put wy = p(ughg) Ay v;. Then {wy}gec is an a’-cocycle in A and Adw, o
Qg = Loy o p~ ! on A. In addition,
Tim [y — s503(s,)]| = 0
which completes the proof.
We turn to the case G = Z". Suppose that the two actions a* and oV are strongly

cocycle conjugate. Let F© C Z" be a finite generating set and let € > 0. There exists an
isomorphism g : A — A and an a’-cocycle {wy} ez~ such that

Adwgoa;’:poozgop_l VgezZ¥ and |w,—1|<e VgeF.

Define i € Autpn(B) by

fila)=a Yac A and [(A]) = pluy)wgvgdy Vg € 7N .

It is easy to see ||fi(tu(Ng)) — tu(Ng)| < € for every g € F. Since C*(Z") satisfies the
universal coefficient theorem and its K-groups are free abelian groups of finite rank, if
e > 0 is sufficiently small, we can conclude that KK (fiot,) = KK (i,). It follows from [,
Theorem 1.7] that fi o, and ¢, are approximately unitarily equivalent. O

Finally in this section, we show a G-equivariant version of Nakamura’s theorem [20),
Theorem 5]. Suppose that A is a unital Kirchberg algebra and that a : G ~ A is outer.
Let 81 and (5 be automorphisms on A satisfying

Bioag=Adu;40a40p;

for i = 1,2 and g € G, where {u1 4}geq and {us4}4eq are a-cocycles in A. Then, for each
i = 1,2, there exists an extension (3; € Aut(B) determined by Bz()\g‘) = ujgAy. Note that
B; belongs to Aut s (B). We further assume that, for each i = 1,2, the map (n, g) — 8l'ay
induces an injection from Z x G to Out(A).

Theorem 4.11. In the setting above, if KK(31) = KK(32), then there exists an auto-
morphism p € Auts(B) and a unitary v € A such that KK(u) = 1p, KK(ulA) = 14
and

pofBrop™ =Advo f,.

Proof. We apply the argument of [20, Theorem 5] to B1 and (5. By Theorem 2.3, B is
a unital Kirchberg algebra. Since KK (1) = KK (B2), by Theorem 2.6 (2), 31 and (o
are asymptotically unitarily equivalent. Then Theorem 4.8 implies that 3; and (s are
G’—asymptotically unitarily equivalent. Moreover, by Theorem 3.6, we can find Rohlin
projections for f; in (A,)® C B.,. Hence, by using Lemma 3.3 instead of [20, Theorem 7],
the usual intertwining argument shows the statement. O
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5 Uniqueness of Z"-actions on O,

Throughout this section, we let T denote the set of all complex numbers with absolute
value one. For a discrete group G, let Z2(G, T) denote the abelian group of all 2-cocycles
from G x G to T, that is,

Z2(G,T) ={w:G x G =T |w(g, h)w(gh, k) = w(h,k)w(g,hk) Yg,h, ke G}

and let B?(G,T) denote the subgroup of 2-coboundaries in Z?(G,T), i.e. elements of the
form w(g, h) = f(g)f(h)f(gh)~! for some map f : G — T. Two 2-cocycles w,w’ € Z?(G, T)
are said to be cohomologous, if ww'~! is in B%(G,T).

Let a: G ~ A be an action of a discrete group G on a unital C*-algebra A. We say
that o absorbs w € Z2(G,T), if there exists an automorphism p of A and a family of
unitaries {ugy}geq in A satisfying

,uoagO/fl:Adugoag

and
Ugag(uh) = w(g, h)ug,h

for every g,h € G. If w,w’ € Z%(G, T) are cohomologous and « absorbs w, then clearly o
absorbs ’, too.
The following is an easy observation and we omit the proof.

Lemma 5.1. Suppose that two actions «, 3 of a discrete group G on a unital simple
C*-algebra A are outer conjugate.

(1) If a absorbs w € Z*(G,T), then so does 3.
(2) If a absorbs all elements in Z?(G,T), then a and 3 are cocycle conjugate.

When G is abelian, as described in [21], the second cohomology group H?(G,T) =2
Z%(G,T)/B?(G, T) is isomorphic to the subgroup

{x € Hom(G,G) | (x(g).g) =1 for every g € G}

of Hom(G, G), where (-,-) is the paring of G and G. The isomorphism between them is
given by sending w € Z?(G, T) to

x(9)(h) = w(g, hw(h,9)~" g, heG.
In particular, when G is ZV, H*(G,T) = H?(Z",T) is isomorphic to
{(Gi,j)lgingN S TNZ ’ (92'71' =1 and Qmﬂjﬂ' =1 for all Z,]} = TN(N_l)/Q.

Lemma 5.2. For any w € Z*(ZN,T), there exists an outer ZN -action o on the Cuntz
algebra O which absorbs w.
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Proof. From the fact mentioned above, w corresponds to some (6;;);; € TN? satisfying
0;; =1and0;;0;; =1foralli,j =1,2,..., N. Therefore, it suffices to construct an outer
ZN-action o on On, a family of unitaries {ul}f\;l in Oy and an automorphism p of O
such that

,uooziou_l = Adwu; ooy

and
uivi(ug) = 0; jujou(u;)

for every i,j = 1,2,..., N, where a; denotes the i-th generator of the ZM-action a.

First, we claim that O, contains a family of unitaries {vi}ij\il satisfying v;v; = 6; jvjv;.
For each 0; ;, it is easy to find two unitaries z; ; and y; ; such that x; jy; ; = 0; ;¥ jx;; in
a C*-algebra B;; isomorphic to O (see [0] for example). Let B = @);;<n Bij. We
regard B; ; as a subalgebra of B. For ¢ =1,2,..., N, we set

Vi = H Yk,i H Lil

1<k<i i<I<N

It is straightforward to see the commutation relation v;v; = 0; jv;v;.
We define a ZM-action a on A = @5, B by

o = id®id®®Advi
k=2

fori=1,2,...,N. Let
U =10, R1®....

Since O is isomorphic to Qs ® On, « is conjugate to the ZN-action determined by
Adu; o ;. In addition, u;o;(uj) = 6; jujo;(u;) holds. By tensoring another outer Z-
action if necessary, we may assume that « is outer, thereby completing the proof. O

Lemma 5.3. Let a be an action of ZN on the Cuntz algebra On. Then, the canonical
inclusion ty : C*(ZN) — Oso ¥a ZN induces a K K -equivalence.

Proof. We use the induction on N. When N = 0, the assertion is clear. Assume that the
claim has been shown for N — 1.

Let a be an action of ZV on O. We regard as a subgroup of Z~ via the
map (ni,ne,...,ny—1) — (n1,n2,...,ny-1,0). Let A be the crossed product of O by
ZN—1 and let ay denote the N-th generator of a. Then, ay extends to an automor-
phism on A and Oy X ZY is canonically identified with A X ~ Z. From the induction
hypothesis, the inclusion ty_1 : C*(ZN¥~!) — A induces a K K-equivalence. In addition,
LN_1 is a covariant homomorphism from (C*(ZN~1),id) to (A, ay). By the naturality of
the Pimsner-Voiculescu exact sequence, we obtain the following commutative diagram, in

ZN_l
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which the vertical sequences are exact.

K.(C*(Z"))

l l

KO (@) B R ()

! !

Kl (C(zNY) 2= g (a)

~

From an easy diagram chase, we can conclude that K, () is an isomorphism for « = 0, 1.
The universal coefficient theorem [20] implies that K K (ty) is invertible. O

Now we can prove the uniqueness of outer ZV-actions on O, up to cocycle conjugacy.

Theorem 5.4. Any outer ZN -actions on O are cocycle conjugate to each other. In
consequence, they are asymptotically representable.

Proof. The proof is by induction on N. When N = 1, we get the conclusion from Theorem
2.9 and Lemma 2.10. Assume that the claim has been shown for N — 1.

Let a and 3 be outer ZV-actions on A = O. Let o/ and ' be the ZN"!-actions
generated by the first V — 1 generators of o and f3, respectively. We denote the N-th
generator of o and 3 by ay and By, respectively. From the induction hypothesis, by
conjugating [ if necessary, we may assume that there exists an a’-cocycle {ug} gezN-1 In
A such that 3; = Adug o ay. Moreover, o’ is asymptotically representable. It is easy to
check

BN o o/g = (AdﬁN(u;)ug) o a; o BN

for all g € ZVN~1 and {Bn(uy)ug}g is an a'-cocycle.
Let B, and Bg be the crossed product of A by the ZN~1actions o' and [, respectively.

There exists an isomorphism 7 : B3 — B, such that w(a) = a for all a € A and W()\g ) =
ugAy for all g € ZN=1. The automorphisms ay and By of A extend to automorphisms

an and By of B, and Bg, respectively. By Lemma 5.3, we have KK(ay) = 1 and
KK(Bn) =1, and hence

KK(rofyor 1) =1=KK(ay)

in KK (B, B,). By applying Theorem 4.11 to o/, ay and 7 o By o 71, we obtain

p € Autpy—1(By) and v € U(A) satisfying the conditions stated there. For each g € ZV~1,
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1| A commutes with agy up to an inner automorphism of A. Furthermore,

Advoay = (Advoay)|A
= (pomofyor top 1A
= (ulA) o B o (ulA) 71

It follows that the Z~-actions o and /3 are outer conjugate. Thus, any outer ZV-actions
on O, are outer conjugate to each other. Now the conclusion follows from Lemma 5.1
and Lemma 5.2. 0

6 Uniqueness of asymptotically representable Z"-actions

Let G be a countable infinite discrete amenable group and let {.S;}4ec be the generator of
the Cuntz algebra O4. Define an action v& of G on O by *ng(Sh) = Sgn. We consider
the diagonal action 7¢ @ ¢ on O ® Osg. Clearly v“ and v“ @ 4 are both outer. Let

Pl 03— 2®1 € Oy ® O,

Pri:O 22— 102 € Ox ® Ox.
Then clearly py, pr are in Homg(Ooo, Ono ® Ox). We let

pL, pr € Homé((’)oo MG G, (Ooo X OOO) M GnG G)
denote the natural extensions of p; and p,, respectively.

Lemma 6.1. If the diagonal action v© @~ is asymptotically (resp. approzimately) repre-
sentable, then p; and p, are G-asymptotically (resp. G-approzimately) unitarily equivalent.

Proof. Note that v is a quasi-free action. Let ¢ : C*(G) — Ou xc G be the inclusion
map. It is well-known that KK (1) € KK (C*(G), Ox x,c G) is invertible (see [24, Section
4]). From p; ot = p, o, we can conclude KK (p;) = KK(p,). It follows from Theorem
2.6 (2) that p; and p, are asymptotically unitarily equivalent. Hence, by Theorem 4.8 and
Remark 4.9, p; and p, are é—asymptotically unitarily equivalent (resp. G’—approximately
unitarily equivalent). Therefore, p; and p, are G-asymptotically unitarily equivalent (resp.
G-approximately unitarily equivalent). O

Lemma 6.2. Let A be a unital Kirchberg algebra and let (o, u) be an outer cocycle action
of G on A. Then, there exists o0 € Homg (O, Au)-

Proof. By Lemma 3.4, there exists a non-zero projection p € A, such that pay(p) = 0
for every g € G\ {e}. Let T € A, be an isometry satisfying 77" < p. Define a unital
homomorphism o : Os, — A, by 0(Sg) = ay(T). Evidently o belongs to Homg (O, Aw).

O

Theorem 6.3. Let A be a unital Kirchberg algebra and let (a,u) be an outer cocycle
action of G on A. If the diagonal action v& @+ of G on O ® O is approzimately
representable, then there exists an isomorphism p @ A ® Oo — A such that (o, u) is
equivalent to (po (a®~%) op™! pu(u® 1)),
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Proof. By using Lemma 6.1 and Lemma 6.2, we can show the statement in a similar
fashion to the proofs of Theorem 7.2.2, Theorem 7.2.1 and Proposition 2.3.5 of [25]. We
leave the details to the reader. O

We obtain the following two corollaries.

Corollary 6.4. Let A be a unital Kirchberg algebra and let (o,u) be an outer cocycle
action of ZN on A. Let v be an outer action of Z on Ox.

(1) There exists an isomorphism p @ A ® Os — A such that (a,u) is equivalent to
(no(a@y)op™ nlu®1)).

(2) (a,u) has the Rohlin property.

Proof. The first statement follows from Theorem 5.4 and Theorem 6.3. The second state-
ment follows from Corollary 3.7, Theorem 5.4 and the first statement. O

Corollary 6.5. Let A be a unital Kirchberg algebra and let o, B be outer ZN -actions on
A. If a and 8 are outer conjugate, then they are cocycle conjugate.

Proof. By Corollary 6.4 (1), (A, «) is cocycle conjugate to (A ® O, @ ® ’yZN). Then the
assertion follows from Lemma 5.1, Lemma 5.2 and Theorem 5.4. [

Now we can prove the uniqueness of asymptotically representable outer ZV-actions
on a unital Kirchberg algebra up to K K-trivial cocycle conjugacy in a similar fashion to
Theorem 5.4.

Theorem 6.6. Any asymptotically representable outer Z™ -actions on a unital Kirchberg
algebra A are K K -trivially cocycle conjugate to each other.

Proof. The proof is by induction on N. When N = 1, we get the conclusion Theorem 2.9
and Lemma 2.10. Assume that the claim has been shown for N — 1.

Let a and 3 be asymptotically representable outer Z~-actions on A. We use the same
notation as in the proof of Theorem 5.4. Since o/ and (3 are asymptotically representable
outer ZN~1-actions on A, by the induction hypothesis, we may assume that there exists
an o’-cocycle {Ug}gezN—l in A such that 8, = Adug o ay. Moreover, as o and 3 are both
asymptotically representable, one has KK (ay) = 1 in KK (Bq, Bs) and KK (fy) =1 in
KK (Bg, Bg). In the same way as Theorem 5.4, we can find u € Aut(A) with KK (u) =14
that induces outer conjugacy between o and . Then, from Corollary 6.5 and its proof,
we can conclude that o and 3 are K K-trivially cocycle conjugate. O

Remark 6.7. A key step in the proof above is KK(ay) = 1 in KK(By, B,). When
A = Oy, the crossed product B, = A x4 ZN~1 is again Oy, and so KK (Bq, B,) = 0.
By using this observation, one can show the uniqueness of outer Z"-actions on Oy up to
cocycle conjugacy, which is the main result of [1].

If there exists a path {: };¢[0,1] of automorphisms of A such that 79 = id, 71 = ay and
Yool = af oy forall t € [0,1] and g € ZV !, then KK (dy) = 1 in KK(Bqy, By). Hence
any outer ZV-action a on a unital Kirchberg algebra that extends to an R¥-action is
asymptotically representable. In particular, any outer quasi-free Z~-actions on the Cuntz
algebra O,, are mutually cocycle conjugate.
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In the rest of this section, we let a : ZV ~ A be an outer asymptotically representable
action of ZV on a unital Kirchberg algebra A and let B = A x, ZY. We would like to
characterize elements in Homyn (B, B) in terms of K K-theory. As applications, we show
Theorem 6.18 and Theorem 6.20. Let Hpn (B, B) be the subset of KK (B, B) consisting
of x satisfying

and
- KK(&) = KK(Q) - (2 ® 1o (zny),
and let Hpn (B, B)~! be the subset of Hyn (B, B) consisting of invertible elements. Thanks
to Theorem 4.5, Remark 4.6 and Theorem 4.8, we obtain the following.
Lemma 6.8. (1) There exists a natural bijective correspondence between Hrwn (B, B)
and the quotient space of Hompn (B, B) by TN -asymptotically unitary equivalence.
(2) There exists a natural bijective correspondence between Hpn (B, B)~! and the quo-
tient space of Autpy (B) by TN -asymptotically unitary equivalence.

Let 6y : C*(ZN) — C*(ZN) ® C*(Z") be the coproduct and let j, : A — B and
j:A— A®C*(Z") be the canonical embeddings. By the uniqueness of asymptotically
representable outer actions of Z"V on a unital Kirchberg algebra, we get the following.

Lemma 6.9. There exists a KK -equivalence w € KK (B, A® C*(ZN)) such that
KK(ja) - w = KK(j)

and

Proof. Let v : ZN ~ Oy be an outer action and let ¢ : C*(ZY) — O x, ZVN be the
canonical inclusion. We have the following commutative diagram.

A® C*(ZN) da®, (A® On) Xiqary ZV
ida ®6Nl l@

A CH(ZN) @ C*(ZN)

A®0O) Nigay ZN) @ C*(ZN
idA@L@idC*(ZN) (< OO) d@y ) ( )

By Lemma 5.3, KK (1) is invertible, and so KK (idg ®¢) is also invertible.
Both a and id ®7v are asymptotically representable outer ZV-actions on A = A ® Ox.
It follows from Theorem 6.6 that there exists an isomorphism

@ € Homqpw (B, (A &® Ooo) Xid @y ZN).
In other words, the following diagram
B . (A® On) Xiaen ZV

ld @l

B C*zZN) (A® Oc) Xiagy ZN) @ C*(ZN)

M®ldc* (ZN)

is commutative. Then w = KK (i) - KK (id4 ®¢)~! meets the requirement. O
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In what follows we fix the K K-equivalence w € KK (B, A® C*(ZN)) described in the
lemma above.

Let S = Cy((0,1)) and let T = C @ S. Put [N] = {1,2,...,N}. The N-fold tensor
product 7%V has 2V direct sum components and each of them is isomorphic to a tensor
product of several copies of S. For I C [N], we let S; € T7®" denote the tensor product
of S’s of the i-th tensor product component for all ¢ € I, so that

TN = P Sr.
IC[N]

Note that Sy is isomorphic to C. When I, J C [N] are disjoint, we may identify S; ® S
with Sryy. For I C [N] and J C I, we let o(I,J) be the canonical invertible element in
KK(Sr,Spng ®8y), where Sp ; ® Sy is a subalgebra of TN @ TN | Define

on € KK(T®N 79N o TON)

by
ON = Z o(l,J).

JCIC[N]

For n € N, we let 6,, : C*(Z") — C*(Z")®@ C*(Z"™) denote the coproduct. By a suitable
permutation of tensor components of C*(Z") @ C*(Z™) = C*(Z)®?", §,, can be viewed as
(01)%". Let z € KK(C*(Z),T) be an invertible element. We denote the N-fold tensor
product of z by zy € KK (C*(ZN), T®N).

Lemma 6.10. In the setting above, one has zn - oy - (2y @ 2n) "t = KK(0n).
Proof. The proof is by induction. It is easy to see that

2V KK(01) - (21 ®21) = o(0,0) + o ({1},0) + o({1},{1}) = 01.
The conclusion follows from

On—1 & 01

= Y oI, )@c,0)+0o(I,])@({n},0) + o(I,]) @ o({n},{n})

JCIC[n—1]

= > o)+ > ol,)+ > o(l,J)

JCIC[n—1] JCIC[n],nelng¢J JCIC[n]neJ

= 0op.
]

Let e € 7% be the unit of Sy = C. Let Hr.y (B, B) be the subset of KK (AQT®N, A®
T®N) consisting of x satisfying

and
l"(lA@O’N):(1A®UN)’($®1T®N)7

and let Hyy (B, B)~! be the subset of Hzy (B, B) consisting of invertible elements.
From the above two lemmas, we have the following.
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Lemma 6.11. (1) The KK-equivalence w - (14 ® zn) € KK(B,A® T®N) induces a
bijective correspondence between Hyn (B, B) and Hyy (B, B).

(2) The KK -equivalence w - (14 ® zn) € KK(B,A® T®N) induces a bijective corre-
spondence between Hyn (B, B)™" and Hyy (B, B)™!.

Since
ATN = 5 A S,
IC[N]

any element 2 € KK(A® T®V, A® T®N) can be written as
x = Z x(I,J),
1,JC[N]

where (1, J) is in KK(A® S;,A® Sy). Now we calculate Hy (B, B) and Hyy (B, B)™*
as follows.

Lemma 6.12. For
r= Y a(l,]) e KK(AR T*N, A0 T®V),
I1,JC[N]
the following are equivalent.
(1) @ belongs to Hyy (B, B).

(2) For each K C [N], there exists yx € KK(A® Sk, A) such that Ko(yp)([1]) = [1]
and

o1,y = {9 @ ls Tl
’ otherwise.

Moreover, x is invertible if and only if yy is invertible.

Proof. The implication from (2) to (1) is straightforward. Let us show the other implica-
tion. Notice that KK (A ® TV, A ® TN @ T®V) is isomorphic to

@ KK(A® S;,A® Sy @ 8)).

I1,J,J'C[N]

For any z in KK(A®@T®N, A@ TN @ T®N), we denote its KK(A® S;,A® Sy ® Sy)
component by z(I,J',J). One can see

(z-(La @ on))(I, ', J)
{:p(I,J’ UJ)-(La@a(JUJJ)) fJNJ=0

0 otherwise

and

(Qa®on) - (z®1ren)) (I, J',J)

fQaeo(I,)) - (@(I\JJ)®1s,) ifJCI
0 otherwise.
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By letting J' = (), we have

z(I,J) - (la®oa(J,J))

JAa®a(l, ) ((I\J,0) @ 1ren) ifJCI
o otherwise.

Hence, if J is not contained in I, then x(I,J) = 0. If J is a subset of I, then

x(I,J)
=(a®@o(l,])) - (@(I\J,0) @ 1gen) - (la©o(J,J)""
= :L‘(I\J,@) ®ls,,

which implies (2). In addition, it is easy to see that

x = Z x(I,J)

JCIC|N]

is of the form of an upper triangular matrix. Therefore, = is invertible if and only if the
diagonal part is invertible. Since the diagonal part is given by

Z Yo ® Ls;,
]

IC[N
the proof is completed. O

Notice that, for x1,z9 € H’],I‘N (B, B), the product x; - x2 is computed as follows:

(561 . 932)([, (Z)) = le(I, J) . xQ(J, Q)) == Z(ﬁl(I\J, @) &® 1SJ) . JJQ(J, (Z))

Jcil JcIl

From Lemma 6.8, 6.11, 6.12 and this observation, we get the following proposition. For

ye KK(Aa TN, A)= @ KK(A® S, A),
IC[N]

its KK(A® Sr, A) component is denoted by y;.

Proposition 6.13. There exists a surjective map © from Hompn (B, B) to
H"={y € KK(A® TN, A) | Ko(yy)([1)=[1]}

satisfying the following.

(1) p1,p2 € Homqgn (B, B) are TN -asymptotically unitarily equivalent if and only if
O(p1) = O(p2).

2) Ify isin H" and yy € KK(A, A) is invertible, then there exists p € Autpn (B) such
] T
that ©(p) = y.
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(3) For p1,p2 € Hompn (B, B), ©(p2 0 p1) is given by

O(p20op)r =) (O(p1)ns ®1s,)-Op2)s, I C[NI.
JCI

Remark 6.14. When A = O,

{y € H" | yy is invertible}

is isomorphic to 72" 'l For any p € Autpy(B), a : ZN ~ A and p|A give rise to a

cocycle action of ZV*1 on A. Hence, when N > 2, there exist infinitely many outer cocycle
ZN* 1 actions on O which are not mutually equivalent. In other words, Oy @ K admits
infinitely many outer Z"*!-actions which are not mutually cocycle conjugate. Moreover,
there exist infinitely many cocycle ZN¥+1-actions on O which are not equivalent to a
genuine action, because outer ZN1-actions on O, are unique up to cocycle conjugacy by
Theorem 5.4.

Let Hyn (C*(ZY), B) be the subset of KK (C*(ZN), B) consisting of x satisfying

and
- KK(&d)=KK({n) (z® 10*(ZN)).

There exists a natural map from Homqp~ (C*(ZY), B) to Hyn (C*(ZV), B).
Let Hyn(C*(Z"), B) be the subset of KK(T®N, A® T®N) consisting of a satisfying

and
a-(la®on)=0on-(a® lyen).

From Lemma 6.9 and 6.10, one has the following.

Lemma 6.15. The map
2yt we (14 ® 2y)

gives a bijective correspondence between Hpn (C*(ZN), B) and H{TN(C*(ZN), B).

For a € Hf\(C*(Z"),B) and I,J C [N], we denote the KK (S7, A®S) component of
a by a(l,J). Let h: C — A be the unital homomorphism. In a similar fashion to Lemma
6.12, we have the following.

Lemma 6.16. For

a= Y a(lJ) e KK(T*N A T®N),
1,JC[N]

the following are equivalent.

(1) a belongs to Hr.n (C*(ZN), B).
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(2) For each K C [N], there exists by € KK (Sk,A) such that by = KK (h) and

b 1 fJ CI
o1, gy = v @lsy, T
0 otherwise.
We let + : C*(Z) — B denote the canonical embedding. When {ug} ez is an a-
cocycle in A, one can define a homomorphism ¢, : C*(ZY) — B by w,()\g) = ugAy for
g € ZV. Clearly ¢, belongs to Hompn (C*(ZN), B).

Lemma 6.17. If A satisfies the universal coefficient theorem and
Ki(A) ={f([1]) | f € Hom(Ko(A), Ki(A))}

for each i = 0,1, then for any a-cocycle {Ug}geZN in A, there exists an automorphism
w € Autypn (B) such that KK (pu|A) = 14 and KK(pot) = KK(t,). When N = 1, we
only need the assumption on Kq(A).

Proof. For I C [N], we let |I| denote the cardinality of I. There exists a natural iso-
morphism between KK (Sr,A) and K;(A), where i = 0 if |I| is even and i = 1 if || is
odd. From the assumption, we have the following: for any ¢ € KK (S, A), there exists
pe KK(A® Sr, A) such that KK(h®idg,) -p=gq.
By Lemma 6.15,
a=zy KK() -w-(14® 2y)

and
c=zy KK(ty) w- (14 ® zy)

are in Hr. (C*(ZN), B). We claim that there exists 2 € Hry (B, B) such that a -z = c.

We construct y; € KK(A ® Sr, A) for each I C [N] by using the induction on |I|.
First, we let yyg = 14 € KK (A, A). Suppose that y; has been chosen for every I C [N]
with |I| < n. Take I C [N] such that |I| = n. Put

g=c(I,0)— > a(I,J) yse KK(S1,A).
JCI,J#I

Then there exists p € KK(A ® Sy, A) such that KK(h ®1idg,) -p = q. We let y; = p.
Define z € KK(A®@ TN, A® T®N) by

x(I,J]) = {gm@ ls, itJclr

otherwise.

By Lemma 6.12,  belongs to Hyy (B, B). For every I C [N],

(a-2)(1,0) =Y _a(I,J) - x(J,0)

JCI

= > al,J) ys+a(l 1) yr
JCI,J#1

= c(I, ®)7
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because a(I,I) = KK(h) ® 1g, by Lemma 6.16. Since a -z is in Hfy (C*(Z"), B), we get
a-x = c by Lemma 6.16. Notice that z(0,0) = 14.

It follows from Lemma 6.8 and 6.11 that there exists an automorphism p € Autpw (B)
such that KK (po jo) = KK(j) and

KEK(p)=w-(1a®z2y)-z-(1a®zy)t-w .
Then one has

KK(pot)=(zny-a-Qa®@zy) b -w™) - (w-(1a@2y)-2-(1a@zy) L-w™)

=av-a-z-(1a@zy) w!

=ay-c-(Ia®@zy) tw™?

= KK(ty).

By Theorem 2.6 (2), p o j, and j, are asymptotically unitarily equivalent in Hom(A, B).
Since o : ZV ~ A is asymptotically representable, by using an argument similar to the
proof of Theorem 4.8, one can show that p o j,|A and j,|A are asymptotically unitarily
equivalent in Hom(A, A), which implies KK (u|A) = 14. O

Theorem 6.18. Let A be a unital Kirchberg algebra satisfying the universal coefficient
theorem and suppose that

Ki(A) ={f([1]) | f € Hom(Ko(A), Ki(A))}

for each i = 0,1. Then any asymptotically representable outer actions of ZN on A are
strongly K K -trivially cocycle conjugate to each other. When N = 1, we only need the
assumption on K1(A).

Proof. Let a and (3 be asymptotically representable outer actions of Z" on A. By Theorem
6.6, we may assume that there exists an a-cocycle {Ug}gezN in A such that 0 = o".
Let B = A x, ZN. Tt follows from Lemma 6.17 that there exists an automorphism
w € Autpn(B) such that KK(u|A) = 14 and KK(pot) = t,. By [4, Theorem 1.7],
wo and ¢, are approximately unitarily equivalent. Hence the conclusion follows from
Corollary 4.10 (2) and its proof. O

Lemma 6.19. Let A be a unital Kirchberg algebra such that the following two conditions
hold.

(i) If y € KK(A, A) satisfies Ko(y)([1]) = 0, then y = 0.
(i) KK(A® S, A) =0.
If u € Homqpn (B, B) satisfies KK (o) = KK (1), then KK (u) = 1p.

Proof. For I C [N], we let |I| denote the cardinality of I. There exists a natural isomor-
phism between KK (A ® Sr, A) and KK(A, A). When |I| is even, from condition (i), we
have the following: if y € KK (A ® S, A) satisfies KK (h ®idg,) -y = 0, then y = 0.

By Lemma 6.15 and 6.16,

a=zy KK() -w-(14® 2y)
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is in Hyn(C*(G), B) and a(I,I) = KK(h ®idg,) for every I C [N]. By Lemma 6.8 and
6.11,

r=(1a®@2y) " w KK (p) - w- (14 ® 2y)
is in H{TN (B, B). From the hypothesis, we have a - ¢ = a. By Lemma 6.12, there exists
yr € KK(A® Sr, A) for each I C [N] such that Ko(yg)([1]) = [1] and

o1,y = {9 @ sy Tl
’ 0 otherwise.

Notice that condition (i) implies yy = 14 and that condition (ii) implies y; = 0 if |I| is
odd.

We prove y; = 0 for every non-empty I C [N] by using the induction on |I|. Suppose
that we have shown y; = 0 for every I such that 0 < |I| < n and n is even. Take I C [N]
such that |I| = n. From a - x = a, one has

a(I,0) = (a-x)(I,0)
= Za([, J)-x(J,0)

JcI

= Y al,J)-x(J,0) +a(1,0) - x(0,0) + a(I,1) - x(1,0)
JCI,J#0,J#I

= a(I,(Z)) -1 —I—KK(h(X)idSI) -Yr,

and so KK (h ®idg,) - yr = 0. Hence we get y; = 0.
Consequently

T = Z y®®151 :1T®N7
IC[N]

which implies KK (u) = 1. O

Theorem 6.20. Suppose A = M, @ C ® O, where C is a UHF algebra satisfying
C=2C®C andn € N. Then, any outer ZN -actions on A are cocycle conjugate to each
other. In particular, they are asymptotically representable.

Proof. Note that A satisfies the hypothesis of Lemma 6.19. We use induction on N.
Assume that the claim has been shown for N — 1.

Let a be an outer ZM-action on A. Let o/ be the ZVN~!-action generated by the first
N — 1 generators of a. By the induction hypothesis, o/ : ZV¥~1 ~ A is asymptotically
representable. Let B = AxZ" ! andlet . : C*(ZV~!) — B be the canonical embedding.
We denote the N-th generator of o by apy. The automorphism oy of A naturally extends
to an automorphism ay of B. Clearly we have &y ot = ¢. It follows from Lemma 6.19
that KK (ay) is equal to 1. The rest of the proof is the same as that of Theorem 5.4 or
Theorem 6.6. O

7 Cocycle actions of Z>

In this section, we consider when a given cocycle action of Z? on a unital Kirchberg algebra
is equivalent to a genuine action. Our basic philosophy goes back to Adrian Ocneanu’s
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idea in the case of von Neumann algebras, while we have to handle K-theory with a special
care in the case of C"*-algebras.

We put S = Cp((0,1)) = C*(R). For a unital C*-algebra A, the connected component
of the identity in U(A) is denoted by U(A)o.

Lemma 7.1. Let A be a unital Kirchberg algebra and let u : [0,1] — U(A) be a continuous
path of unitaries such that u(0) = u(1) = 1. If the Ky-class of u is zero in K1(S ® A),
then there exists a continuous map v : [0,1] x [0,1] — U(A) such that

v(0,t) =1, v(1,t) = u(t), Lip(v(-,t)) <7 and v(s,0) =v(s,1) =1
for all s, t € [0,1].

Proof. We regard S ® A as a subalgebra of C'(T) ® A. Since A is a Kirchberg algebra,
there exists a nonzero projection p € A such that p # 1 and ||[u,1 ® p]|| < 1, where u is
regarded as an element of the unitization of S ® A. Note that 1 ® p and 1 — 1 ® p are
properly infinite and full in C(T) ® A. By [2, Lemma 2.4 (ii)] (and its proof), we can find
v:[0,1] x [0,1] — U(A) such that

v(0,t) =1, v(1,t) = u(t) and v(s,0) = v(s,1) =1
for all s,t € [0,1]. Then the conclusion follows from [23, Theorem 3.1]. O

Lemma 7.2. Let A be a unital Kirchberg algebra and let o be an automorphism of A with
the Rohlin property.

(1) For any unitary u € U(A)g and € > 0, there exists a unitary v € U(A)g such that
lu —va(v)*|| <e.

(2) Letw:[0,1] — U(A) be a continuous path of unitaries such that u(0) = u(1) = 1.
Suppose that the Ki-class of u is zero in K1(S ® A). Then, for any € > 0, there
exists a continuous path of unitaries v : [0,1] — U(A) such that v(0) = v(1) =1 and
lu(t) —v(t)a(v(t)*|| < e for all t € [0,1].

Proof. (1) This is a special case of [20, Lemma 8|.
(2) This also follows from [20, Lemma 8] and its proof by using the lemma above. [

Lemma 7.3. Let e be a sufficiently small positive real number. Let A be a unital Kirchberg
algebra and let « be an automorphism of A with the Rohlin property. If x : [0,1] — U(A)
is a path of unitaries satisfying

la(t) - ale(®) < 5

for allt € [0,1], then there exists a path of unitaries y : [0,1] — U(A) such that
y(0) = z(0), y(1) ==(1), [ly(@)—aly@®)| <e
for all t € [0,1] and Lip(y) is not greater than 6.

Proof. This follows from [20, Theorem 7] and its proof. Note that the a-fixed point
subalgebra of A, contains a unital copy of O by [20, Corollary 11]. O
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Let « be an automorphism of a unital C*-algebra A. For a unitary u € U(A)( satisfying
lu —a(u)]] <2,

we associate an element s(u, ) in Coker(id —Ky(«)) as follows. Take a path of unitaries
x :]0,1] — U(A) such that 2(0) = 1 and z(1) = u. Then, we can find another path of
unitaries v : [0, 1] — U(A) such that v(0) = v(1) =1 and

[z(t)a(z(t))" —v(@)] < 2

for all ¢ € [0,1]. Under the identification of K;(S ® A) with Ky(A), the unitary v de-
termines an element of Ko(A). We let x(u,«) be the equivalence class of this element in
Coker(id —Ko(w)).
Lemma 7.4. In the setting above, k(u,a) € Coker(id —Ko(a)) does not depend on the
choice of x and v.
Proof. We let log be the standard branch defined on the complement of the negative real
axis. Suppose that x : [0,1] — U(A) is a path satisfying z(0) = 1 and z(1) = u, and that
v:[0,1] — U(A) is a path satisfying v(0) = v(1) = 1 and ||z(t)a(z(t))* — v(t)|| < 2 for all
te0,1].

First, we show that x(u,a) does not depend on the choice of v. We define w : [0,1] —
U(A) by

w(t) = z(t)a(z(t)) e toea@™) o, 1].

Then ||z(t)a(x(t))* —w(t)] is less than 2. It is easy to see that v and w are homotopic in
the unitary group of the unitization of S ® A via the homotopy

(57 t) N v(t)eslog(v(t)*x(t)a(z(t))*)e—stlog(ua(u)*)’ s,t€ [0’ 1].
Hence k(u, o) does not depend on the choice of v.

Suppose that y : [0,1] — U(A) is another path satisfying y(0) = 1 and y(1) = u. Then
z(t) = y(t)z(t)* is a unitary in the unitization of S ® A, and

ly(H)e(y (@) = 2(B)v(t)a(z(®)*] = [lz(t) (@) alz(t))” = v(@))alz(t)"]] < 2.

In addition, [zv(ids ®a)(z)*] belongs to [v] + Im(id — K (ids ®«)) in K;(S ® A), which
means that x(u, ) does not depend on the choice of z. ]

Lemma 7.5. If uj,us € U(A)o satisfy |[ur — a(u1)]] + ||uz — a(u2)|| < 2, then we have
k(ujug, o) = k(u1, @) + K(ug, a).

Proof. For each i = 1,2, we choose z; : [0,1] — U(A) and v; : [0,1] — U(A) such that
zi(0) =1, 2;(1) = u;, v;(0) = v;(1) = 1 and

i (B)e(zi(t))" = vi®)|| < [Jui — auq)]]

for all ¢t € [0,1]. Then ¢ — x1(t)z2(¢) is a path of unitaries from 1 to ujuy. Put v(t) =
x1(t)va(t)x1(t)*v1(t) so that

)
21 ()22 (t) (@1 (t)a2(t)” —v@)]| < [lur — alur)]| + [luz — alug)|| < 2.
Clearly [v] equals [v1]+ [v2] in K1(S® A), and so we have k(ujug, @) = k(u1, &) + £(ug, o).
O
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Lemma 7.6. Let 0 < & < 2. Let A be a unital Kirchberg algebra and let o be an auto-
morphism of A with the Rohlin property. If a unitary uw € U(A)o satisfies

lu—a(u)]] <&,  kK(u,a)=0,
then there exists a path of unitaries x : [0,1] — U(A) such that x(0) =1, z(1) = u and
() — alz@®)]| <e
for all t € [0,1].

Proof. Choose a path of unitaries u : [0,1] — U(A) such that «(0) = 1 and u(1) = u.
Since ||u — a(u)|| < € < 2, there exists a path of unitaries v : [0,1] — U(A) such that
v(0) =v(1) =1 and

Ju@)e(u(t))” —v@)] < flu — (v

for all t € [0,1]. We can regard v as a unitary in the unitization of S® A. From x(u,a) = 0,
we may assume that the K-class of v in K1(S ® A) is zero. Hence, by Lemma 7.2 (2), we
can find w : [0,1] — U(A) such that w(0) = w(1) =1 and

[o(t) = w(®)e(w(®))*|| <& —[lu— a(u)]
for all ¢ € [0, 1]. Therefore, one gets
[u(t)a(u(t))” — w(t)ew(t))*|| <e
for all t € [0,1]. Thus, z(t) = w(t)*u(t) meets the requirements. O

Lemma 7.7. Let A be a unital Kirchberg algebra and let o be an automorphism of A with
the Rohlin property. For any x € Ko(A) and € > 0, there exists v € U(A)p such that
lv —a()|| < e and k(v, @) = x + Im(id —Ko()).

Proof. Choose n € N so that 27/n < e. By [20, Corollary 11|, we may replace (A, o) with
(A® Ou, @ ® ), where 7 is an aperiodic automorphism of Oy,. We may further assume
that there exists a projection e € O such that [e] = [1], ey*(e) =0 for k =1,2,...,n—1
and e = 7"(e). Put eg = 1 — (e +7(e) + --- + 4" (e)). There exists a path of unitaries
u:[0,1] — U(A) such that u(0) = u(1) = 1, Lip(u) < 27 and [u] € K1(S ® A) = Ko(A)
equals z. We define v € U(A)g by

n—1

v= Zak(u(k/n)) @~*(e) +1® ep.
k=0

One can verify [|[v — (@ ® 7)(v)|| < € and k(v,a ® 7) = z + Im(id —Kp(a ® 7)) easily. O

Lemma 7.8. Let A be a unital Kirchberg algebra and let o be an automorphism of A with
the Rohlin property. For any unitary w € A with ||w — 1| < 2 and € > 0, there exists
u € U(A)o such that

luwa(u)* —1|| <e, |lu—a(u)| <2 and k(u,a)=0.
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Proof. From Lemma 7.2 (1), it is easy to find a unitary u € U(A)p such that
|luwa(u)* — 1|| < min{2—||w—1]|, }.

Then one has ||u — a(u)|| < 2. By the lemma above, we can find a unitary v in A which
is almost fixed by « and k(v,a) equals —k(u, ). Thanks to Lemma 7.5, by replacing u
with vu, we get the desired unitary. O

Lemma 7.9. For any € > 0, there exists 6 > 0 such that the following holds. Let o and
B be automorphisms of a unital Kirchberg algebra A such that o™ o " is outer for all
(m,n) € Z*>\ {(0,0)}. Let u and w be unitaries in A such that

Boa=Adwoaof, [w-1]<d
lu—a(u)|]| <d, uweU(A)y and k(u,a)=0.
Then, there exists a unitary v € A such that
lv —a@)|| <e and |Ju—vB(W)*| <e.

Proof. Choose N € N and § > 0 so that 67/N < e and (86N + 25)J < e. Suppose that
a, B, u,w are given.

The automorphisms «, 3 give an outer cocycle action of Z2. By Corollary 6.4 (2) (see
also Theorem 3.6), there exists a family of mutually orthogonal projections

(B9 k=01,... N-1}u{E" [k=0,1,...,N}

in (A4,)“ such that

N—

[y

N
EY +3S EY =1 and p(EY) = B,
k=0 k=0
where E](\?) and E](\}Zrl are understood as E(()O) and E(()l), respectively.
Define uy, € U(A) for k = 0,1,... by up = 1 and ug11 = uf(ug). By an elementary
estimate, we obtain
g — aup) | < (3K — 2)0

for any k € N. Moreover, from Lemma 7.5, we can see k(uy,«) = 0. By applying Lemma
7.6 and Lemma 7.3 to uy and uny1, we obtain a path of unitaries y and z such that the
following hold.

e y(1)=2(1) =1, y(0) = uy and 2(0) = un+1.
e |ly(t) —a(y(t))]| < 27(3N —2)6 and ||2(t) — a(2(t))]] < 27(3N + 1) for all t € [0, 1].

e Both Lip(y) and Lip(z) are less than 6.
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Define a unitary V € A“ by

N-1 N
V=Y wyk/N))ED + 3w (2(k/(N + 1)) EL.
k=0 k=0

We can easily see ||lu — V3(V)*|| < 67/N < e. Furthermore,
IV — a(V)]| < (3N — 2)6 + 2N + 27(3N + 1)8 = (86N + 25)8 < ¢,
which completes the proof. O

Proposition 7.10. For any € > 0, there exists 6 > 0 such that the following holds. Let
A be a unital Kirchberg algebra. Suppose that o, f € Aut(A) and w € U(A) satisfy

Boa=Adwoaof and [w— 1] <.

Suppose further that o™ o 3" is outer for all (m,n) € Z*\ {(0,0)}. Then, there exist
a,b € U(A) such that
la =1 <&, [b-1]<e

and
bB(a)wa(b)*a™ = 1.
In particular,

(Adaoa)o(Adbo ) = (Adbo ) o (Adao a).

Proof. Choose a decreasing sequence of positive real numbers £1,e3,... so that Y e, < e.
By applying Lemma 7.9 to € > 0, we obtain d; > 0. We show that § = §; meets the
requirements.

Suppose that a, § € Aut(A4) and w € U(A) are given. From Lemma 7.8, there exists
uy € Up(A) satisfying

|lurwa(ur)® —1|| < min{d;—||lw—1]|, d2}, |ur —a(ur)| <
and x(u1,a) = 0. From Lemma 7.9, we can find a unitary v; in A such that
lvr — a(vr)]] <e1 and |Jug —v1B8(v1)*|| < e1.

Define unitaries a1 and by by a1 = via(vi) and by = vju18(v1). Clearly [ja; — 1|| and
||by —1|| are less than e1. Put ag = Adajoa and §3 = Ad byof3. Then, it is straightforward
to see

B2 0 ay = Adws o ag 0 (B,

where we = viuywa(ui) v and ||wy — 1| < da.
By repeating this argument, one obtains unitaries {ax}x, {bx}x, {wk}r and automor-
phisms {ag }x, {8k }r which satisfy the following.
lak — 1| <ek, ox =1 <er, [we — 1| <0,

* *
apt1 = Adag ooy, Brr1 =Adbgo By,  wry1 = viugwiog(ug) vk

34



and
Br o o, = Adwy, 0 ay, 0 By

Define a,b € U(A) by

a= klirgo arpp—1...a92a1 and b= khj& bibr—1...bob1.
Since ), e < €, we get |ja — 1]| < € and ||b — 1|| < €. Besides, one can check
wWiy1 = (b ... bab1)B(ak . .. agar)wa(by . .. bab1)* (ag . . . agar)”
inductively. Therefore, we have
bG(a)wa(b)*a™ =1

and
(Adaoa)o (Adbo ) = (Adbo ) o (Adaoc a),

because wy converges to the identity. O

Theorem 7.11. Let (o, u) be an outer cocycle action of Z? on a unital Kirchberg algebra
A. If the cohomology class of [u(-,-)] is trivial in H*(Z?, K1(A)), then (o, u) is equivalent
to a genuine action.

Proof. We may assume that [u(g,h)] = 0 in K;(A) for all g, h € Z?. Hence there exists
w € U(A) such that

(1,0) © a(o,1) = Adw o g1y © a1 )

and [w] = 0 in K;(A). By Theorem 2.8, the automorphism «a; ¢y has the Rohlin property.
It follows from Lemma 7.2 (1) that, for any 6 > 0, we can find v € U(A)y such that
[w — a0y (v*)v]| < §. Thus, by replacing g 1) with Advo g 1), we may further assume
|lw —1|| < ¢. Then, the conclusion follows from Proposition 7.10. O

Corollary 7.12. Any outer cocycle action of Z> on a unital Kirchberg algebra A in the
Cuntz standard form is equivalent to a genuine action.

Proof. Let (o,u) be an outer cocycle action of Z? on a unital Kirchberg algebra A in the
Cuntz standard form. There exists a unitary w € A such that

OL(L()) O 04(071) = Adw e} 04(0’1) (e] Oz(Lo).

Let B be the crossed product of A by (). We denote the implementing unitary in B
by A. Consider the Pimsner-Voiculescu exact sequence for o ;o). Since [A] € K1(B) is
sent to [1] € Ko(A) and [1] = 0 in K((A), there exists a unitary = € A such that [z] = [)]
in K1(B). The automorphism «a g ;) of A extends to &g 1) € Aut(B) by & 1)(A) = w*A.
Then we have

o) (@)] = [ag0. ()] = [w*A] = [w*a,

that is, [w] = [z] — [e(,1)(®)] in K1(B). It follows that there exists a unitary y € A such
that

[w] = [2] = [eo,1) ()] + [W] = a0y ()]
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in K;(A). This means that there exists a unitary v € A such that [v] = 0 in K;(A) and
w = a(y,0)(y) TVYQ(0,1)(7)*, which implies

Adz* o oAdyoap) =AdvoAdyoayg) oAdr” oaq ).

By the theorem above, (a,u) is equivalent to a genuine action. O

8 Classification of locally K K-trivial Z>-actions

In this section, we classify locally K K-trivial outer Z?-actions on a Kirchberg algebra
up to K K-trivially cocycle conjugacy. We denote by K the C*-algebra of all compact
operators on ¢*(Z). We put S = Cy((0,1)) and regard it as a subalgebra of C(T), where
T =R/Z.

From Remark 4.6, Corollary 6.5, Proposition 6.13 (2) and Theorem 7.11, we can see
that outer locally K K-trivial Z2-actions on a unital Kirchberg algebra A can be classified
by

fw € KK'(4, ) | Ko(2)(1]) = 0}

up to K K-trivially cocycle conjugacy. Meanwhile, the results of [11] and [27] show that
uniformly outer Z?-actions on a UHF algebra A are classified by the fundamental group
m1(Aut(A)) up to cocycle conjugacy. On the other hand, when A is a unital Kirchberg
algebra, the group m(Aut(A ® K)) is isomorphic to KK'(A, A) by [5]. This is not a
coincidence, and we first show that our classification invariant also lives in the group
m1(Aut(A ® K)). This also allows us to see the topological origin of the invariant (see
Remark 8.1 below).

For a locally K K-trivial Z?-action a on a unital Kirchberg algebra A, we introduce
an invariant ®(a) € KK (A, S ® A) as follows. By Theorem 2.6 (2), ;) is homotopic
to an inner automorphism. Since the unitary group of the multiplier algebra of a stable
C*-algebra is path-connected, a(; gy ®1idx is homotopic to the identity in Aut(A®K). Let
{1t}tepo,1) be a path from idagk to (i) ® idg. Define a homomorphism 7 : A ® K —
C(T)® (A®K) by

m(a)(t) = (v " o (1) ® idx) o 7e)(a)

fora e A® K and t € [0,1]. We can see that the homotopy class of 7 does not depend
on the choice of the path {7}, because Q(p,1) ® 1dg is homotopic to the identity. Let
ja: A®K — C(T) ® (A ® K) be the homomorphism defined by ja(a) = 1oy ® a. We
put

() = KK(m) — KK (ja)

and regard it as an element of KK (A,S ® A).

Remark 8.1. Sergey Neshveyev kindly informed the authors of the following fact: to the
Z2-action o, one can associate a principal Aut(A ® K)-bundle over T? in a standard way,
and our invariant ®(«) is essentially the usual obstruction class in H2(T?, 1 (Aut(A®K)))
for the existence of a continuous section. We will come back to this point elsewhere.

Lemma 8.2. The above K K'-class ®(«) satisfies Ko(®(a))([1]) = 0.
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Proof. Since a1,9) is homotopic to an inner automorphism, say Adwg, we may assume
that the homotopy <y is of the following form:

_fAdw(t), 0<t<1/2,
T eidg, 1/2<t<1,

where {w(t)}ogtgl/g is a continuous path from 1 ® 1 to wp ® 1 in the unitary group of
M(A®K), and {7;}1/2<¢<1 is a continuous path from Adwg to a1 gy in Aut(A). Let e be
a minimal projection of K. Then all we have to show is that the projection loop 7(1®e)(t)
is homotopic to the constant loop 1 ® e. For 1/2 <t < 1, there is nothing to show. For
0<t<1/2 wehave r(1®e)(t) = Adw'(t)(1®e), where w'(t) = w(t)*(a(o,1) ®idk) (w(t)).
Note that w'(1/2) = wia1)(wo) ® 1, and wiag1)(wo) is trivial in K;(A). Since the
unitary group of M (A ® K) is contractible [28, Theorem 16.8], its fundamental group
is trivial, and so the continuous path {w'(t)}o</<1/2 is homotopic to that of the form
{w"(t) ® 1}9<s<1/2 Within the set of continuous paths from 1® 1 to wgag,1)(wo) @ 1. This
finishes the proof. O

Lemma 8.3. Let o, 3 : Z> ~ A be two locally K K -trivial Z?-actions on a unital Kirchberg
algebra. If o and (B are K K-trivially cocycle conjugate, then ®(a) = ®(5).

Proof. We may assume that there exists an a-cocycle {u,},cz2 in A such that 5, =
Aduyoay, for all n € Z2. Let w be the unitary operator on ¢2(Z) defined by w = > p Ep+lps
where {e,4}pq is a family of matrix units. Take a path of automorphisms {v;},c(o,1] of
A® K@K from the identity to o) ® Adw @ idg. Define a homomorphism 7 from
AK®K to C(T) ® (A® K®K) by

m(a)(t) = (v " o (1) @ idx ® Adw) 0 %)(a).
Since there exists a path of unitaries from w to 1, it is easily seen that ®(«) is equal to
KK(r)— KK(ja). Put

v= Z U(p,q) @ Epp @ €q,q-
P,qEL

Then one has
v(a(0) ®@ Adw ®@idg)(v*) = u0 @ 1® 1

and
U(Oz(()’l) ® idg ® Adw)(v*) = w1 ®1®1,

which imply
m(a)(t) = (,yt—l oAdv*o (5(071) ®idg ® Adw) o Ad v o y)(a),

and {Adv oy 0o Adv*}; is a path from the identity to §(; ) ® Adw ® idg. Consequently
®(f) = KK () — KK(ja), which completes the proof. O

Proposition 8.4. Let A be a unital Kirchberg algebra. For any x € KK(A,S ® A)
with Ko(x)([1]) = 0, there exists a locally K K -trivial outer action o : Z* ~ A such that
O(a) = z.
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Proof. Choose an aperiodic automorphism v € Aut(Os) which is homotopic to the iden-
tity and let {7¢}¢c[0,1) be the homotopy from the identity to 7. By [5, Proposition 5.7], we
can find a path of automorphisms {o¢},¢[0,1] of A such that o9 = o1 and the K K-class of
the homomorphism

A3 awr (01(a))epy € C(T)® A

is equal to x+ K K (ja). We regard (o); as an automorphism of C(]0, 1]) ® A. By replacing
A and (0y); with A® O and (o, ®7y);, we may assume that (o¢); has the Rohlin property.
Let p be an aperiodic automorphism of A which is homotopic to the identity. Then the
automorphism id¢o,1)) ®p of C([0,1]) ® A also has the Rohlin property. Moreover, the
two homomorphisms

Asar (oia)) € C([0,1]) ® A

and
Asa—1®pla) € C([0,1]) ® A

clearly have the same K K-class. By Theorem 2.6 (2), they are asymptotically unitarily
equivalent. It follows that (o4); and ide(jo,1) ®p are asymptotically unitarily equivalent
as automorphisms of C([0,1]) ® A. Then we can apply the argument of [20, Theorem
5] and conclude that (o¢): and idg 1)) ®p are K K-trivially cocycle conjugate (note that
(C([0,1]) ® A),, contains a unital copy of O and [20, Theorem 7] works for C'([0,1]) ® A).
Hence there exist a path of automorphisms { i },¢[0,1] of A and a path of unitaries {us };¢[o1]
such that KK (u;) =1 and
Adugop=pooiop

for all ¢ € [0,1]. By replacing u; and oy with o puy' and pg o oy o puy ', we may assume
that po = id4. Furthermore, by replacing u; and p with wug and Adug o p, we may also
assume that ug = 1. Thus, p = 09 = 01 and

Adujop=mooropt =pmopopu’,

which means that p and p; give a cocycle action of Z2. By replacing A, p and p; with
AR Ox ® Os, p@7v®ido,, and i ® idp,, @7, we may further assume that p and py
give an outer cocycle action. Since [u1] = 0 in K7 (A), Proposition 7.10 implies that there
exist unitaries a,b € A such that

bui (a)uip(b)*a® = 1.

In addition, from the construction, we can see that [b] = 0 in K1(A). Let {b;}¢cp,1) be
a path of unitaries from 1 to b. By replacing p, o, p¢ and u; with Ada o p, Ada o oy,
Ad by o py and bypy(a)uip(by)*a*, we get po g = puy o p and up = 1.

Consequently, one has

it opopy =Adu (up) ooy
for all t € [0,1] and (u; *(u}))¢ is a unitary in C(T) ® A. Therefore, the K K-class of
A3 0 (470 po u)(a)) € O(T) © A

is equal to o + KK (j4). The Z?-action generated by p and p; is the desired one. O
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Using Proposition 8.5 below and working on Homy(A xZ, A X Z), we can prove Propo-
sition 8.4 without using [5, Proposition 5.7].

Next we will prove Proposition 8.5. We must recall a few basic facts about crossed
products. Let p be an automorphism of a unital C*-algebra A. We let A x,Z x;R denote
the crossed product of A x,7Z by p which is regarded as an R-action, and let A x,Z x; T
be the usual crossed product by the dual action p : T ~ A %, Z. As described in [,
Proposition 10.3.2], there exists an isomorphism between A x,Z x; R and the mapping
torus

My ={f:[0,1] = Ax, Zx,; T| f(1) = p(f(0))}.
Let w be the unitary operator on ¢?(Z) defined by w = >_p Ep+1p, Where {€,4}pq is a

family of matrix units. Then, by Takesaki-Takai duality, (A x,Z %, T, p:) is conjugate to
(A®K, p® Adw), and so there exists an isomorphism ¢ from A x,Z x;R to the mapping
torus

Mpgadw = {f :10,1] = AR K| f(1) = (p ©® Adw)(f(0))}.

Suppose o is in Homp(Ax,Z, Ax,Z). We denote its canonical extension to Ax,Zx ;R
by the same symbol o. Define a unitary v € M (A ® K) by

v = ZU(Ag)/\’iP R epp-
PEZL

It is not so hard to see

(poooe™)(f)(t) = (Adv" o (0 @idx))(f(t)).

Proposition 8.5. Let o, 3 : 72 ~ A be two locally KK -trivial outer actions of Z> on a
unital Kirchberg algebra. If ®(a) = ®(f5), then a and [ are K K -trivially cocycle conjugate.

Proof. Put p = a(0). By Lemma 2.10, the Z-action induced by p is asymptotically
representable. Let ¢ be the isomorphism between A x,Z x; R and the mapping torus

Myosaw = {f :10,1] = AR K | £(1) = (p@ Adw)(£(0))}.
as described above. Take a path of automorphisms {7 };¢[o,1) such that
Y0 = idagk and y1 = p®@ Adw = a1 0) ® Adw.
Then, ¥(f)(t) =~; '(f(t)) gives an isomorphism from M,gadw to C(T) ® A® K. Letting
r e KK(S®(AX,Z),Ax,Zx,R)
be the Thom element, we have a K K-equivalence
z=x-KK(poyp)e KK(S® (Ax,Z),C(T)® A).

We let dyo,1) denote the canonical extension of a1y to A X, Z = A x4, Z. The
automorphism &g 1) further extends to A x,Z x; R and we use the same symbol for it.
It is easy to see that

' KK(ids ®61)) - @ = KK (&1))
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and
(Yopodapo e to ™ (f)(t) = (v o (ao,1) ®@idg) o) (f (1))
for all f € C(T)® A® K and ¢ € [0,1]. Tt follows that 2z~ - KK (ids ®dg1)) - z equals the
K K-class of the automorphism (v; ! o (0,1) ®idg) o v¢)¢ of C(T) ® A® K.
We now turn to the action 8. By Theorem 2.9, we may assume that there exists an
a1,0)-cocycle {uy }nez such that B, o) = Aduy o, o) for all n € Z. One can extend f(q 1)
to 5(0,1) € Homt(A x,7Z,A %, Z) by setting

Boy(A8) = Bio,uy (u Jun .

Define unitaries u,v € M (A ® K) by

u= Zup ®epp and v = (B, @ idk)(u)u.
PEZL

The automorphism [3(0’1) further extends to A x,Z »; R and we use the same symbol for
it. It is easy to see that

o KK(idg ®@B0,1) - @ = KK (Bo,1))-
By the observation before this proposition, we also have

(Yopo By o o ()
= (77 ' o Adv* o (B(o,1) ® idk) o 7¢) (f(1))
= (9 "o Adu* o (B,1) ®idg) o Aduoy)(f(t))

forall f € C(T)® A® K and t € [0,1]. Put oy = Aduo vy 0o Adu*. Then {0t} is a
path from the identity to 3 o) ® Adw, and 271 KK (idg ®B~(071)) - z equals the K K-class
of the automorphism (o; ! o (Bio,1) ® idk) 0 0¢); of C(T) ® A® K.

From ®(a) = ®(f), the two homomorphisms

A®K S ar (17 o (ag) @ idk) 0 3)(@)); € C(T) ® A® K

and
A®K3a (07" o (B ®idg) o 01)(a)): € C(T) ® A® K

have the same K K-class in KK(A,C(T) ® A), and so they are asymptotically unitarily
equivalent by Theorem 2.6 (2). Therefore the two automorphisms (v, o (avo,1) ®idk) 0y1)e

and (o; ' o (B(o,1) ®idk) 0 0¢)¢ of C(T) ® A ® K have the same K K-class. Thus,

2 KK (idg ®dg) -2 = 271 - KK (ids ®B(0.1)) - 2,

and so KK (& 1)) = KK (B,1)) in KK(Ax,Z,Ax,Z). Applying Theorem 4.11, we can
conclude that o and [ are outer conjugate by an automorphism p such that KK (u) = 14.
Corollary 6.5 (and its proof) tells us that « and 3 are K K-trivially cocycle conjugate. [

By Proposition 8.4 and 8.5, we get the following.

40



Theorem 8.6. Let A be a unital Kirchberg algebra. There exists a bijective correspondence
between the following two sets.

(1) K K-trivially cocycle conjugacy classes of locally K K -trivial outer Z*-actions on A.
(2) {re KK(A,S® A) | Ko(x)([1]) = 0}.
Example 8.7. When A is the Cuntz algebra O,,
{r e KK(A,S® A) | Ko(x)([1]) = 0}

is isomorphic to Ext(Z/(n—1)Z,Z/(n—1)Z) = Z/(n—1)Z. It follows that the cocycle
conjugacy classes of outer Z2-actions on O,, correspond to Z/(n—1)Z.

Next we consider the non-unital case. For a locally K K-trivial Z2-action o : Z? ~ A
on a non-unital Kirchberg algebra A, one can define ®(a) € KK(A,S ® A) in a similar
fashion to the unital case. In the same way as Lemma 8.3, one can show that ®(«) is an
invariant of K K-trivially cocycle conjugacy.

Theorem 8.8. Let A be a non-unital Kirchberg algebra. There exists a bijective corre-
spondence between the following two sets.

(1) KK-trivially cocycle conjugacy classes of locally K K -trivial outer Z*-actions on A.
(2) KK(A,S® A).

Proof. We may assume that A = Ag®K and Ag is a unital Kirchberg algebra in the Cuntz
standard form. We let {ep 4}y qcz denote a family of matrix units of K.
Forany z € KK(A,S®A) = KK (Ao, S®Ap), by Proposition 8.4, there exists a locally
K K-trivial outer Z2-action o on Ag such that ®(a) = 2. Then clearly ®(a ® idg) = .
Let o : Z2 ~ A be a locally K K-trivial outer action. Choose partial isometries g, vg
in A so that
upuy = 1 ® eq, ugug = a(1,0)(1 @ eo0)

and
vovy = 1 ® egp, vhvo = (0,1)(1 @ €o)-

Define unitaries u,v € M(A) by

U = Z(l & 6p70)an(170)(1 ® €o7p) and wv= Z(l & 6p70)1)004(071)(1 ® 607p).
pEZL PEZL

Then (Aduo a@p)(1®epy) = 1®epq and (Advo ag))(1 ®epq) = 1® ey, for all
p,q € Z. In addition, ua(; g)(v)a(,1)(u*)v* commutes with 1 ® e, 4. It follows that there
exist p,o € Aut(Ag) and w € U(A) such that

Aduo 04(170) =P X ld]K, Advo O[(O’l) =0Q® ldK

and
Uuc(1,0) (U>a(0,1)(U*)U* =w®l, poog=Adwocop.
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By Corollary 7.12, there exists a,b € U(Ap) such that
(Adaop)o(Adboo) = (Adboo)o (Adaop)

and
ap(b)wo(a*)b* = 1.

Let 3 be a Z2-action on Ag induced by Ada o p and Adbo o. The two unitaries (a ® 1)u
and (b® 1)v of M(A) give rise to an a-cocycle and # ® idk is the cocycle perturbation of
a. Since ¢(a) = ¢(f ®idg) = ®(3), we can complete the proof by Proposition 8.5. [
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