SQUARE ROOT CLOSED C^{*}-ALGEBRAS

HIROKI MATUI, MASARU NAGISA, AND MUNEHIRO YAMAMOTO

Abstract

We say that a C^{*}-algebra A is approximately square root closed, if any normal element in A can be approximated by a square of a normal element in A. We study when A is approximately square root closed, and have an affirmative answer for AI-algebras, Goodearl type algebras over the torus, purely infinite simple unital C^{*}-algebras etc.

0. Introduction

D. Deckard and C. Pearcy [7, 8] proved that, for a commutative $A W^{*}$-algebra M, any algebraic equation with M-valued coefficients has roots in M. Many researchers study analogous problems for a commutative C^{*}-algebra $C(X)$, and some results are strongly related to topological properties of X (e.g., covering dimension, cohomology etc.) [4, 5, 11, 17, 18].

In this paper, we consider this problem for a C^{*}-algebra which is not necessarily commutative. But we restrict our attention to a special quadratic equation, namely $x^{2}=a$. We make the following definition:

Definition 0.1. Let A be a C^{*}-algebra.
(1) We say that A is square root closed, if for any normal element $a \in A$, there exists a normal element $b \in A$ such that $a=b^{2}$.
(2) We say that A is approximately square root closed, if for any $\varepsilon>0$ and any normal element $a \in A$, there exists a normal element $b \in A$ such that $\left\|a-b^{2}\right\|<\varepsilon$.

Needless to say, for a commutative C^{*}-algebra A, the square root closed property for A is the same as the classical property, i.e., every element in A has its square root in A.

Our result is as follows.
(1) Every AI-algebra is approximately square root closed. (Theorem 1.8.)
(2) If A is a unital C^{*}-algebra, $A \otimes M_{2 \infty}$ is approximately square root closed. (Theorem 2.2.)
(3) For a Goodearl type algebra A over \mathbb{T}, A is approximately square root closed if and only if $K_{1}(A)$ is 2-divisible. (Theorem 2.4.)
(4) For a purely infinite simple unital C^{*}-algebra A, A is approximately square root closed if and only if $K_{1}(A)$ is 2-divisible. (Theorem 3.9.)

[^0]
1. AI-algebras

It is clear that every finite dimensional C^{*}-algebra is square root closed. We say that a C^{*}-algebra A has the property (FN), if any normal element in A can be approximated by some normal element in A with finite spectrum. If A has the property (FN), then we can see that A is approximately square root closed. H. Lin [14] proved that every AF-algebra has the property (FN). This implies every AF-algebra is approximately square root closed.

We give two examples of C^{*}-algebras which are approximately square root closed but not square root closed.

Example 1.1. There exists a unital AF-algebra A such that A has a maximal abelian self-adjoint subalgebra B which is isomorphic to the algebra $C(\mathbb{T})$ of continuous functions on the torus \mathbb{T} (see [2]). Then A is not square root closed.

Indeed, let u be a unitary generator of $B \cong C(\mathbb{T})$. If $y \in A$ is normal and satisfies $y^{2}=u$, then y belongs to B by the maximality of B. But u does not have such an element in $B \cong C(\mathbb{T})$. So A is not square root closed.

Example 1.2. Let $I=[0,1]$ be the interval. The algebra $C\left(I, M_{2}\right)$ of 2×2 matrix valued continuous functions on I is not square root closed but approximately square root closed.

We define a normal element $f \in C\left(I, M_{2}\right)$ as follows:

$$
f(t)= \begin{cases}{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+e^{6 \pi \sqrt{-1} t}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} & t \in[0,1 / 3] \cup[2 / 3,1] \\
\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\frac{1}{2} e^{6 \pi \sqrt{-1} t}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] & t \in(1 / 3,2 / 3)\end{cases}
$$

We assume that g is a normal element in $C\left(I, M_{2}\right)$ with $g^{2}=f$. By the continuity of spectra, one of $g(1 / 3)$ and $g(2 / 3)$ must have the spectrum $\{1,-1\}$. We only consider the case $\operatorname{Sp}(g(1 / 3))=\{1,-1\}$. Since we have

$$
\lim _{t \rightarrow 1 / 3-0} g(t)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\lim _{t \rightarrow 1 / 3+0} g(t)
$$

this contradicts the assumption.
In Corollary 1.6, we will show that $C\left(I, M_{n}\right)$ is approximately square root closed. But, for above f, we construct its approximate square root here. Let $0<\theta<1$ and u be a unitary in $C\left(I, M_{2}\right)$ with

$$
u(\theta / 3)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad u(1 / 3)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] u(1 / 3)
$$

We define the normal element h in $C\left(I, M_{2}\right)$ as follows:

$$
h(t)= \begin{cases}{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+e^{3 \pi \sqrt{-1} t / \theta}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} & t \in[0, \theta / 3] \\
u(t)\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] u(t)^{*} & t \in[\theta / 3,1 / 3] \\
\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\frac{1}{2} e^{3 \pi \sqrt{-1} t}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] & t \in(1 / 3,2 / 3) \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+e^{3 \pi \sqrt{-1} t}\left[\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right]} & t \in[2 / 3,1] .\end{cases}
$$

It is easy to see that if $1-\theta$ is sufficiently small, then so is $\left\|f-h^{2}\right\|$.
Let f be a normal element of $C\left(I, M_{n}\right)$. For each point $t \in I, f(t)$ has the spectral decomposition: $f(t)=\sum_{i=1}^{n} \lambda_{i}(t) p_{i}(t)$, where $\lambda_{1}(t), \ldots, \lambda_{n}(t)$ are the eigenvalues of $f(t)$ and $p_{i}(t)$ is a one-dimensional projection corresponding to $\lambda_{i}(1 \leq i \leq n)$ and satisfying $\sum_{i=1}^{n} p_{i}(t)=1$. By Rouché's theorem, we may assume that λ_{i} is continuous on I for each i. But $p_{i}(t)$ is not necessarily continuous.
Lemma 1.3. Let $k \leq n$ and $\left\{p_{i}(t)\right\}_{i=1}^{k} \subset M_{n}$ be a family of mutually orthogonal, one-dimensional projections for each $t \in I$. If the map $I \ni t \mapsto p(t)=\sum_{i=1}^{k} p_{i}(t)$ is continuous, then there are mutually orthogonal projections $q_{1}, \ldots, q_{k} \in C\left(I, M_{n}\right)$ such that $p_{i}(0)=q_{i}(0), q_{i}(1)=p_{i}(1)$ and $p=\sum_{i=1}^{k} q_{i}$.
Proof. We can choose a continuous function $I \ni t \mapsto x_{1}(t) \in \operatorname{Range}(p(t))$ such that $p_{1}(0) x_{1}(0)=x_{1}(0), p_{1}(1) x_{1}(1)=x_{1}(1)$ and $\left\|x_{1}(t)\right\|=1$ for any $t \in I$. We define the projection $q_{1}=x_{1} \otimes x_{1} \in C\left(I, M_{n}\right)$. Then $I \ni t \mapsto p(t)-q_{1}(t)$ is continuous. Repeating the same argument, for $l=2, \ldots, k$, we can choose a continuous function $I \ni t \mapsto x_{l}(t) \in \operatorname{Range}\left(\left(p-\sum_{i=1}^{l-1} q_{i}(t)\right)\right)$ such that $p_{l}(0) x_{l}(0)=x_{l}(0), p_{l}(1) x_{l}(1)=$ $x_{l}(1)$ and $\left\|x_{l}(t)\right\|=1$ for any $t \in I$. Therefore we have $p=\sum_{i=1}^{k} q_{i}$, where $q_{i}=x_{i} \otimes x_{i}$ for $i=1, \ldots, k$.

Lemma 1.4. Let $\varepsilon>0, k \leq n$ and $f=\sum_{i=1}^{n} \lambda_{i} p_{i}$ be a normal element of $C\left(I, M_{n}\right)$, where $\lambda_{1}, \ldots, \lambda_{n} \in C(I)$ and $\left\{p_{i}(t)\right\}_{i=1}^{n} \subset M_{n}$ is a family of mutually orthogonal projections. If $\left|\lambda_{1}(t)-\lambda_{l}(t)\right|<\varepsilon$ and $\left|\lambda_{1}(t)-\lambda_{l}(t)\right|<\left|\lambda_{1}(t)-\lambda_{m}(t)\right|$ for each $l \in\{1, \ldots, k\}$ and $m \in\{k+1, \ldots, n\}$, then $p=\sum_{i=1}^{k} p_{i} \in C\left(I, M_{n}\right)$.

Moreover we can choose a family of mutually orthogonal projections $q_{1}, \ldots, q_{k} \in$ $C\left(I, M_{n}\right)$ such that $q_{i}(0)=p_{i}(0), q_{i}(1)=p_{i}(1)$ and

$$
\left\|p f p-\sum_{i=1}^{k} \lambda_{i} q_{i}\right\|<2 \varepsilon
$$

Proof. We can choose a continuously differentiable function $C: I \times \mathbb{T} \rightarrow \mathbb{C}$ such that $C(t, \cdot)\left(=C_{t}\right)$ is a simple closed curve with canonical orientation and separates $\left\{\lambda_{1}(t), \ldots, \lambda_{k}(t)\right\}$ (in its inside) and $\left\{\lambda_{k+1}(t), \ldots, \lambda_{n}(t)\right\}$ (in its outside) for each $t \in I$. Since we have

$$
\frac{1}{2 \pi \sqrt{-1}} \int_{C_{t}} \frac{1}{z-f(t)} d z=\sum_{i=1}^{k} p_{i}(t)
$$

for any $t \in I$, this implies the continuity of $p=\sum_{i=1}^{k} p_{i}$.
By the previous lemma, there are mutually orthogonal projections $q_{1}, \ldots, q_{k} \in$ $C\left(I, M_{n}\right)$ such that $p_{i}(0)=q_{i}(0), q_{i}(1)=p_{i}(1)$ and $p=\sum_{i=1}^{k} q_{i}$. Then we have

$$
\begin{aligned}
\left\|p f p-\sum_{i=1}^{k} \lambda_{i} q_{i}\right\| & \leq\left\|\sum_{i=1}^{k} \lambda_{i} p_{i}-\sum_{i=1}^{k} \lambda_{i} q_{i}\right\| \leq \varepsilon+\left\|\sum_{i=1}^{k} \lambda_{1} p_{i}-\sum_{i=1}^{k} \lambda_{i} q_{i}\right\| \\
& =\varepsilon+\left\|\lambda_{1} p-\sum_{i=1}^{k} \lambda_{i} q_{i}\right\|<2 \varepsilon
\end{aligned}
$$

Proposition 1.5. Let $\varepsilon>0$ and f be a normal element of $C\left(I, M_{n}\right)$. Then there are $\lambda_{1}, \ldots, \lambda_{n} \in C(I)$ and mutually orthogonal projections $q_{1}, \ldots, q_{n} \in C\left(I, M_{n}\right)$ such that

$$
\left\|f-\sum_{i=1}^{n} \lambda_{i} q_{i}\right\|<\varepsilon
$$

Proof. We can choose $\lambda_{1}, \ldots, \lambda_{n} \in C(I)$ such that $f(t)=\sum_{i=1}^{n} \lambda_{i}(t) p_{i}(t)$, where $p_{1}(t), \ldots, p_{n}(t)$ are mutually orthogonal projections for each $t \in I$. Then there exists $\delta>0$ such that

$$
|t-s|<\delta \Longrightarrow\left|\lambda_{i}(t)-\lambda_{i}(s)\right|<\varepsilon / 2 \quad(i=1, \ldots, n)
$$

For any $t \in I$, we define index sets $I_{1}(t), \ldots, I_{N(t)}(t)$ as follows:

$$
\begin{aligned}
& i_{1}(t)=1 \\
& I_{1}(t)=\left\{i \in\{1, \ldots, n\}:\left|\lambda_{1}(t)-\lambda_{i}(t)\right|<\varepsilon / 2\right\} \\
& i_{k}(t)=\min \left(\{1, \ldots, n\} \backslash \bigcup_{i=1}^{k-1} I_{i}(t)\right), \quad(k \geq 2) \\
& I_{k}(t)=\left\{i \in\{1, \ldots, n\} \backslash \bigcup_{l=1}^{k-1} I_{l}(t):\left|\lambda_{i_{k}(t)}(t)-\lambda_{i}(t)\right|<\varepsilon / 2\right\} .
\end{aligned}
$$

Then we can choose a neighborhood U_{t} of t satisfying the closure $\overline{U_{t}}$ of U_{t} is $\left[a_{t}, b_{t}\right]$ and $\left|a_{t}-b_{t}\right|<\delta$ and, for $i \in I_{k}(t), j \in\{1, \ldots, n\} \backslash \bigcup_{l=1}^{k} I_{l}(t)(1 \leq k \leq N(t))$ and $s \in\left[a_{t}, b_{t}\right]$,

$$
\begin{gathered}
\left|\lambda_{i_{k}(t)}(s)-\lambda_{i}(s)\right|<\varepsilon / 2, \quad\left|\lambda_{i_{k}(t)}(s)-\lambda_{j}(s)\right| \geq \varepsilon / 4 \\
\left|\lambda_{i_{k}(t)}(s)-\lambda_{i}(s)\right|<\left|\lambda_{i_{k}(t)}(s)-\lambda_{j}(s)\right|
\end{gathered}
$$

Since $\bigcup_{t \in I} U_{t}$ is an open covering of I, there exists a finite subcovering of I. We may assume that

$$
\begin{gathered}
0=a_{1}<t_{1}<a_{2}<b_{1}<t_{2}<a_{3}<b_{2}<\cdots<b_{K-1}<t_{K}<b_{K}=1, \\
\overline{U_{t_{l}}}=\left[a_{l}, b_{l}\right] \quad(1 \leq l \leq K), \quad I=\bigcup_{l=1}^{K} U_{t_{l}} .
\end{gathered}
$$

For instance, we set $b_{0}=a_{1}$. For each $l=1, \ldots, K$, applying the previous lemma $N\left(t_{l}\right)$ times, we can find mutually orthogonal projections $q_{1}^{(l)}, \ldots, q_{n}^{(l)} \in$
$C\left(\left[b_{l-1}, b_{l}\right], M_{n}\right)$ satisfying $q_{i}^{(l)}\left(b_{l-1}\right)=p_{i}\left(b_{l-1}\right), q_{i}^{(l)}\left(b_{l}\right)=p_{i}\left(b_{l}\right)$ and

$$
\left\|f(t)-\sum_{i=1}^{n} \lambda_{i}(t) q_{i}^{(l)}(t)\right\|<\varepsilon
$$

We define, for each $i, q_{i}(t)=q_{i}^{(l)}(t)$, where $t \in\left[b_{l-1}, b_{l}\right]$. Then we have $q_{1}, \ldots, q_{n} \in$ $C\left(I, M_{n}\right)$ as asserted.

Corollary 1.6. $C\left(I, M_{n}\right)$ is approximately square root closed.
Proof. Let $\varepsilon>0$ and f be a normal element of $C\left(I, M_{n}\right)$. Applying Proposition 1.5, there are $\lambda_{1}, \ldots, \lambda_{n} \in C(I)$ and mutually orthogonal projections $q_{1}, \ldots, q_{n} \in$ $C\left(I, M_{n}\right)$ such that $\left\|f-\sum_{i=1}^{n} \lambda_{i} q_{i}\right\|<\varepsilon$. For each $i=1, \ldots, n$, we can find $\mu_{i} \in C(I)$ satisfying $\lambda_{i}=\mu_{i}^{2}$, which means that $C\left(I, M_{n}\right)$ is approximately square root closed.

A C^{*}-algebra is called an AI-algebra if it is isomorphic to the inductive limit of a sequence $\left(C\left(I, F_{n}\right), \varphi_{n}\right)$, where each F_{n} is a finite dimensional C^{*}-algebra and each $\varphi_{n}: C\left(I, F_{n}\right) \rightarrow C\left(I, F_{n+1}\right)$ is an injective ${ }^{*}$-homomorphism. A C^{*}-algebra A is called stable rank one, if the set $G L(A)$ of invertible elements of A is dense in A. We remark that each $C\left(I, F_{n}\right)$ has stable rank one.

We need the following lemma. We have been unable to find a suitable reference in the literature, so we include a proof for completeness.

Lemma 1.7. Let $A=\underline{\lim } A_{n}$ be an inductive limit such that each C^{*}-algebra A_{n} has stable rank one. Then, for any normal element $x \in A$ and $\varepsilon>0$, there exists a normal element y in some A_{n} such that $\|x-y\|<\varepsilon$.

Proof. For each $n \in \mathbb{N}$, we can find an element $x_{n} \in A_{n}$ such that $\left\|x-x_{n}\right\| \rightarrow 0$. Then $\left[\left(x_{n}\right)\right]:=\left(x_{n}\right)+\bigoplus_{n} A_{n}$ is a normal element in $\prod_{n} A_{n} / \bigoplus_{n} A_{n}$ and $C^{*}\left(\left[\left(x_{n}\right)\right]\right)$ is isomorphic to $C\left(\operatorname{Sp}\left(\left[\left(x_{n}\right)\right]\right)\right)$, where $C^{*}\left(\left[\left(x_{n}\right)\right]\right)$ is the C^{*}-algebra generated by $\left[\left(x_{n}\right)\right]$. Since $\operatorname{Sp}\left(\left[\left(x_{n}\right)\right]\right)$ can be embedded in the closed unit disk \mathbb{D}, we have a *-homomorphism from $C(\mathbb{D})$ onto $C\left(\operatorname{Sp}\left(\left[\left(x_{n}\right)\right]\right)\right)$. By using the argument of semiprojectivity [16, Theorem 19.2.7], there exist a natural number m and a normal element $y_{n} \in A_{n}$ for $n \geq m$ satisfying

$$
\left[\left(x_{1}, \ldots, x_{m-1}, x_{m}, x_{m+1}, \ldots\right)\right]=\left[\left(0, \ldots, 0, y_{m}, y_{m+1}, \ldots\right)\right]
$$

in $\prod_{n} A_{n} / \bigoplus_{n} A_{n}$. If we set $y=y_{n}$ for a sufficiently large n, then y satisfies the desired condition.

Theorem 1.8. Every AI-algebra is approximately square root closed.
Proof. Let $A=\underline{\lim } A_{n}$ be an AI-algebra. Since each A_{n} has stable rank one, we can apply Lemma 1.7. So, for any normal element $a \in A$ and $\varepsilon>0$, there exists a normal element b in some A_{n} such that $\|a-b\|<\varepsilon$. By Corollary 1.6, b can be approximated by a square of a normal element. Therefore A is approximately square root closed.

2. Two-divisibity for K_{1}

Lemma 2.1. Let A be a C^{*}-algebra. If $x \in A$ is normal, then there exists a normal element $y \in A \otimes M_{n}$ such that $x \otimes 1_{n}=y^{n}$.

Proof. We set

$$
y=\frac{x}{|x|^{(n-1) / n}} \otimes e_{1, n}+|x|^{\frac{1}{n}} \otimes e_{2,1}+|x|^{\frac{1}{n}} \otimes e_{3,2}+\cdots+|x|^{\frac{1}{n}} \otimes e_{n, n-1}
$$

Then y becomes a normal element of $A \otimes M_{n}$ and satisfies $x \otimes 1_{n}=y^{n}$.
Let $M_{2 \infty}=\overline{\bigotimes_{n=1}^{\infty} M_{2}}$ be the UHF algebra of type 2^{∞} and $\gamma: M_{2 \infty} \rightarrow M_{2 \infty}$ be a unital *-endomorphism defined by $\gamma(x)=1_{2} \otimes x\left(x \in M_{2 \infty}\right)$. For each n, we choose a unitary $w_{n} \in \bigotimes_{i=1}^{n} M_{2} \subset M_{2 \infty}$ such that

$$
\operatorname{Ad} w_{n}\left(x_{1} \otimes \cdots \otimes x_{n}\right)=w_{n}\left(x_{1} \otimes \cdots \otimes x_{n}\right) w_{n}^{*}=x_{n} \otimes x_{1} \otimes \cdots \otimes x_{n-1}
$$

for any $x_{1} \otimes \cdots \otimes x_{n} \in \bigotimes_{i=1}^{n} M_{2}$. Then we have

$$
\lim _{n \rightarrow \infty}\left\|\gamma(x)-\operatorname{Ad} w_{n}(x)\right\|=0 \quad \text { for all } x \in M_{2 \infty}
$$

Theorem 2.2. If A is a unital C^{*}-algebra, then $A \otimes M_{2 \infty}$ is approximately square root closed.

Proof. We consider the ${ }^{*}$-endomorphism $\alpha=\mathrm{id} \otimes \gamma$ of $A \otimes M_{2^{\infty}}$. It is easy to see that $\alpha(x)=\lim _{n \rightarrow \infty} \operatorname{Ad}\left(1 \otimes w_{n}\right)(x)$ for all $x \in A \otimes M_{2 \infty}$.

For any normal element $x \in A \otimes M_{2 \infty}$, we can see $\alpha(x)$ like as $\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]$. So there exists a normal element $y \in A \otimes M_{2 \infty}$ such that $y^{2}=\alpha(x)$ by Lemma 2.1. It follows that

$$
\left\|\left(\operatorname{Ad}\left(1 \otimes w_{n}^{*}\right)(y)\right)^{2}-x\right\|=\left\|y^{2}-\operatorname{Ad}\left(1 \otimes w_{n}\right)(x)\right\| \rightarrow\left\|y^{2}-\alpha(x)\right\|=0
$$

which means that $A \otimes M_{2 \infty}$ is approximately square root closed.
For a C^{*}-algebra A, we say that $K_{1}(A)$ is 2-divisible if any $[x] \in K_{1}(A)$ has an element $[y] \in K_{1}(A)$ with $[x]=2[y]$.

It is known that if a unital C^{*}-algebra A has stable rank one, then $M_{n}(A)$ has also stable rank one, and in this case the map from the unitary group of A to $K_{1}(A)$ is surjective, see [19] for details.

Let A be a unital commutative C^{*}-algebra $(A \cong C(X))$. It is well-known that A has stable rank one if and only if the covering dimension of the associated compact Hausdorff space X is less than one. In this case $K_{1}(A)$ is isomorphic to $G L(A) / G L_{0}(A)$, where $G L_{0}(A)$ is the connected component containing the identity in $G L(A)$.

Proposition 2.3. Let A be a C^{*}-algebra with stable rank one.
(1) If A is approximately square root closed, then $K_{1}(A)$ is 2-divisible.
(2) If A is commutative and $K_{1}(A)$ is 2-divisible, then A is approximately square root closed.
Proof. (1) Let u be a unitary in A. There exists a normal element $a \in A$ such that $\left\|u-a^{2}\right\|<1$. In particular, a is invertible. Then we have $[u]=\left[a^{2}\right]=2[a]$ in $K_{1}(A)$.
(2) Since A has stable rank one, it suffices to show that any invertible element in A can be approximated by a square of a normal element of A. For $a \in G L(A)$, there exists an invertible $b \in A$ such that $[a]=2[b]=\left[b^{2}\right]$ in $K_{1}(A)$. Therefore a is connected to b^{2} in $G L(A)$. So we can choose $h_{1}, \ldots, h_{n} \in A$ such that

$$
a=e^{h_{1}} \cdots e^{h_{n}} b^{2}
$$

It follows that $a=\left(e^{\left(h_{1}+\cdots+h_{n}\right) / 2} b\right)^{2}$.
Since $K_{1}(C(\mathbb{T}))=\mathbb{Z}$, we can see that $C(\mathbb{T})$ is not approximately square root closed. We define $A_{n}=C(\mathbb{T})(n=1,2, \ldots)$ and a ${ }^{*}$-homomorphism φ_{n} from A_{n} to A_{n+1} by

$$
\varphi_{n}(f)(z)=f\left(z^{2}\right) \quad\left(f \in C(\mathbb{T})=A_{n}, z \in \mathbb{T}\right)
$$

Then the inductive limit A of this system $\left(A_{n}, \varphi_{n}\right)$ is a commutative C^{*}-algebra with stable rank one and has $K_{1}(A) \cong \mathbb{Z}\left[\frac{1}{2}\right]=\left\{\frac{m}{2^{n}}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}$. In fact, A is approximately square root closed.

We take a sequence $\left\{x_{n}\right\}$ of a compact Hausdorff space X and an increasing sequence $\left\{k_{n}\right\}$ of positive integers such that k_{n} divides k_{n+1} for each n. For each n, we define a *-homomorphism φ_{n} from $C\left(X, M_{k_{n}}\right)$ to $C\left(X, M_{k_{n+1}}\right)$ by

$$
\varphi_{n}(f)(x)=\operatorname{diag}(\underbrace{f(x), \ldots, f(x)}_{s(n)}, f\left(x_{n}\right), \ldots, f\left(x_{n}\right))
$$

for $f \in C\left(X, M_{k_{n}}\right)$ and $x \in X$. Then we call the inductive limit A of the inductive system $\left(C\left(X, M_{k_{n}}\right), \varphi_{n}\right)$ a Goodearl type algebra over X. We note that if $\left\{x_{n}\right\}$ is dense in X, then A becomes simple and is called a Goodearl algebra [10]. But, in our setting $\left\{x_{n}\right\}$ is not necessarily dense in X.

Theorem 2.4. Let A be a Goodearl type algebra over \mathbb{T}. Then the following are equivalent.
(1) A is approximately square root closed.
(2) For any $n \in \mathbb{N}$, there exists $m \geq n$ such that $s(m)$ is even.
(3) $K_{1}(A)$ is 2-divisible.

Proof. (1) \Rightarrow (3). It follows from Proposition 2.3.
$(3) \Rightarrow(2)$. We remark that $K_{1}\left(A_{n}\right) \cong \mathbb{Z}$ for each $n \in \mathbb{N}$ and denote by 1_{n} the unit of $K_{1}\left(A_{n}\right)$. Then we have $\left(\varphi_{n}\right)_{*}\left(1_{n}\right)=s(n) 1_{n+1} \in K_{1}\left(A_{n+1}\right)$. By the assumption we can choose a positive integer $N(>n)$ such that

$$
s(N) s(N-1) \cdots s(n) 1_{N+1} \in 2 K_{1}\left(A_{N+1}\right)
$$

This means that $s(m)$ is even for some $m \in\{n, \ldots, N\}$.
$(2) \Rightarrow(1)$. Let f be a normal element in A and $\varepsilon>0$. Since each A_{n} has stable rank one, by the same argument in Theorem 1.8, we can choose a number n and a normal element $g \in A_{n}$ such that $\|f-g\|<\varepsilon$. Then we may assume that $s(n)$ is even. By Lemma 2.1 we can show that

$$
\varphi_{n}(g)=g \otimes 1_{s(n)} \oplus g\left(x_{n}\right) \oplus \cdots \oplus g\left(x_{n}\right)
$$

has a square root in A_{n+1}.

3. Purely infinite simple unital C^{*}-algebras

Let A be a unital simple C^{*}-algebra. We say that A is purely infinite, if every nonzero hereditary C^{*}-subalgebra of A contains an infinite projection. The simplicity and the pure infiniteness of $A([20])$ implies that A has real rank zero, i.e., the invertible self-adjoint elements are dense in the set of the self-adjoint elements of A. It is also known that the following are equivalent:
(i) A has real rank zero.
(ii) A has the property (HP), i.e., every non-zero hereditary C^{*}-subalgebra B of A has an approximate identity of projections in B ([3]).
(iii) A has the property weak (FU), i.e., for any $u \in U_{0}(A)$ and $\varepsilon>0$, there exists a unitary $v \in U_{0}(A)$ with finite spectrum such that $\|u-v\|<\varepsilon$, where $U_{0}(A)$ is the connected component containing the identity in the set of unitaries $U(A)$ ([12]).

Proposition 3.1. Let A be a unital simple purely infinite C^{*}-algebra. When $u \in A$ is a unitary and $[u]$ is 2-divisible in $K_{1}(A)$, for any $\varepsilon>0$ there exists a unitary $v \in A$ such that

$$
\left\|u-v^{2}\right\|<\varepsilon
$$

Proof. We denote the unit circle in \mathbb{C} by \mathbb{T}. If $\operatorname{Sp}(u)$ is not the whole of \mathbb{T}, then u has a square root. Therefore we may assume $\operatorname{Sp}(u)=\mathbb{T}$. Let $F \subset \mathbb{T}$ be an ε-dense finite subset of \mathbb{T}, that is, for any $\xi \in \mathbb{T}$ there exists $\eta \in F$ such that $|\xi-\eta| \leq \varepsilon$. Since A has real rank zero, applying [13, Lemma 2], there exist a unitary $u_{0} \in A$ and a family of mutually orthogonal nonzero projections $\left\{e_{\eta}\right\}_{\eta \in F}$ such that $\left\|u-u_{0}\right\|<\varepsilon$ and

$$
e_{\eta} u_{0}=u_{0} e_{\eta}=\eta e_{\eta}
$$

for all $\eta \in F$. Let $e=1-\sum_{\eta \in F} e_{\eta}$ and $B=e A e$. Then $u_{1}=u_{0} e$ is a unitary of B. Note that $\left[u_{1}+1-e\right]$ is equal to $[u]$ in $K_{1}(A)$. Hence there exists a unitary $v \in B$ such that $\left[u_{2}\right]=-2[v]$ in $K_{1}(B) \cong K_{1}(A)$. Since $M_{2}(B)$ has the property weak (FU), there exist projections $q_{1}, q_{2}, \ldots, q_{n} \in M_{2}(B)$ and $\xi_{1}, \xi_{2}, \ldots, \xi_{n} \in \mathbb{T}$ such that

$$
\sum_{i=1}^{n} q_{i}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and

$$
\left\|\left[\begin{array}{cc}
u_{1} & 0 \\
0 & v^{2}
\end{array}\right]-\sum_{i=1}^{n} \xi_{i} q_{i}\right\|<\varepsilon
$$

Because F is ε-dense in \mathbb{T}, for each $i=1,2, \ldots, n$, there exists $\eta_{i} \in F$ such that $\left|\xi_{i}-\eta_{i}\right| \leq \varepsilon$. It follows that

$$
\left\|\left[\begin{array}{cc}
u_{1} & 0 \\
0 & v^{2}
\end{array}\right]-\sum_{i=1}^{n} \eta_{i} q_{i}\right\|<2 \varepsilon
$$

Since A is simple and purely infinite, there exists a family of mutually orthogonal projections r_{i} in A such that $r_{i} \leq e_{\eta_{i}}$ and $\left[r_{i}\right]=\left[q_{i}\right]$ in $K_{0}(A)$. Put $r=\sum_{i=1}^{n} r_{i}$. Then we have

$$
u_{0} r=\sum_{i=1}^{n} \eta_{i} r_{i}
$$

and so we can find a unitary $u_{2} \in r A r$ which is a copy of the unitary

$$
\left[\begin{array}{cc}
u_{1} & 0 \\
0 & v^{2}
\end{array}\right],
$$

and $\left\|u_{2}-u_{0} r\right\|$ is less than 2ε. It follows that $u_{3}=u_{1}+u_{2}+u_{0}(1-e-r)$ is a unitary of A and $\left\|u_{3}-u\right\|$ is less than 3ε. Moreover $u_{1}+u_{2}$ looks like

$$
\left[\begin{array}{ccc}
u_{1} & 0 & 0 \\
0 & u_{1} & 0 \\
0 & 0 & v^{2}
\end{array}\right],
$$

which is a square of

$$
\left[\begin{array}{ccc}
0 & u_{1} & 0 \\
1 & 0 & 0 \\
0 & 0 & v
\end{array}\right] .
$$

Because $u_{0}(1-e-r)$ has finite spectrum, the proof is completed.
Corollary 3.2. Let A be a unital simple purely infinite C^{*}-algebra. Suppose that $K_{1}(A)$ is 2 -divisible. If $x \in A$ is a normal element and $\operatorname{Sp}(x)$ is homeomorphic to the circle, then for any $\varepsilon>0$ there exists a normal element $y \in A$ such that

$$
\left\|x-y^{2}\right\|<\varepsilon
$$

Proof. Since the circle is one-dimensional, by perturbing x a little bit, we may assume that x is invertible. Let $f: \mathbb{T} \rightarrow \mathrm{Sp}(x)$ be a homeomorphism. Because f is a homeomorphism onto $\operatorname{Sp}(x)$, the rotation number of f is -1 or 0 or 1 . If the rotation number of f is zero, then x has a square root. Hence, without loss of generality, we may assume that the rotation number of f is one. We denote the inverse of f by $f^{-1}: \operatorname{Sp}(x) \rightarrow \mathbb{T}$.

There exists $\delta>0$ such that if $u, v \in A$ are unitaries with $\|u-v\|<\delta$ then $\|f(u)-f(v)\|<\varepsilon$. Applying Proposition 3.1 to the unitary $f^{-1}(x)$, we get a unitary $v \in A$ such that

$$
\left\|f^{-1}(x)-v^{2}\right\|<\delta
$$

which means that

$$
\left\|x-f\left(v^{2}\right)\right\|<\varepsilon .
$$

Since the rotation number of the function

$$
\mathbb{T} \ni \xi \rightarrow f\left(\xi^{2}\right) \in \mathbb{C}
$$

is two, we can find a continuous function $g: \mathbb{T} \rightarrow \mathbb{C}$ such that

$$
g^{2}(\xi)=f\left(\xi^{2}\right)
$$

for all $\xi \in \mathbb{T}$. Put $y=g(v)$. Then y is a normal element and $y^{2}=g^{2}(v)=f\left(v^{2}\right)$, which completes the proof.

Let a and b be two elements of a C^{*}-algebra and $\varepsilon>0$. We write $a \stackrel{\varepsilon}{\approx} b$, if $\|a-b\|<\varepsilon$.
Lemma 3.3. Let A be a unital C^{*}-algebra and $x \in A$ be a normal element. Suppose that there exist $\zeta \in \operatorname{Sp}(x)$ and closed subsets $G_{0}, G_{1} \subset \operatorname{Sp}(x)$ such that $\operatorname{Sp}(x)=$ $G_{0} \cup G_{1}$ and $G_{0} \cap G_{1}=\{\zeta\}$. Then, for any $\varepsilon>0$, there exist normal elements $x_{0}, x_{1} \in A$ and a unitary $u \in M_{2}(A)$ such that $\operatorname{Sp}\left(x_{i}\right)=G_{i}$ and

$$
\left\|u\left[\begin{array}{ll}
x & \\
& \zeta
\end{array}\right] u^{*}-\left[\begin{array}{ll}
x_{0} & \\
& x_{1}
\end{array}\right]\right\|<\varepsilon .
$$

Proof. We can identify $C(\operatorname{Sp}(x))$ with the abelian C^{*}-subalgebra of A which is generated by x and $1 \in A$. Put

$$
O=\{\xi \in \mathbb{C}:|\xi-\zeta|<\varepsilon / 2\} .
$$

Since $G_{0} \backslash O$ and $G_{1} \backslash O$ are disjoint, there exists a unitary $u \in M_{2}(C(\operatorname{Sp}(x))) \cong$ $C\left(\operatorname{Sp}(x), M_{2}\right)$ such that

$$
u(\xi)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { for } \xi \in G_{0} \backslash O \quad \text { and } \quad u(\xi)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { for } \xi \in G_{1} \backslash O
$$

Define $x_{i} \in C(\operatorname{Sp}(x))$ by

$$
x_{i}(\xi)= \begin{cases}\xi & \xi \in G_{i} \\ \zeta & \xi \in G_{1-i}\end{cases}
$$

If $\xi \notin O$, then we can check

$$
u(\xi)\left[\begin{array}{ll}
\xi & 0 \\
0 & \zeta
\end{array}\right] u(\xi)^{*}=\left[\begin{array}{cc}
x_{0}(\xi) & 0 \\
0 & x_{1}(\xi)
\end{array}\right]
$$

If $\xi \in G_{0} \cap O$, then

$$
u(\xi)\left[\begin{array}{ll}
\xi & 0 \\
0 & \zeta
\end{array}\right] u(\xi)^{*} \stackrel{\varepsilon / 2}{\approx} u(\xi)\left[\begin{array}{ll}
\zeta & 0 \\
0 & \zeta
\end{array}\right] u(\xi)^{*}=\left[\begin{array}{cc}
\zeta & 0 \\
0 & \zeta
\end{array}\right] \stackrel{\varepsilon / 2}{\approx}\left[\begin{array}{cc}
\xi & 0 \\
0 & \zeta
\end{array}\right]=\left[\begin{array}{cc}
x_{0}(\xi) & 0 \\
0 & x_{1}(\xi)
\end{array}\right]
$$

When $\xi \in G_{1} \cap O$, we can obtain the same estimate.
We put

$$
H_{+}=\{a+b \sqrt{-1} \in \mathbb{C}: b \geq 0\}
$$

and

$$
H_{-}=\{a+b \sqrt{-1} \in \mathbb{C}: b \leq 0\}
$$

We identify the real line \mathbb{R} with $H_{+} \cap H_{-}$.
Lemma 3.4. Let A be a unital C^{*}-algebra and $x \in A$ be a normal element. Suppose that there exists a homeomorphism $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f(\mathbb{R}) \cap \operatorname{Sp}(x)=f([-1,1])$. Then, for any $\varepsilon>0$, there exist normal elements $x_{0}, x_{1}, a \in A$ and a unitary $u \in M_{2}(A)$ such that

$$
\operatorname{Sp}\left(x_{0}\right)=f\left(H_{+}\right) \cap \operatorname{Sp}(x), \quad \operatorname{Sp}\left(x_{1}\right)=f\left(H_{-}\right) \cap \operatorname{Sp}(x), \quad \operatorname{Sp}(a)=f([-1,1])
$$

and

$$
\left\|u\left[\begin{array}{ll}
x & \\
& a
\end{array}\right] u^{*}-\left[\begin{array}{ll}
x_{0} & \\
& x_{1}
\end{array}\right]\right\|<\varepsilon .
$$

Proof. We identify $C(\operatorname{Sp}(x))$ with the abelian C^{*}-subalgebra of A which is generated by x and $1 \in A$. We first deal with the case that $f: \mathbb{C} \rightarrow \mathbb{C}$ is the identity map. Let $h_{0}: H_{+} \rightarrow[-1,1]$ and $h_{1}: H_{-} \rightarrow[-1,1]$ be continuous functions such that $h_{i}(\xi)=\xi$ for $\xi \in[-1,1]$. Define $a, x_{0}, x_{1} \in C(\operatorname{Sp}(x))$ by

$$
\begin{aligned}
& a(\xi)= \begin{cases}h_{0}(\xi) & \xi \in H_{+} \\
h_{1}(\xi) & \xi \in H_{-}\end{cases} \\
& x_{0}(\xi)= \begin{cases}\xi & \xi \in H_{+} \\
h_{1}(\xi) & \xi \in H_{-}\end{cases}
\end{aligned}
$$

and

$$
x_{1}(\xi)= \begin{cases}h_{0}(\xi) & \xi \in H_{+} \\ \xi & \xi \in H_{-}\end{cases}
$$

Since $\operatorname{Sp}(x) \cap \mathbb{R}=[-1,1]$, there exists $\delta>0$ such that if $\xi=s+t \sqrt{-1} \in \operatorname{Sp}(x)$ with $|t|<\delta$, then $\left|h_{i}(\xi)-\xi\right|<\varepsilon / 2$ for each $i=0,1$. We can find a unitary $u \in M_{2}(C(\operatorname{Sp}(x))) \cong C\left(\operatorname{Sp}(x), M_{2}\right)$ such that

$$
u(\xi)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

for $\xi=s+t \sqrt{-1} \in \operatorname{Sp}(x)$ with $t \geq \delta$ and

$$
u(\xi)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

for $\xi=s+t \sqrt{-1} \in \operatorname{Sp}(x)$ with $t \leq-\delta$. If $|t| \geq \delta$, then for $\xi=s+t \sqrt{-1} \in \operatorname{Sp}(x)$ we can check

$$
u(\xi)\left[\begin{array}{cc}
\xi & 0 \\
0 & a(\xi)
\end{array}\right] u(\xi)^{*}=\left[\begin{array}{cc}
x_{0}(\xi) & 0 \\
0 & x_{1}(\xi)
\end{array}\right]
$$

If $|t|<\delta$, then for $\xi=s+t \sqrt{-1} \in \operatorname{Sp}(x)$ we can also check
$u(\xi)\left[\begin{array}{cc}\xi & 0 \\ 0 & a(\xi)\end{array}\right] u(\xi)^{*} \stackrel{\varepsilon / 2}{\approx} u(\xi)\left[\begin{array}{cc}a(\xi) & 0 \\ 0 & a(\xi)\end{array}\right] u(\xi)^{*}=\left[\begin{array}{cc}a(\xi) & 0 \\ 0 & a(\xi)\end{array}\right] \stackrel{\varepsilon / 2}{\approx}\left[\begin{array}{cc}x_{0}(\xi) & 0 \\ 0 & x_{1}(\xi)\end{array}\right]$.
Now let us turn to the general case. Because $K=f^{-1}(\operatorname{Sp}(x))=\operatorname{Sp}\left(f^{-1}(x)\right)$ is compact, there exists $\delta>0$ such that if y_{0} and y_{1} are normal elements in some C^{*} algebra B with $\operatorname{Sp}\left(y_{i}\right) \subset K$ and $\left\|y_{0}-y_{1}\right\|<\delta$, then $\left\|f\left(y_{0}\right)-f\left(y_{1}\right)\right\|<\varepsilon$. Applying the first part of this proof to $f^{-1}(x)$ and δ, we get

$$
\left\|u\left[\begin{array}{cc}
f^{-1}(x) & \\
& a
\end{array}\right] u^{*}-\left[\begin{array}{ll}
x_{0} & \\
& x_{1}
\end{array}\right]\right\|<\delta
$$

By the choice of δ, we obtain

$$
\left\|u\left[\begin{array}{ll}
x & \\
& f(a)
\end{array}\right] u^{*}-\left[\begin{array}{ll}
f\left(x_{0}\right) & \\
& f\left(x_{1}\right)
\end{array}\right]\right\|<\varepsilon,
$$

thereby completing the proof.
We define I_{0} and I_{1} by

$$
I_{0}=\{a+b \sqrt{-1} \in \mathbb{C}: 0 \leq a \leq 1, b=0\}
$$

and

$$
I_{1}=\{a+b \sqrt{-1} \in \mathbb{C}: 0 \leq b \leq 1, a=0\} .
$$

Let G be a compact subset of \mathbb{C}. We say that G is a lattice graph, if there exist finite subsets F_{0} and F_{1} of $\mathbb{Z}+\mathbb{Z} \sqrt{-1}$ such that

$$
G=\bigcup_{i=0,1} \bigcup_{\zeta \in F_{i}} I_{i}+\zeta .
$$

We call each point in $G \cap(\mathbb{Z}+\mathbb{Z} \sqrt{-1})$ a vertex of G and each $I_{i}+\zeta$ contained in G an edge of G. We denote by $|G|$ the number of edges of G.

Proposition 3.5. For any nonempty connected lattice graph G, there exists a natural number $N(G) \in \mathbb{N}$ such that the following holds: Let A be a unital C^{*} algebra and $x \in A$ be a normal element with $\operatorname{Sp}(x)=G$. For any $\varepsilon>0$, there exist a natural number $N \leq N(G)$, normal elements $a_{1}, a_{2}, \ldots, a_{N}, x_{0}, x_{1}, \ldots, x_{N} \in A$, and a unitary $u \in M_{N+1}(A)$ such that the following are satisfied.
(1) $\left\|u \operatorname{diag}\left(x, a_{1}, a_{2}, \ldots, a_{N}\right) u^{*}-\operatorname{diag}\left(x_{0}, x_{1}, \ldots, x_{N}\right)\right\|<\varepsilon$.
(2) $\operatorname{Sp}\left(x_{i}\right)$ is contained in G.
(3) $\operatorname{Sp}\left(x_{i}\right)$ is homeomorphic to the closed interval $[-1,1]$ or the circle.
(4) $\operatorname{Sp}\left(a_{i}\right)$ is contained in G.
(5) $\operatorname{Sp}\left(a_{i}\right)$ is a single point or homeomorphic to the closed interval $[-1,1]$.

Proof. The proof goes by induction concerning $|G|$. If $|G|=1$, then G is homeomorphic to the closed interval, and so we have nothing to do.

We may assume that the assertion has been proved for all G with $|G|<L$. Let us consider a connected lattice graph G with $|G|=L$. We would like to show that

$$
N(G)=2 \max \left\{N\left(G_{0}\right): G_{0} \text { is a connected lattice graph with } G_{0} \subsetneq G\right\}+1
$$

does the work. Suppose that A is a unital C^{*}-algebra and $x \in A$ is a normal element with $G=\operatorname{Sp}(x)$. Take $\varepsilon>0$.

Suppose that there exists a vertex $\zeta \in G$ such that $G \backslash\{\zeta\}$ is not connected. We can find nonempty connected lattice graphs G_{0} and G_{1} such that $G=G_{0} \cup G_{1}$ and $G_{0} \cap G_{1}=\{\zeta\}$. Applying Lemma 3.3 to G_{0}, G_{1}, ζ and $\varepsilon / 2$, we obtain normal elements $x_{0}, x_{1} \in A$ and a unitary $u \in M_{2}(A)$ such that $\operatorname{Sp}\left(x_{i}\right)=G_{i}$ and

$$
\left\|u\left[\begin{array}{ll}
x & \\
& \zeta
\end{array}\right] u^{*}-\left[\begin{array}{ll}
x_{0} & \\
& x_{1}
\end{array}\right]\right\|<\frac{\varepsilon}{2} .
$$

By the induction hypothesis, there exists $N_{i} \leq N\left(G_{i}\right)$ such that the assertion holds for x_{i} and $\varepsilon / 2$. Hence $N=N_{0}+N_{1}+1 \leq N(G)$ works for x and ε.

Therefore we may assume that $G \backslash\{\zeta\}$ is connected for all vertices ζ in G. Let O be the unbounded connected component of $\mathbb{C} \backslash G$ and ∂O be the boundary of O in \mathbb{C}. Then $\partial O \subset G$ is homeomorphic to the circle. If $G=\partial O$, then we have nothing to do. Let us assume that $G \neq \partial O$. We can find an edge $e \subset G$ such that e is not contained in ∂O and an endpoint ζ_{0} of e belongs to ∂O. Let ζ_{1} be the other endpoint of e. Since $G \backslash\left\{\zeta_{0}\right\}$ is connected, we can find a path in G from ζ_{1} to a vertex $\zeta_{2} \in \partial O$ which is distinct from ζ_{0}. Let P be the union of this path and e. Then $P \subset G$ is homeomorphic to the closed interval $[-1,1]$ and its endpoints are ζ_{0} and ζ_{2}. There exists a homeomorphism $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f(\mathbb{R}) \cap G=P$ and $f([-1,1])=P$. Applying Lemma 3.4 to f and $\varepsilon / 2$, we obtain normal elements $x_{0}, x_{1}, a \in A$ and a unitary $u \in M_{2}(A)$ such that

$$
\operatorname{Sp}\left(x_{0}\right)=f\left(H_{+}\right) \cap \operatorname{Sp}(x), \quad \operatorname{Sp}\left(x_{1}\right)=f\left(H_{-}\right) \cap \operatorname{Sp}(x), \quad \operatorname{Sp}(a)=f([-1,1])
$$

and

$$
\left\|u\left[\begin{array}{ll}
x & \\
& a
\end{array}\right] u^{*}-\left[\begin{array}{ll}
x_{0} & \\
& x_{1}
\end{array}\right]\right\|<\frac{\varepsilon}{2}
$$

Put $G_{i}=\operatorname{Sp}\left(x_{i}\right)$ for $i=0,1$. Note that G_{i} is a connected lattice graph. By the induction hypothesis, there exists a natural number $N_{i} \leq N\left(G_{i}\right)$ such that the assertion holds for x_{i} and $\varepsilon / 2$. Hence $N=N_{0}+N_{1}+1 \leq N(G)$ works for x and ε.

Lemma 3.6. Let A be a unital C^{*}-algebra and $a \in A$ be a normal element. Suppose that $\operatorname{Sp}(a)$ is homeomorphic to the closed interval $[-1,1]$. For any $\varepsilon>0$, there exist complex numbers $\xi_{1}, \xi_{2}, \ldots, \xi_{N}, \eta_{0}, \eta_{1}, \ldots, \eta_{N} \in \operatorname{Sp}(a)$ and a unitary $u \in M_{N+1}(A)$ such that

$$
\left\|u \operatorname{diag}\left(a, \xi_{1}, \xi_{2}, \ldots, \xi_{N}\right) u^{*}-\operatorname{diag}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{N}\right)\right\|<\varepsilon
$$

Proof. By using Lemma 3.3 repeatedly, we can find $\xi_{1}, \xi_{2}, \ldots, \xi_{N} \in \operatorname{Sp}(a)$ and normal elements $x_{0}, x_{1}, \ldots, x_{N} \in A$ and a unitary $u \in M_{N+1}(A)$ such that

$$
\left\|u \operatorname{diag}\left(a, \xi_{1}, \xi_{2}, \ldots, \xi_{N}\right) u^{*}-\operatorname{diag}\left(x_{0}, x_{1}, \ldots, x_{N}\right)\right\|<\frac{\varepsilon}{2}
$$

and $\operatorname{Sp}\left(x_{i}\right)$ has diameter less than $\varepsilon / 2$. Replacing x_{i} with some $\eta_{i} \in \operatorname{Sp}\left(x_{i}\right)$, we get the conclusion.

This lemma together with Proposition 3.5 directly implies the following.
Proposition 3.7. Let A be a unital C^{*}-algebra and $x \in A$ be a normal element. Suppose that $G=\operatorname{Sp}(x)$ is a lattice graph. For any $\varepsilon>0$, there exist $N \in \mathbb{N}$, $\xi_{1}, \xi_{2}, \ldots, \xi_{N} \in \mathbb{C}$, normal elements $x_{0}, x_{1}, \ldots, x_{N} \in A$ and a unitary $u \in M_{N+1}(A)$ such that the following are satisfied.
(1) $\left\|u \operatorname{diag}\left(x, \xi_{1}, \xi_{2}, \ldots, \xi_{N}\right) u^{*}-\operatorname{diag}\left(x_{0}, x_{1}, \ldots, x_{N}\right)\right\|<\varepsilon$.
(2) $\operatorname{Sp}\left(x_{i}\right)$ is contained in G.
(3) $\operatorname{Sp}\left(x_{i}\right)$ is a single point or homeomorphic to the closed interval $[-1,1]$ or the circle.
(4) ξ_{i} is contained in G.

Combining this with Corollary 3.2, we get the following.
Lemma 3.8. Let A be a unital simple purely infinite C^{*}-algebra. Suppose that $K_{1}(A)$ is 2-divisible. If $x \in A$ is a normal element and $\operatorname{Sp}\left(\varepsilon^{-1} x\right)$ is a connected lattice graph for some $\varepsilon>0$, then there exists a normal element $y \in A$ such that

$$
\left\|x-y^{2}\right\|<2 \varepsilon
$$

Proof. Put $G=\operatorname{Sp}\left(\varepsilon^{-1} x\right)$ and

$$
F=\operatorname{Sp}(x) \cap(\varepsilon \mathbb{Z}+\varepsilon \mathbb{Z} \sqrt{-1}) .
$$

Thus, $\varepsilon^{-1} F$ is the set of vertices of the lattice graph G. Clearly F is an $\varepsilon / 2$-dense finite subset of $\operatorname{Sp}(x)$. As before, we put

$$
I_{0}=\{a+b \sqrt{-1} \in \mathbb{C}: 0 \leq a \leq 1, b=0\}
$$

and

$$
I_{1}=\{a+b \sqrt{-1} \in \mathbb{C}: 0 \leq b \leq 1, a=0\}
$$

We define a continuous function $f: \operatorname{Sp}(x) \rightarrow \operatorname{Sp}(x)$ as follows: If $\xi=a+b \sqrt{-1} \in$ $\mathrm{Sp}(x)$ belongs to $\varepsilon I_{0}+\zeta$ with $\zeta=t+b \sqrt{-1} \in F$, then we set

$$
f(\xi)= \begin{cases}\zeta & t \leq a \leq t+\frac{\varepsilon}{3} \\ \zeta+3\left(a-t-\frac{\varepsilon}{3}\right) & t+\frac{\varepsilon}{3} \leq a \leq t+\frac{2 \varepsilon}{3} \\ \zeta+\varepsilon & t+\frac{2 \varepsilon}{3} \leq a \leq t+\varepsilon\end{cases}
$$

If $\xi=a+b \sqrt{-1} \in \operatorname{Sp}(x)$ belongs to $\varepsilon I_{1}+\zeta$ with $\zeta=a+t \sqrt{-1} \in F$, then we set

$$
f(\xi)= \begin{cases}\zeta & t \leq b \leq t+\frac{\varepsilon}{3} \\ \zeta+3\left(b-t-\frac{\varepsilon}{3}\right) \sqrt{-1} & t+\frac{\varepsilon}{3} \leq b \leq t+\frac{2 \varepsilon}{3} \\ \zeta+\varepsilon \sqrt{-1} & t+\frac{2 \varepsilon}{3} \leq b \leq t+\varepsilon\end{cases}
$$

Define $z=f(x)$. Evidently we have $\|x-z\| \leq \varepsilon / 3$ and $\operatorname{Sp}(z)=\operatorname{Sp}(x)=\varepsilon G$. For each $\eta \in F$, let $g_{\eta}: \mathbb{C} \rightarrow[0,1]$ be a continuous function such that $g_{\eta}(\eta)=1$ and $g_{\eta}(\xi)=0$ if $|\xi-\eta| \geq \varepsilon / 3$. Since A has real rank zero, there exists a nonzero projection $e_{\eta} \in g_{\eta}(x) A g_{\eta}(x)$. It is not hard to see that $e_{\eta} z=z e_{\eta}=\eta e_{\eta}$. Note that $\left\{e_{\eta}\right\}_{\eta \in F}$ is a family of mutually orthogonal projections. Put $e=1-\sum_{\eta \in F} e_{\eta}$, $B=e A e$ and $z_{0}=z e$. Then we have

$$
z=z_{0}+\sum_{\eta \in F} \eta e_{\eta},
$$

and so the spectrum of z_{0} in B is equal to $\varepsilon G=\operatorname{Sp}(z)$.

By applying Proposition 3.7 to $\varepsilon^{-1} z_{0} \in B$ and 1 , we obtain complex numbers $\xi_{1}, \xi_{2}, \ldots, \xi_{N} \in \mathbb{C}$, normal elements $x_{0}, x_{1}, \ldots, x_{N} \in B$ and a unitary $u \in M_{N+1}(B)$ such that

- $\left\|u \operatorname{diag}\left(\varepsilon^{-1} z_{0}, \xi_{1}, \xi_{2}, \ldots, \xi_{N}\right) u^{*}-\operatorname{diag}\left(x_{0}, x_{1}, \ldots, x_{N}\right)\right\|<1$.
- $\operatorname{Sp}\left(x_{i}\right)$ is a single point or homeomorphic to the closed interval $[-1,1]$ or the circle.
- ξ_{i} is contained in G.

By replacing ξ_{i} and x_{i} with $\varepsilon^{-1} \xi_{i}$ and $\varepsilon^{-1} x_{i}$, we get

- $\left\|u \operatorname{diag}\left(z_{0}, \xi_{1}, \xi_{2}, \ldots, \xi_{N}\right) u^{*}-\operatorname{diag}\left(x_{0}, x_{1}, \ldots, x_{N}\right)\right\|<\varepsilon$.
- $\operatorname{Sp}\left(x_{i}\right)$ is a single point or homeomorphic to the closed interval $[-1,1]$ or the circle.
- ξ_{i} is contained in $\operatorname{Sp}(x)$.

Because F is $\varepsilon / 2$-dense in $\operatorname{Sp}(x)$, for each $i=1,2, \ldots, N$ we can find $\eta_{i} \in F$ such that $\left|\xi_{i}-\eta_{i}\right| \leq \varepsilon / 2$. It follows that

$$
\left\|u \operatorname{diag}\left(z_{0}, \eta_{1}, \eta_{2}, \ldots, \eta_{N}\right) u^{*}-\operatorname{diag}\left(x_{0}, x_{1}, \ldots, x_{N}\right)\right\|<\frac{3 \varepsilon}{2}
$$

Since A is purely infinite, there exists a family of mutually orthogonal projections q_{i} such that $q_{i} \leq e_{\eta_{i}}$ and $\left[q_{i}\right]=[e]$ in $K_{0}(A)$. Put $q=\sum q_{i}$. Then we have

$$
(e+q) z=z_{0}+\sum_{i=1}^{N} \eta_{i} q_{i}
$$

and so there exists a normal element $w \in(e+q) A(e+q)$ which is a unitary conjugation of $\operatorname{diag}\left(x_{0}, x_{1}, \ldots, x_{N}\right)$ and

$$
\|(e+q) z-w\|<\frac{3 \varepsilon}{2}
$$

Thanks to Corollary 3.2, we can find a normal element $y_{0} \in(e+q) A(e+q)$ such that

$$
\left\|w-y_{0}^{2}\right\|<\frac{\varepsilon}{6}
$$

Since $(1-e-q) z$ has finite spectrum, it has a square root y_{1}. Put $y=y_{0}+y_{1}$. Then we have

$$
\left\|z-y^{2}\right\|=\left\|(e+q) z-y_{0}^{2}\right\|<\left\|w-y_{0}^{2}\right\|+\frac{3 \varepsilon}{2}<\frac{3 \varepsilon}{2}+\frac{\varepsilon}{6} .
$$

This estimate together with $\|x-z\| \leq \varepsilon / 3$ implies

$$
\left\|x-y^{2}\right\|<2 \varepsilon
$$

Now we are ready to prove the main result of this section.
Theorem 3.9. For a unital simple purely infinite C^{*}-algebra A, the following are equivalent.
(1) A is approximately square root closed.
(2) $K_{1}(A)$ is 2-divisible.

Proof. (1) $\Rightarrow(2)$. Since $K_{1}(A) \cong U(A) / U_{0}(A)$, it suffices to show that every unitary in A is divided by 2 in $K_{1}(A)$. Let u be a unitary in A. Then there exists a unitary $v \in A$ such that $\left\|u-v^{2}\right\|<1$. Therefore $[u]=2[v]$ in $K_{1}(A)$.
$(2) \Rightarrow(1)$. Take a normal element $x \in A$ and a small real number $\varepsilon>0$. By [9, Lemma 3.2], there exists a normal element $z \in A$ such that $\|x-z\|<\varepsilon$ and $\operatorname{Sp}(z)$ is contained in

$$
\{a+b \sqrt{-1} \in \mathbb{C}: a \in \varepsilon \mathbb{Z} \text { or } b \in \varepsilon \mathbb{Z}\}
$$

By perturbing z a little bit more, we can find a normal element $w \in A$ such that $\|z-w\|<\varepsilon$ and $G=\varepsilon^{-1} \operatorname{Sp}(w)$ is a lattice graph. Let $G_{1}, G_{2}, \ldots, G_{n}$ be connected components of G. Each G_{i} is a connected lattice graph. Let h_{i} be the characteristic function on εG_{i} and put $w_{i}=h_{i}(w)$. Then w is the direct sum of $w_{1}, w_{2}, \ldots, w_{n}$ and $\operatorname{Sp}\left(w_{i}\right)=\varepsilon G_{i}$. By using the lemma above, we get mutually orthogonal normal elements $y_{1}, y_{2}, \ldots, y_{n}$ such that $\left\|w_{i}-y_{i}^{2}\right\|<2 \varepsilon$. Put $y=y_{1}+y_{2}+\cdots+y_{n}$. We can easily see that $\left\|x-y^{2}\right\|<4 \varepsilon$.

References

[1] B. Blackadar, K-theory for operator algebras, Mathematical Sciences Research Institute Publications Vol. 5, 2nd ed., Cambridge Univ. Press, Cambridge, 1998.
[2] _ , Symmetries of the CAR algebra, Ann. Math. 131 (1990), 589-623.
[3] L. G. Brown and G. K. Pedersen, C^{*}-algebra of real rank zero, J. Funct. Anal. 99 (1991), 131-149.
[4] A. Chigogidze, A. Karasev, K. Kawamura, and V. Valov, On C^{*}-algebras with the approximate n-th root property, Bull. Austral. Math. Soc. 72 (2005), 197-212.
[5] R. S. Countryman, Jr., On the characterization of compact Hausdorff X for which $C(X)$ is algebraically closed, Pacific J. Math. 20 (1967), 433-448.
[6] K. R. Davidson, C^{*}-algebras by example, Fields Institute Monographs Vol. 6, Amer. Math. Soc., Providence, RI, 1996.
[7] D. Deckard and C. Pearcy, On matrices over the ring of continuous complex valued functions on a Stonian space, Proc. Amer. Math. Soc. 14 (1963), 322-328.
[8] \qquad , On algebraic closure in function algebras, Proc. Amer. Math. Soc. 15 (1964), 259-263.
[9] P. Friis and M. Rørdam, Almost commuting self-adjoint matrices - a short proof of Huaxin Lin's theorem, J. Reine Angew. Math. 479 (1996), 121-131.
[10] K. R. Goodearl, Notes on a class of simple C^{*}-algebras with real rank zero, Publ. Mat. 36 (1992), 637-654.
[11] O. Hatori and T. Miura, On a characterization of the maximal ideal spaces of commutative C^{*}-algebras in which every element is the square of another, Proc. Amer. Math. Soc. 128 (2000), 1185-1189.
[12] H. Lin, Exponential rank of C^{*}-algebras with real rank zero and Brown-Pedersen conjectures, J. Funct. Anal. 114 (1993), 1-11.
[13] , Approximation by normal elements with finite spectra in simple AF-algebra, J. Operator Theory 31 (1994), 33-98.
[14] _, Approximation by normal elements with finite spectra in C^{*}-algebras of real rank zero, Pacific J. Math. 173 (1996), 443-489.
[15] _ An introduction to the classification of amenable C^{*}-algebras, World Scientific, Singapore, 2001.
[16] T. A. Loring, Lifting solutions to perturbing problems in C^{*}-algebras, Fields Institute Monographs Vol. 8, Amer. Math. Soc., Providence, RI, 1997.
[17] T. Miura, On commutative C^{*}-algebras in which every element is almost the square of another, Contemp. Math. 232 (1999), 239-242.
[18] T. Miura and K. Niijima, On a characterization of the maximal ideal spaces of algebraically closed commutative C^{*}-algebras, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2869-2876.
[19] M. Rieffel, Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. 46 (1983), 301-333.
[20] S. Zhang, Certain C*-algebras with real rank zero and their corona and multiplier algebra, I, Pacific J. Math. 155 (1992), 169-197.

Graduate School of Science and Technology, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

E-mail address: matui@math.s.chiba-u.ac.jp
Department of Mathematics and Informatics, Faculty of Science, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

E-mail address: nagisa@math.s.chiba-u.ac.jp
Graduate School of Science and Technology, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

E-mail address: myamamoto@g.math.s.chiba-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 46L80; Secondary 46L05.
 Key words and phrases. C^{*}-algebra, K-theory, square root, AI-algebra, Goodearl algebra, purely infinite simple unital C^{*}-algebra.

