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Abstract

Let X be the Cantor set and ϕ be a minimal homeomorphism on X×T. We show that the
crossed product C∗-algebra C∗(X×T, ϕ) is a simple AT-algebra provided that the associated
cocycle takes its values in rotations on T. Given two minimal systems (X × T, ϕ) and
(Y × T, ψ) such that ϕ and ψ arise from cocycles with values in isometric homeomorphisms
on T, we show that two systems are approximately K-conjugate when they have the same
K-theoretical information.

1 Introduction

It has been known that the study of minimal topological dynamical systems is related to the
study of the associated simple crossed product C∗-algebras. Indeed, J. Tomiyama [To] proved
that, if (X,α) and (Y, β) are two topological transitive dynamical systems, then they are flip con-
jugate if and only if there is an isomorphism between the crossed product C∗-algebras which maps
C(X) onto C(Y ). With the development of the classification of simple amenable C∗-algebras, it
becomes possible to have some K-theoretical description of some interesting equivalence relation
among minimal dynamical systems. In fact, Giordano, Putnam and Skau in [GPS], in the case
that X and Y are Cantor sets, among other things, showed that strong orbit equivalence can
be determined by K-theory of the dynamical systems. In [LM1], we showed that, for Cantor
minimal systems, the strong orbit equivalence is equivalent to the approximate K-conjugate.
Both results used the fact that the crossed product C∗-algebras arising from Cantor minimal
systems are simple AT-algebras with real rank zero. It seems that the notion of approximate
K-conjugacy is not only closely related to the above mentioned result of Tomiyama but also
closely related to that of Giordano, Putnam and Skau. Moreover, it seems possible that, for more
general spaces, at least in connection with C∗-algebra theory, versions of approximate conju-
gacy may be more interesting relations than that of conjugacy or even strong orbit equivalence.
It seems also possible that, for example, approximate K-conjugacy may be determined by the
K-theoretical data of the dynamical systems in much more general situation. As a preliminary
attempt, in [LM2], we studied the minimal dynamical systems (Y, h), where Y = X × T. Since
the Cantor set is totally disconnected and T is connected, h can be written as h = σ ×ϕ, where
σ is a minimal homeomorphism on X and ϕx is a homeomorphism on T for each x ∈ X. We
showed in [LM2] that K-theoretical data of the minimal systems determines the approximate
K-conjugacy in the case that h is rigid and ϕx is a rotation for each x ∈ X.

In this paper, we first consider the case that h = α × Rξ (ξ ∈ C(X, T)) which may not be
rigid. We show that the crossed products have tracial rank no more than one. Consequently,
they are simple AT-algebras. One of problems related to the proof is to answer the following
question: Let u1 and u2 be two unitaries in a unital simple separable C∗-algebra A with tracial
rank no more than one. When are they approximately unitarily equivalent? In the case that A
has tracial rank zero, it is known that u1 and u2 are approximately unitarily equivalent if and
only if [u1] = [u2] in K1(A) and τ ◦ f(u1) = τ ◦ f(u2) for all continuous functions f ∈ C(S1) and
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all tracial states τ ∈ A. Let CU(A) be the closure of the commutator subgroup of U(A). If u1

and u2 are approximately unitarily equivalent, then u1 = u2 in U(A)/CU(A). In the case that
TR(A) = 0, U0(A)/CU(A) = {0}. However, when TR(A) = 1, this is no longer the case. We
prove that in this case, u1 and u2 are approximately unitarily equivalent if and only if [u1] = [u2]
in K1(A), τ ◦ f(u1) = τ ◦ f(u2) for all continuous functions f ∈ C(S1) and all tracial states
τ ∈ A, and u1 = u2 in U(A)/CU(A).

The rest of this paper studies the problem when two minimal systems (X × T, α × ϕ) and
(Y × T, β × ψ) are approximately K-conjugate. Roughly speaking, these two systems are ap-
proximately K-conjugate, if there are two sequences of homeomorphisms σn : X × T → Y × T
and γn : Y × T → X × T such that

lim
n→∞

∥f ◦ σn ◦ α ◦ σ−1
n − f ◦ β∥ = 0 and lim

n→∞
∥g ◦ γn ◦ β ◦ γ−1

n − g ◦ α∥ = 0

for all f ∈ C(Y × T) and g ∈ C(X × T), and {σn}n and {γn}n give consistent information
on K-theory. We will give a K-theoretical description of approximate K-conjugacy in the case
that ϕx and ψy are isometries on T. We will apply some results and methods in the theory of
classification of simple amenable C∗-algebras.

It was shown in [LM2] that (X × T, α × ϕ) is rigid if and only if the corresponding crossed
product has real rank zero. As an application of a result of N. C. Phillips, we present a proof
that the crossed product in this case actually has tracial rank zero, whenever ϕx is an isometry
on T for every x ∈ X. Thus, simple crossed products coming from these minimal rigid systems
are covered by the classification theorem of [L1] (see also [L2]). This paves the way to have a
K-theoretical description of approximate K-conjugacy for those minimal dynamical systems.
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mer 2004 and the support from NSF. The second named author would like to acknowledge the
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2 Preliminaries

Definition 2.1. Let A be a unital C∗-algebra. Denote by U(A) the unitary group of A. The
closure of the commutator group in U(A) will be denoted by CU(A).

Definition 2.2. Let A and B be unital C∗-algebras and let h : A → B be a unital homomor-
phism. We will denote by h♯ : U(A)/CU(A) → U(B)/CU(B) the homomorphism induced by
h.

Definition 2.3. Let A be a stably finite C∗-algebra. Denote by T (A) the tracial state space.
We will denote by Aff(T (A)) the space of all (real) affine continuous functions on T (A).

We will denote by h♮ : Aff(T (A)) → Aff(T (B)) the affine homomorphism induced by h.

Definition 2.4. Let Y be a compact metric space and let u ∈ B = Ml(C(Y )) be a unitary. We
define

DB(u) = min{∥a∥ : a ∈ Bs.a. such that det(eia · u) = 1}.

If B = ⊕m
i=1Mr(i)(C(Y )) and u ∈ U(B), we define

DB(u) = max{DMr(i)(C(Y ))(u) : 1 ≤ i ≤ m}.

Let B as above. If u ∈ CU(B), then it is clear that DB(u) = 0.
The following notation is taken from [EG].
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Definition 2.5. Let X and Y be two compact metric spaces and let ϕ : C(X) → Mr(C(Y ))
be a homomorphism. For each y ∈ Y, define ϕy(f) : C(X) → Mr by ϕy(f) = ϕ(f)(y) for
f ∈ C(X). There are rank one projections e1, e2, . . . , el and x1, x2, . . . , xl ∈ X (l ≤ r) such that
ϕy(f) =

∑l
i=1 f(xi)ei. Note that xi may be repeated. Put SPϕy = {x1, x2, . . . , xl}. Again, we

count multiplicity of each point in the spectrum.
For any η > 0 and δ > 0, a unital homomorphism ϕ : C(X) → Mr(C(Y )) is said to have

the property sdp(η, δ) if for any η-ball

O(x, η) := {x′ ∈ X : dist(x′, x) < η} ⊂ X

and any point y ∈ Y,
#(SPϕy ∩ O(x, η)) > δ · #(SPϕy),

counting multiplicity.
If B = ⊕m

i=1Mr(i)(C([0, 1])), let πi : B → Mr(i)(C([0, 1])), i = 1, 2, ...,m. We say a homomor-
phism ϕ : C(X) → B has the property sdp(η, δ), if πi ◦ ϕ has the property sdp(η, δ) for each
i = 1, 2, . . . , m.

Definition 2.6. Let A and B be two C∗-algebras. Let G ⊂ A be a subset of A and let δ > 0.
A map ϕ : A → B is said to be G-δ-multiplicative if

∥ϕ(ab) − ϕ(a)ϕ(b)∥ < δ

for all a, b ∈ G.

Definition 2.7. Let A be a unital C∗-algebra and let u ∈ U0(A). Suppose that ut : [0, 1] →
U0(A) is a continuous path of unitaries with u0 = u and u1 = 1. Then

L({ut}) = sup{
m−1∑

i=0

∥uti+1 − uti∥ : 0 = t0 < t1 < · · · < tm = 1}.

Define cel(u) = inf{L({ut}) : ut ∈ C([0, 1], U0(A)), u0 = u, u1 = 1}.

Throughout this paper, X and Y will be the Cantor set. For α ∈ Homeo(X) we denote the
set of α-invariant probability measures on X by Mα.

Let α : X → X be a homeomorphism and let ϕ : X → Homeo(T) be a continuous map. By
α×ϕ we mean the homeomorphism on X ×T defined by (x, t) 7→ (α(x), ϕx(t)). It is easily seen
that every homeomorphism on X × T is of this form (see [LM2, Lemma 2.1]). The continuous
map ϕ is called a cocycle. Moreover, if α×ϕ is minimal, then α is also minimal, that is, (X, α)
is a Cantor minimal system. Define a continuous map o(ϕ) : X → Z2 by

o(ϕ)(x) =

{
0 ϕx is orientation preserving
1 otherwise.

We say α × ϕ is orientation preserving when o(ϕ) vanishes in the Z2-values cohomology group

C(X, Z2)/{f − f ◦ α−1 : f ∈ C(X, Z2)}.

Note that this group is canonically identified with K0(X,α) ⊗ Z2.
The projection from X ×T to its first coordinate gives a factor map from (X ×T, α×ϕ) to

(X,α). We say that α × ϕ is rigid when this factor map induces an isomorphism between the
spaces of invariant probability measures (see Definition 3.1 and Corollary 3.11 of [LM2]).
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We denote the set of isometric homeomorphisms on T by Isom(T). The group Isom(T)
consists of the reflection and rotations. For t ∈ T we write the translation s 7→ s+ t on T by Rt.
When ξ : X → T is a continuous map, X ∋ x 7→ Rξ(x) is a cocycle. We denote this by Rξ.

Let α × ϕ be a minimal homeomorphism on X × T and let A = C∗(X × T, α × ϕ). Then A
is a unital simple C∗-algebra. We will use jα : C(X ×T) → A for the embedding whenever it is
convenient.

Let u ∈ A be the implementing unitary. For x ∈ X, let Ax be the C∗-subalgebra generated
by C(X × T) and uC0((X \ {x}) × T). By [LM2, Proposition 3.3], Ax is known to be a unital
simple AT algebra and the tracial state space T (Ax) coincides with T (A). Besides, Ax has real
rank zero if and only if α×ϕ is rigid. We also remark that Ax ∩C∗(X,α) is a unital simple AF
algebra (see [Pu]).

3 Approximate unitary equivalence of unitaries

The following is quoted from [EGL].

Lemma 3.1 ([EGL, Theorem 2.11]). Let F ⊂ C(T) be a finite subset and ε > 0. There exists
η1 > 0 with the property described as follows.

For any δ1 > 0, there exist a positive integer K and a number η2 > 0 such that for any
δ2 > 0, there exist a finite subset H ⊂ C(T)s.a. and a positive integer N satisfying the following
condition.

if ϕ,ψ : C(T) → B, where B = ⊕m
j=1Mr(j)(C([0, 1])) are two unital homomorphisms such

that

(1) ϕ has the property sdp(η1/32, δ1) and sdp(η2/32, δ2);

(2) |τ ◦ ϕ(f) − τ ◦ ψ(f)| < δ2/4 for all f ∈ H and all τ ∈ T (B);

(3) r(j) ≥ N, j = 1, 2, . . . ,m;

(4) D(ϕ(z)ψ(z)∗) ≤ 1/8K,

then there exists a unitary w ∈ B such that

∥ϕ(f) − u∗ψ(f)u∥ < ε

for all f ∈ F.

Remark 3.2. Note that K1(B) = {0}. So the condition (5) in Theorem 2.11 of [EGL] that
ϕ∗1 = ψ∗1 is not needed. In Theorem 2.11 of [EGL], in this case, B = Mr(C([0, 1])) is a single
summand and (3) should be replaced by r ≥ N. It is obvious that it works for finitely many
summands as long as r(j) ≥ N for all j = 1, 2, . . . ,m.

We actually use a very special case of Theorem 2.11 of [EGL]. A shorter proof could be
given here. In fact a version of this could be found in [NT]. We quote Theorem 2.11 of [EGL]
for the convenience.

Let A be a unital C∗-algebra and let ϕ : C(T) → A be a unital completely positive map.
For a subset F ⊂ C(T) \ {0} and a map T = N × K : F → N × R+, we say that ϕ is T -F-full,
if the following holds: for every a ∈ F there exist x1, x2, . . . , xN(a) ∈ A such that

N(a)∑

i=1

x∗
i ϕ(a)xi = 1

and ∥xi∥ ≤ K(a) for all i = 1, 2, . . . , N(a). We say a unitary u ∈ A is T -F-full, if the homomor-
phism C(T) ∋ f 7→ f(u) ∈ A is T -F-full.
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Lemma 3.3. Let A be a unital simple C∗-algebra and let u ∈ A be a unitary. Let η > 0. Suppose
that {ζ1, ζ2, ..., ζm} is an η/128-dense subset of T, and that gi ∈ C(T) satisfies 0 ≤ gi ≤ 1,
gi(t) = 1 if t ∈ O(ζi, η/512) and gi(t) = 0 if t ∈ T \ O(ζi, η/256). Suppose also that there are
xi,j ∈ A such that

∥
m(i)∑

j=1

x∗
i,jgi(u)xi,j − 1A∥ < 1/4, i = 1, 2, . . . , m.

Then, for any ε > 0, there are a finite subset G ⊂ A and γ > 0 satisfying the following:
if L : A → B = ⊕K

k=1Mr(k)(C([0, 1])) is a unital G-γ-multiplicative completely positive linear
map then there exists ϕ : C(T) → B such that

∥ϕ(z) − L(u)∥ < ε

and ϕ has sdp(η/64, δ) property, where δ = 1/ max{m(i) : 1 ≤ i ≤ m}.

Proof. Since C(T) is semiprojective, for the finite subset F = {gi : i = 1, 2, ...,m}∪{z} and ε > 0,
there exist a finite subset G1 ⊂ C(T) and γ > 0 such that, for any unital G1-γ-multiplicative
completely positive linear map L : C(T) → B, (where B is any C∗-algebra ) there exists a unital
homomorphism ϕ : C(T) → B for which

∥ϕ(f) − L(f)∥ < ε/2

for all f ∈ F . Therefore, with a sufficiently large finite subset G containing xi,j ’s, gi(u)’s and G1

and sufficiently small γ, one has

∥
m(i)∑

j=1

L(xi,j)∗ϕ(gi)L(xi,j) − 1B∥ < 1/2.

For each x ∈ T, there is ζi such that O(x, η/64) ⊃ O(ζi, η/128). It is then easy to check that ϕ
has the property sdp(η/32, δ), where δ = 1/ max{m(i) : i = 1, 2, . . . , m}.

Lemma 3.4. Let A be a unital stably finite simple C∗-algebra and let F1,F2 ⊂ A+ be finite
subsets. Let 1/2 > γ1 > 0. Suppose that there exists a map π : F1 → F2 such that

|τ(a) − τ(π(a))| < γ1/8

for all τ ∈ T (A). Then there exist δ > 0 and a finite subset G ⊂ A satisfying the following:
if L : A → B, where B is a unital C∗-algebra with stable rank one, is a unital G-δ-

multiplicative completely positive linear map, then

|τ ′(L(a)) − τ ′(L(π(a)))| < γ1

for each a ∈ F1 and all τ ′ ∈ T (B).

Proof. It follows from [CP] that, for each a ∈ F1, there are x1(a), x2(a), . . . , xn(a)(a) ∈ A such
that

∥
n(a)∑

k=1

(xk(a))∗xk(a) − a∥ < γ1/4 and ∥
n(a)∑

k=1

xk(a)(xk(a))∗ − π(a)∥ < γ1/4.

Thus, with sufficiently large G and sufficiently small δ > 0, one has

∥
n(a)∑

k=1

L(xk(a))∗L(xk(a)) − L(a)∥ < γ1/2
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and

∥
n(a)∑

k=1

L(xk(a))L(xk(a))∗ − L(π(a))∥ < γ1/2.

It follows that
|τ(L(a)) − τ(L(π(a))| < γ1

for each a ∈ F1 and all τ ∈ T (B).

Lemma 3.5. Let A be a unital simple C∗-algebra and let u, v ∈ A be two unitaries. Suppose
that

dist(ū, v̄) < d in U(A)/CU(A).

Then, there exist δ1 > 0, δ2 > 0 and a finite subset G ⊂ A satisfying the following:
If L : A → B = ⊕n

j=1Mr(j)(C([0, 1])) (for any integer n and r(j) > 0) is a unital G-δ2-
multiplicative completely positive linear map then

D(u∗
1v1) < 2d,

where u1, v1 are any unitaries in B for which

∥u1 − L(u)∥ < δ1 and ∥v1 − L(v)∥ < δ1.

Proof. There are unitaries a1, a2, . . . , am, b1, b2, . . . , bm ∈ A such that

∥u∗v − c∥ < d,

where c =
∏m

j=1 ajbja
∗
jb

∗
j . Choose δ1 = d/4. For sufficiently large G and sufficiently small δ2 > 0,

one has
∥L(u)∗L(v) − L(c)∥ < d + d/4

and there are unitaries a′1, a
′
2, . . . , a

′
m, b′1, b

′
2, . . . , b

′
m ∈ B such that

∥L(c) −
m∏

j=1

a′jb
′
j(a

′
j)

−1(b′j)
−1∥ < d/4.

If ∥u1 − L(u)∥ < δ1 and ∥v1 − L(v)∥ < δ1, then

∥u∗
1v1 − c′∥ < 2d,

where c′ =
∏m

j=1 a′jb
′
j(a

′
j)

−1(b′j)
−1. Clearly in B, D(c′) = 0. It follows that

D(u∗
1v1) < 2d.

Lemma 3.6. For any ε > 0, l ≥ 2π and T : C(T)+ \ {0} → N × R+, there exist a finite subset
G ⊂ C(T)+ \ {0} and an integer L > 0 satisfying the following:

Let A be a unital simple C∗-algebra and let u, v ∈ A be unitaries such that [u] = [v] in
U(A)/U0(A) and cel(u∗v) ≤ l. For any homomorphism ϕ : C(T) → A which is T -G-full, there
is a unitary w ∈ ML+1(A) such that

∥w∗ diag(u, u0, . . . , u0)w − diag(v, u0, . . . , u0)∥ < ε.

where u0 = ϕ(z).
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Proof. Note that Ki(T) = Z, i = 0, 1, and they are generated by 1C(T) and z (the identity map
on T).

Suppose that the lemma fails. Then there would be an ε0 > 0, l0 ≥ 2π and T : C(T)+\{0} →
N × R+ such that the assertion does not hold. Let {On}n∈N be an open base of T and let
gn ∈ C(T)+ be a function satisfying {t : gn(t) > 0} = On. Put Gn = {g1, g2, . . . , gn}. Then
we would have two sequences of unitaries {un}, {vn} in a sequence of unital simple C∗-algebras
An for which [un] = [vn] in U(An)/U0(An) and cel(u∗

nvn) ≤ l0, and a T -Gn-full homomorphism
ϕn : C(T) → An such that

inf{∥w∗ diag(un, ζ0, . . . , ζ0)w − diag(vn, ζ0, . . . , ζ0)∥ : w ∈ Mn(An)} ≥ ε0,

where ζ0 = ϕn(z). Let B = ℓ∞({An}), B0 = c0({An}), U = {un}, V = {vn} ∈ B, Φ0 : C(T) →
B be defined by Φ0(f) = {ϕn(f)} for f ∈ C(T), and π : B → B/B0 be the quotient map. Since

cel(u∗
nvn) ≤ l0,

it is easy to see that

cel(U∗V ) ≤ l0 in B and cel(π(U)∗π(V )) ≤ l0 in B/B0.

This, in particular, implies that [π(U)] = [π(V )]. Since ϕn is T -Gn-full, we can see that π ◦ Φ0

is full. Thus, by Theorem 1.2 in [GL], there exists an integer N > 0 and a unitary W ∈
MN+1(B/B0) such that

∥W ∗ diag(U, π ◦ Φ0(z), . . . , π ◦ Φ0(z))W − diag(V, π ◦ Φ0(z), . . . , π ◦ Φ0(z))∥ < ε0/2.

Note that there exists a sequence of unitaries wn ∈ MN+1(An) such that π({wn}) = W. It follows
that

∥w∗
n diag(un, ϕn(z), . . . , ϕn(z))wn − diag(vn, ϕn(z), . . . , ϕn(z))∥ < ε0/2

for all sufficiently large n. This contradicts the assumption that the lemma fails.

Lemma 3.7. Let A be a unital simple C∗-algebra and let ϕ : C(T) → A be a monomorphism.
Suppose that ϕ is T -F-full, where F is a finite subset of C(T)+\{0} and T = N×K : F → N×R+

is a map. Put T ′(f) = (N(f), 2K(f)) for f ∈ F . Then there exist δ > 0 and a finite subset
G ⊂ A such that if L : A → B (for any unital C∗-algebra ) is a unital G-δ-multiplicative
completely positive linear map and u ∈ B is a unitary satisfying ∥u − L ◦ ϕ(z)∥ < δ, then u is
T ′-F-full.

Proof. By assumption, for each f ∈ F , there are x1(f), x2(f), . . . , xN(f)(f) ∈ A such that

N(f)∑

i=1

(xi(f))∗ϕ(f)xi(f) = 1A

and ∥xi(f)∥ ≤ K(f).
It is clear that, with a sufficiently large G and sufficiently small δ > 0,

∥
N(f)∑

i=1

L(xi(f))∗L ◦ ϕ(f)L(xi(f)) − 1B∥ < 1/4,

provided that L is a unital G-δ-multiplicative completely positive linear map. Then there exists
b(f) ∈ B+ with ∥b(f)∥ < 4/3 such that

N(f)∑

i=1

b(f)L(xi(f))∗L ◦ ϕ(f)L(xi(f))b(f) = 1B.
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Note that ∥L(xi(f))b(f)∥ ≤ 4K(f)/3. By choosing a small δ, we may assume that L ◦ ϕ(f) is
sufficiently close to f(u) for every f ∈ F , and

∥
N(f)∑

i=1

b(f)L(xi(f))∗f(u)L(xi(f))b(f) − 1B∥ < 1/4.

By repeating the same argument as above we can conclude that u is T ′-F-full.

Lemma 3.8. Let A be a unital simple C∗-algebra with TR(A) ≤ 1. Then, for any ε > 0, any
σ > 0, any integers m0, N > 0 and any finite subset F ⊂ A, there exist mutually orthogonal
projections q, p1, p2, . . . , pm (m ≥ m1) with [q] ≤ [p1] and [p1] = [pi], i = 1, 2, . . . ,m, a C∗-
subalgebra C ∼= Mn1(C([0, 1])) ⊕ Mn2(C([0, 1])) ⊕ · · · ⊕ Mnm(C([0, 1])) with 1C = p1 for which
each summand of C has rank at least N, and unital F-ε-multiplicative completely positive linear
maps L1 : A → qAq and L2 : A → C such that

∥x − L1(x) ⊕ diag(L2(x), L2(x), . . . , L2(x))∥ < ε,

where L2 is repeated m times, for all x ∈ F , τ(q) < σ and 2τ(q) > τ(p1) for all τ ∈
T (A). (We identify a subalgebra of (

∑m
i=1 pi)A(

∑m
i=1 pi) with Mm(C), when we use the notation

diag(L2(x), L2(x), . . . , L2(x)).)

Proof. The proof is a minor modification of that of Lemma 5.5 in [L3]. The only difference is
that, in Lemma 5.5 of [L3], one does not have 2τ(q) > τ(p1) (for all τ ∈ T (A)).

Choose m ≥ m1 so that 1/m < σ/2. In the proof of Lemma 5.5 in [L3], choose n = 2m + 1.
Then, the statement of the lemma holds, where L2 is repeated 2m+1 times and τ(q) < σ/2 (for
all τ ∈ T (A)). Then one replaces L1 by L1 ⊕ L2 and L2 by L2 ⊕ L2. Then the present lemma
holds.

Lemma 3.9. Let A be a unital simple C∗-algebra with property (SP) and let u, v ∈ A be two
unitaries with 1 ∈ sp(u), sp(v). Then, for any ε > 0, there is a unitary w ∈ A and a nonzero
projection e ∈ A and two unitaries u1, v1 ∈ (1 − e)A(1 − e) such that

∥(e + u1) − u∥ < ε/2 and ∥(e + v1) − w∗vw∥ < ε/2.

Proof. Let δ > 0. Define f ∈ C(T, [0, 1]) such that f(ξ) = 1 if dist(ξ, 1) < δ/2 and f(ξ) = 0
if dist(ξ, 1) ≥ δ. Since A has property (SP), there are nonzero projections e1 ∈ f(u)Af(u) and
e2 ∈ f(v)Af(v). Since A is simple there exist nonzero projections e′i ≤ ei such that e′1 is unitarily
equivalent to e′2. Put e = e′1. If δ is sufficiently small, we have

∥eu − ue∥ < ε/8 and ∥e′2v − ve′2∥ < ε/8.

It is easy to obtain unitaries u1 ∈ (1 − e)A(1 − e) and u2 ∈ (1 − e′2)A(1 − e′2) such that

∥(e + u1) − u∥ < ε/2 and ∥(e′2 + u2) − v∥ < ε/2.

There is a unitary w ∈ A such that w∗e′2w = e. Then, with v1 = w∗u2w,

∥(e + v1) − w∗vw∥ < ε/2.

8



Lemma 3.10. Let A be a unital simple C∗-algebra and u, v ∈ U(A). Suppose that cel(u∗v) ≤ l
for some l > 0. Then, for any ε > 0, there is a finite subset F ⊂ A and δ > 0 such that,
for any unital F-δ-multiplicative completely positive linear map L : A → B (for any unital
C∗-algebraB), there are two unitaries u1, v1 ∈ B such that

∥L(u) − u1∥ < ε/2, ∥L(v) − v1∥ < ε/2 and

cel(u∗
1v1) < l + ε.

Proof. This is essentially the same statement of Lemma 6.8 of [L3].

Now we are ready to prove the following theorem.

Theorem 3.11. Let ε > 0 and let T : C(T)+ \ {0} → N×R+ be a map. Then there exist δ > 0
and a finite subset F ⊂ C(T)+ \ {0} satisfying the following: For any unital simple C∗-algebra
with TR(A) ≤ 1 and any T -F-full unitary u ∈ U(A) with sp(u) = T, if v ∈ U(A) is a unitary
such that

[u] = [v] in K1(A), dist(ū, v̄) < δ

and
|τ ◦ f(u) − τ ◦ f(v)| < δ

for all f ∈ F and all τ ∈ T (A), then there is a unitary w ∈ A such that

∥w∗uw − v∥ < ε.

Remark 3.12. In the statement above, for any u ∈ A with sp(u) = T, since A is a simple unital
C∗-algebra the map T always exists. We would like to point out that δ and F depend only on
such T but not on A or the choice of u as long as the map T works for u.

Proof. Let l = 9π. Suppose that T : C(T)+ \ {0} → N×R+ is defined by T (f) = (N(f),K(f)).
By applying Lemma 3.6 with ε/16, l and T ′(f) = (N(f), 2K(f)), we get an integer L > 0 and
a finite subset G ⊂ C(T)+ \ {0}.

Let η1 > 0 be as in Lemma 3.1 corresponding to ε/4 and {z} ⊂ C(T). Let {ζ1, ζ2, . . . , ζm} ⊂ T
be an η1/128-dense subset of T. Choose functions gi ∈ C(T) such that 0 ≤ gi(t) ≤ 1, gi(t) = 1 if
t ∈ O(ζi, η1/512) and gi(t) = 0 if t ∈ T \ O(ζi, η1/256), i = 1, 2, . . . , m. Let δ1 = 1/max{N(gi) :
1 ≤ i ≤ m}. By using Lemma 3.1 with {z}, ε/4, η1 and δ1, we obtain a natural number K and
η2 > 0.

Now let {ξ1, ξ2, . . . , ξl} ⊂ T be η2/128-dense in T. Let hi ∈ C(T) such that 0 ≤ hi(t) ≤ 1,
hi(t) = 1 if t ∈ O(ξi, η2/512) and hi(t) = 0 if t ∈ T \ O(ξi, η2/256), i = 1, 2, . . . , l. Let δ2 =
1/ max{N(hi) : 1 ≤ i ≤ l}. Let H and N > 0 be described in Lemma 3.1 corresponding to the
above ε/4, η1 > 0, δ1, K, η2 and δ2. Set H1 = {a+, a−, a : a ∈ H}.

Now let F be a finite subset which contains G, H1 above and {g1, . . . , gm, h1, h2, . . . , hl}. We
may assume that K > 16. So we choose δ = min{π/16K, δ2/64}. Note that F and δ depend
only on T and ε.

We would like to show that F and δ do the work. Suppose that A is a unital simple C∗-
algebra with TR(A) ≤ 1 and u ∈ U(A) is T -F-full and sp(u) = T. Let v ∈ A be another unitary
such that [u] = [v] in K1(A),

dist(ū, v̄) < δ ≤ π/16K

and
|τ ◦ f(u) − τ ◦ f(v)| < δ ≤ δ2/64

for all f ∈ H1 ⊂ F and all τ ∈ T (A).
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By applying Lemma 3.9, we may assume, without loss of generality, u = e+u′ and v = e+v′,
where u′, v′ ∈ (1 − e)A(1 − e) are two unitaries. To simplify notation, fix a nonzero projection
e ∈ A so that it suffices to prove the following: there exists a unitary w ∈ (e+1A)M2(A)(e+1A)
such that

∥w∗(e + u)w − (e + v)∥ < ε.

It follows from Lemma 6.9 in [L3] that

cel(u∗v) < 8π + π/16K < 9π = l.

Define ϕ,ψ : C(T) → A by ϕ(f) = f(u) and ψ(f) = f(v) for all f ∈ C(T).
Since F contains {g1, g2, . . . , gm}, we have

N(gi)∑

j=1

(xj(gi))∗ϕ(gi)xj(gi) = 1A,

for some xj(gi) ∈ A with ∥xj(gi)∥ ≤ K(gi), i = 1, 2, . . . ,m. Since F contains {h1, h2, . . . , hl}, we
also have

N(hi)∑

j=1

(xj(hi))∗ϕ(hi)xj(hi) = 1A

for some xj(hi) ∈ A with ∥xj(hi)∥ ≤ K(hi), i = 1, 2, . . . , l.
Now we apply Lemma 3.8. For a finite subset G0 ⊂ A and δ0 > 0, we have a natural number

L′ greater than L and

∥x − (L1(x) ⊕ diag(

L′
︷ ︸︸ ︷
L2(x), L2(x), . . . , L2(x))∥ < ε/16

for both x = u, v, where L1 : A → qAq and L2 : A → B are G0-δ0-multiplicative completely
positive linear maps, where B = ⊕m

j=1Mr(j)(C([0, 1])) ⊂ p1Ap1 with r(j) ≥ N (1 ≤ j ≤ m),
1B = p1, [q] ≤ [p1], 2[q] ≥ [p1] and [q] ≤ [e]. We choose G0 so large and δ0 so small that, by
Lemma 3.3, there is a homomorphism ϕ1 : C(T) → B so that

∥ϕ1(f) − L2(ϕ(f))∥ < min{ε/4, δ2/16}

for all f ∈ H1 ∪{z} and ϕ1 has sdp(η1/64, δ1) and sdp(η2/64, δ2) property. Moreover, since ϕ is
T -G-full, by Lemma 3.7, we may assume that ϕ1 is T ′-G-full.

We may also assume that there is a homomorphism ψ1 : C(T) → B such that

∥ψ1(f) − L2(ψ(f))∥ < min{ε/4, δ2/16}

for all f ∈ H1 ∪ {z}.
By Lemma 3.5, we may assume that

D(ϕ1(z)∗ψ1(z)) < 1/8K.

With sufficiently large G0 and sufficiently small δ0, by Lemma 3.4, we may assume that

|τ ′(ψ1(f)) − τ ′(ϕ1(f))| < δ2/4

for all f ∈ H and all τ ′ ∈ T (B). Now by applying Lemma 3.1, we obtain a unitary w1 ∈ B such
that

∥w∗
1ϕ1(z)w1 − ψ1(z)∥ < ε/4.
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In the above, for sufficiently large G0 and sufficiently small δ0, by Lemma 3.10, we may also
assume that there are unitaries u2, v2 ∈ qAq such that

∥L1(u) − u2∥ < ε/16, ∥L1(v) − v2∥ < ε/16

and
cel(u∗

2v2) ≤ 9π.

Since [q] ≤ [p1] and [p1] − [q] ≤ [q] ≤ [e], there is e1 ≤ e such that [e1] + [q] = [p1]. Let
u3 = e1 + u2 and v3 = e1 + v2.

Put

U = diag(

L′
︷ ︸︸ ︷
ϕ1(z), ϕ1(z), . . . , ϕ1(z))

and

V = diag(

L′
︷ ︸︸ ︷
ψ1(z), ψ1(z), . . . , ψ1(z)).

Then by the choice of L, by applying Lemma 3.6, we obtain a unitary w2 ∈ (e1 +1A)M2(A)(e1 +
1A) such that

∥w∗
2(u3 ⊕ U)w2 − (v3 ⊕ U)∥ < ε/16.

Let w3 = w2(q + diag(
L′

︷ ︸︸ ︷
w1, w1, . . . , w1)). It follows that

∥w∗
3(u3 ⊕ U)w3 − (v3 ⊕ V )∥ < ε/16 + ε/4.

Combining all the above, we have

∥w∗
3(e1 + u)w3 − (e1 + v)∥ < 3(ε/16 + ε/4) < ε.

Set w = (e − e1) + w3. Then
∥w∗(e + u)w − (e + v)∥ < ε.

Corollary 3.13. Let A be a unital simple C∗-algebra with TR(A) ≤ 1 and let u, v ∈ A be two
unitaries with sp(u) = sp(v) = T. Then there exists a sequence of unitaries wn ∈ A such that

lim
n→∞

w∗
nuwn = v

if and only if
[u] = [v] in K1(A), ū = v̄ in U(A)/CU(A)

and
τ(f(u)) = τ(f(v))

for all f ∈ C(T) and all τ ∈ T (A).

Lemma 3.14. Let e be a nonzero projection of a unital simple C∗-algebra A with TR(A) ≤
1. Then ı : U(eAe)/CU(eAe) → U(A)/CU(A) defined by v̄ → v + (1 − e) is a continuous
isomorphism.
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Proof. It is clear that ı is a continuous homomorphism. It follows from Theorem 6.7 in [L3]
that it is surjective. Suppose that ū ∈ Ker ı. Thus u + (1 − e) ∈ CU(A). It follows Lemma 6.9
in [L3] that u + (1 − e) ∈ U0(A). Since A has stable rank one, by [R], it is easy to see that
[u + (1− e)] = 0 in K1(A). Since A is simple, we conclude that [u] = 0 in K1(eAe). Since A has
stable rank one, it follows that u ∈ U0(eAe). By expressing u as finite product of exponentials,
we obtain a piecewise smooth map η : [0, 1] → U0(eAe) with η(0) = e and η(1) = u. Define
ξ : [0, 1] → U(A) by ξ(t) = η(t) + (1 − e). Then

δA(ξ)(τ) =
1

2πi

∫ 1

0
τ(ξ′(t)ξ(t)∗) dt =

1
2πi

∫ 1

0
τ(η′(t)η(t)∗) dt

for all τ ∈ T (A). The fact that u + (1− e) ∈ CU(A) implies that δA(ξ) ∈ ρA(K0(A)) (see [Th]).
Suppose that there are xn ∈ K0(A) such that τ(xn) → δ(ξ)(τ) uniformly on T (A). Then

τ(xn)/τ(e) → δA(ξ)(τ)/τ(e).

For each τ ∈ A, define τ̃(a) = τ(a)/τ(e) for a ∈ eAe. So δeAe(η)(τ̃) = δA(ξ)(τ)/τ(e). Since
K0(eAe) = K0(A), we conclude that δeAe(η) ∈ ρA(K0(eAe)). Equivalently u ∈ CU(eAe). Thus
ı is injective.

Theorem 3.15. Let A be a unital simple C∗-algebra with TR(A) ≤ 1 and X be the Cantor set.
Then two unital monomorphisms h1, h2 : C(X × T) → A are approximately unitarily equivalent
if and only if

(h1)∗i = (h2)∗i, i = 0, 1, h♯
1 = h♯

2

and
τ ◦ h1(f) = τ ◦ h2(f)

for all f ∈ C(X × T) and τ ∈ T (A).

Proof. The “only if” is clear. We will show the “if” part.
Let ε > 0 and F ⊂ C(X × T) be a finite subset. Without loss of generality, we may assume

that
F = {fi, fi × z : i = 1, 2, . . . , m},

where fi = 1Oi and O1, O2, . . . , Om are mutually disjoint clopen subsets of X for which
⋃m

i=1 Oi =
X.

Since (h1)∗i = (h2)∗i, i = 0, 1, there is a unitary w1 ∈ A such that

w∗
1h1(fi)w1 = h2(fi), i = 1, 2, . . . , m.

To simplify notation, we may assume that h1(fi) = h2(fi) = pi, i = 1, 2, . . . , m. Working in each
piApi, by applying Lemma 3.14 and Corollary 3.13, there is a unitary ui ∈ piApi such that

∥u∗
i h1(fi × z)ui − h2(fi × z)∥ < ε,

for all i = 1, 2, . . . , m. Define w2 =
∑m

i=1 ui. Then w2 ∈ U(A) and

∥w∗
2h1(g)w2 − h2(g)∥ < ε

for all g ∈ F .

Combining the proof of Theorem 3.15 and 3.11, we actually prove the following.
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Corollary 3.16. Let A be a unital simple C∗-algebra with TR(A) ≤ 1 and X be the Cantor
set. Fix a monomorphism h1 : C(X × T) → A. Then, for any ε > 0 and any finite subset
F ⊂ C(X × T), there exist δ > 0, a finite subset G ⊂ C(X × T), a finitely generated subgroup
G0 ⊂ K0(C(X × T)) and a finitely generated subgroup G1 ⊂ K1(C(X × T)) satisfying the
following: if h2 : C(X × T) → A is a monomorphism such that

(h2)∗i|Gi = (h1)∗i|Gi , |τ(h2(g)) − τ(h1(g))| < δ

for all g ∈ G and τ ∈ T (A), and
dist(h♯

1(g), h♯
2(g)) < δ

for all g ∈ G1, then there exists a unitary W ∈ A such that

∥Wh2(f)W ∗ − h1(f)∥ < ε for all f ∈ F .

4 Tracial rank

Let (X, α) be a Cantor minimal system and let ξ ∈ C(X, T). In this section, we will only
consider the case that α × Rξ is minimal. Put A = C∗(X × T, α × Rξ). The purpose of this
section is to show that the tracial rank of A is no more than one. We denote the implementing
unitary of A by u. In this section, we identify the circle T with the quotient space R/Z. We
write the function T ∋ t 7→ e2πit ∈ C by z ∈ C(T).

Proposition 4.1. Let x ∈ X and let U be a clopen neighborhood of x ∈ X. Suppose that there
exists M ∈ N such that

∥uMzpuM∗ − zq∥ < ε,

where p = 1U and q = uMpuM∗. Then there exists a partial isometry w ∈ Ax such that w∗w = p,
ww∗ = q and

∥wzpw∗ − zq∥ < ε.

Proof. There exists a unitary normalizer w1 ∈ Ax∩C∗(X, α) of C(X) such that w1pw∗
1 = q. We

may assume that there exists a continuous function n : X → Z such that w1 =
∑

k∈Z uk1n−1(k).
Since u∗zu = e2π

√
−1ξz, we can find a continuous map η : U → T such that

w∗
1u

MzpuM∗w1 = e2π
√
−1ηzp.

Clearly we have [w∗
1u

MzpuM∗w1] = [zp] in K1(pAxp). We also get τ(w∗
1u

MzpuM∗w1) = τ(zp)
for all τ ∈ T (pAxp), because T (A) ∼= T (Ax). Furthermore

w∗
1u

MzpuM∗w1(zp)∗ = e2π
√
−1η

belongs to B = p(Ax ∩ C∗(X, α))p, which is a unital simple infinite dimensional AF algebra.
Hence, the unitary e2π

√
−1η is contained in U(B) = CU(B) ⊂ CU(pAxp). Thus, Corollary 3.13

applies and yields a unitary w2 ∈ pAxp such that

∥w∗
1u

MzpuM∗w1 − w2zpw∗
2∥ < σ,

where σ = ε − ∥uMzpM∗ − zq∥. Put w = w1w2. Then

∥wzpw∗ − zq∥ ≤ ∥w1(w2zpw∗
2)w

∗
1 − uMzpuM∗∥ + ∥uMzpuM∗ − zq∥ < ε.
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The following is an improvement of Lemma 5.5 of [LM2].

Lemma 4.2. Let x ∈ X. For any N ∈ N, ε > 0 and a finite subset F ⊂ C(X ×T), we can find
a natural number M > N , a clopen neighborhood U of x and a partial isometry w ∈ Ax which
satisfy the following.

(1) α−N+1(U), α−N+2(U), . . . , U, α(U), . . . , αM (U) are mutually disjoint, and µ(U) < ε/M for
all α-invariant measure µ.

(2) w∗w = 1U and ww∗ = 1αM (U).

(3) u∗iwui ∈ Ax for all i = 0, 1, . . . , N − 1.

(4) ∥wf − fw∥ < ε for all f ∈ F .

Proof. Without loss of generality, we may assume F = {f1, f2, . . . , fk, z}, where fi belongs to
C(X) ⊂ C(X × T). There exists a clopen neighborhood O of x such that

|fi(x) − fi(y)| < ε/2

for all y ∈ O and i = 1, 2, . . . , k. Since α × Rξ is minimal, we can find M > N such that
(α×Rξ)M (x, 0) ∈ O× I, where I = {t ∈ T : |t| < ε}. Let U be a clopen neighborhood of x such
that the condition (1) is satisfied and

(α × Rξ)M (y, 0) ∈ O × I

for all y ∈ U . If 1/K < ε, an easy way to get µ(U) < ε/M is to choose U so that
α−N+1(U), . . . , U, . . . , αMK(U) are mutually disjoint. Moreover, we require that U∪αM (U) ⊂ O.
Let p = 1U and q = 1αM (u). Since (α × Rξ)M = αM × Rη for some η ∈ C(X, T), we check that

∥uMzpu∗M − zq∥ < ε.

By applying Lemma 4.1, we obtain a partial isometry w ∈ Ax which satisfies (2) and

∥wzpw∗ − zq∥ < ε.

Since U ∪ αM (U) ⊂ O, by the choice of O, it is easy to check that

∥wfi − fiw∥ < ε

for all i = 1, 2, . . . , k. To see (3), we note that

pui = pu1α−1(U)u1α−2(U) · · ·u1α−i(U)

and
(u∗iq)∗ = qu1αM−1(U)u1αM−2(U) · · ·u1αM−i(U)

for every i = 1, 2, . . . , N −1. Since x ∈ U, by the condition (1), one sees that pui and u∗iq belong
to Ax. It follows that u∗iwui ∈ Ax for all i = 1, 2, . . . , N − 1.

Theorem 4.3. Let (X, α) be a Cantor minimal system and let ξ : X → T be a continuous map.
If α × Rξ is minimal, then A = C∗(X × T, α × Rξ) has tracial rank zero or one. Consequently
A = C∗(X × T, α ×Rξ) is a unital simple AT-algebra. Moreover, it has tracial rank zero if and
only if α × Rξ is rigid.
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Proof. The proof is exactly the same as that of Theorem 5.6 of [LM2] when one uses Lemma 4.2
instead of [LM2, Lemma 5.5]. Only difference is that we do not assume that Ax has tracial rank
zero. But we use the fact that Ax is a unital simple AT-algebra (see Proposition 3.3 of [LM2]).

Let F ⊂ A be a finite subset and let ε > 0. Fix x ∈ X. By applying Lemma 4.2, exactly as
in the proof of Theorem 5.6 of [LM2], one obtains a projection e ∈ Ax such that the following
hold.

• ∥ea − ae∥ < ε for all a ∈ F .

• For every a ∈ F , there exists b ∈ eAxe such that ∥eae − b∥ < ε.

• τ(1 − e) < ε for all τ ∈ T (A).

Since Ax is a unital simple AT-algebra (which has tracial rank one or zero), using the fact that A
has stable rank one and weakly unperforated K0(A) (see Theorem 3.12 in [LM2]) and applying
Theorem 4.8 in [HLX], exactly as in the proof of Theorem 5.6 in [LM2], we conclude that A has
tracial rank one or zero.

By Lemma 2.4 of [LM2], both K0(A) and K1(A) are torsion free. It follows from [L3] that
A is isomorphic to a unital simple AT-algebra.

5 Non-orientation preserving cases

In this section we will show that the crossed product C∗(X × T, α × ϕ) has tracial rank zero if
the cocycle ϕ takes its values in Isom(T) and α × ϕ is rigid.

The following lemma is well known.

Lemma 5.1. Let A be a C∗-algebra with real rank zero and let E be a finite dimensional C∗-
subalgebra with the same unit as A. Then B = A ∩ E′ also has real rank zero.

Proof. Let p1, p2, . . . , pn be a family of minimal central projections of E with
∑

pi = 1. Then
Epi is isomorphic to a full matrix algebra. Since pi is central in B, it suffices to show that Bpi

has real rank zero for all i = 1, 2, . . . , n. But this is obvious because Bpi = piApi ∩ (Epi)′ is
isomorphic to eiAei where ei is a minimal projection of Epi.

Let A be a unital C∗-algebra. For a ∈ A, we define

∥a∥2 = sup
τ∈T (A)

τ(a∗a)1/2.

Then ∥·∥2 is a norm on A.

Lemma 5.2. Let {en}n and {xn}n be two sequences of self-adjoint elements of A. Suppose that
limn→∞∥xn − en∥2 = 0 and ∥en∥ ≤ 1, ∥xn∥ ≤ 1 for all n ∈ N. Then, for every continuous
function f on [−1, 1], we have

lim
n→∞

∥f(xn) − f(en)∥2 = 0.

Proof. It suffices to show the claim when f is a polynomial. But this is obvious because of
∥ab∥2 ≤ ∥a∥∥b∥2.

Lemma 5.3. Let A be a unital simple C∗-algebra with tracial rank zero and let {en}n∈N be a
sequence of projections in A which satisfies

lim
n→∞

∥aen − ena∥2 = 0

for every a ∈ A. Then there exist a subsequence {em(n)}n∈N and a sequence {xn}n∈N of projec-
tions in A such that the following conditions are satisfied.
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(1) For every a ∈ A, we have ∥axn − xna∥ → 0.

(2) ∥em(n) − xn∥2 → 0.

Proof. Let {an}n∈N be a dense sequence of A. Since A has tracial rank zero, we can find a
projection pn and a unital finite dimensional C∗-algebra En ⊂ pnApn such that the following
are satisfied.

• For every i = 1, 2, . . . , n, ∥aipn − pnai∥< 1/n.

• For every i = 1, 2, . . . , n, there exists b ∈ En such that ∥pnaipn − b∥< 1/n.

• ∥1 − pn∥2 < 1/n.

Using the Haar measure on the compact group U(En), we define

xm,n =
∫

U(En)
uemu∗ du.

Then xm,n ∈ A. It is then easy to check that xm,n commutes with unitaries of En, and so it
commutes with all elements of En. Thus xm,n is a positive element lying in pnApn ∩E′

n. Hence,
for every i = 1, 2, . . . , n, we have ∥aixm,n − xm,nai∥ < 4/n. Moreover, by choosing a sufficiently
large m ∈ N, we obtain

∥em − xm,n∥2 <
1
n

,

because limm→∞∥uem − emu∥2 = 0 for every u ∈ U(En).
In this way, we can find a subsequence {em(n)}n and a sequence {xn}n which satisfy the

requirements (1) and (2). It remains to replace xn to a projection. Since pnApn ∩ E′
n has real

rank zero by Lemma 5.1, we may assume that xn has finite spectrum. Let f, g and h be functions
on [0, 1] defined by

f(t) =

{
0 0 ≤ t < 1/2
2t − 1 1/2 ≤ t ≤ 1,

g(t) =

{
2t 0 ≤ t < 1/2
1 1/2 ≤ t ≤ 1

and h(t) = 1(1/2,1](t). Then by using Lemma 5.2 we have ∥em(n) − f(xn)∥2 → 0 and ∥em(n) −
g(xn)∥2 → 0. It follows from 0 ≤ (h − f)2 ≤ (g − f)2 that

lim
n→∞

∥h(xn) − em(n)∥2 = lim
n→∞

∥h(xn) − f(xn)∥2 ≤ lim
n→∞

∥g(xn) − f(xn)∥2 = 0.

Since h(xn) still lies in pnApn ∩ E′
n, it almost commutes with a1, a2, . . . , an. Thus h(xn) is the

desired projection.

Proposition 5.4. Let A be a unital simple C∗-algebra with tracial rank zero and let γ : Zl →
Aut(A) be an action of Zl. Suppose that there exists a sequence of projections {en}n∈N satisfying
the following property.

(1) For each i ∈ Zl \ {0}, ∥enγi(en)∥2 → 0.

(2) ∥1 −
∑

i∈Zl
γi(en)∥2 → 0.

(3) For every a ∈ A, we have ∥aen − ena∥2 → 0.

Then the action γ has the tracial Rohlin property in the sense of [Ph].
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Proof. The proof goes in a similar fashion to [K, Section 4]. By Lemma 5.3, we may assume
that

lim
n→∞

∥aen − ena∥ = 0

for every a ∈ A. Let F be a finite subset of A and let ε > 0. There exist a projection p ∈ A and
a unital finite dimensional C∗-subalgebra E ⊂ pAp such that the following are satisfied.

• For every a ∈ F , ∥ap − pa∥< ε.

• For every a ∈ F , there exists b ∈ E such that ∥pap − b∥< ε.

• ∥1 − p∥2 < ε.

Since {γi(en)}n is a central sequence for every i ∈ Zl, by using the integration argument as in
the proof of Lemma 5.3, we may assume that there exists a projection x

(i)
n ∈ A ∩ E′ such that

∥x(i)
n − γi(en)∥ → 0 for every i ∈ Zl. Put

yn = x(0)
n


∑

i̸=0

x(i)
n


x(0)

n .

Then yn is a positive element lying in

Dn = x(0)
n (A ∩ E′)x(0)

n .

Let εn = supτ∈T (A) τ(yn). By the assumption (1), we have εn → 0. Define continuous functions
g1, g2 and g3 on [0, 1] by

gj(t) =





1 0 ≤ t ≤ j/4
1 − 4(t − j/4) j/4 ≤ t ≤ (j + 1)/4
0 otherwise.

Put an,j = gj(yn/
√

ε) in Dn. Then it is easy to see that an,1an,2 = an,1 and an,2an,3 = an,2.
Since Dn has real rank zero, the hereditary subalgebra an,2Dnan,2 has an approximate identity
consisting of projections. Hence we can find a projection fn ∈ Dn such that an,3fn = fn and
∥an,1fn − an,1∥ < εn. Combining

τ(y1/2
n (x(0)

n − an,1)y1/2
n ) ≤ τ(yn) ≤ εn

with √
εn

4
(x(0)

n − an,1) ≤ y1/2
n (x(0)

n − an,1)y1/2
n ,

we get τ(x(0)
n − an,1) ≤ 4

√
εn for all τ ∈ T (A). It follows from ∥an,1fn − an,1∥ < εn that

τ(x(0)
n − fn) → 0 uniformly for all τ ∈ T (A). Moreover we have

∥fnynfn∥ = ∥fnan,3ynan,3fn∥ ≤ ∥an,3ynan,3∥ ≤
√

εn,

and so ∥fnx
(i)
n fn∥ ≤ √

εn for all i ∈ Zl \ {0}. Therefore, for every i ∈ Zl \ {0},

fnγi(fn) = fnγi(x(0)
n )γi(fn) ≈ fnx(i)

n γi(fn)

converges to zero as n → ∞. Since fn commutes with p ∈ E, fnp is a projection lying in
pAp ∩ E′. By replacing fn with fnp, we obtain

lim
n→∞

sup
τ∈T (A)

τ(x(0)
n − fn) < ε
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We still have
lim

n→∞
fnγi(fn) = 0

for all i ∈ Zl \ {0}.
As a consequence, by choosing a sufficiently large n, we can find a projection fn which

satisfies the following.

• For every a ∈ F , ∥afn − fna∥ < 4ε.

• For every i ∈ Zl \ {0}, ∥fnγi(fn)∥ < ε.

• For every τ ∈ T (A),

τ


1 −

∑

i∈Zl

γi(fn)


 < lε.

Hence γ has the tracial Rohlin property.

Let (X,α) be a Cantor minimal system and let c : X → Zl be a continuous map. Define a
homeomorphism α × c ∈ Homeo(X × Zl) by

(α × c)(x, k) = (α(x), k + c(x))

for all (x, k) ∈ X×Zl. Namely α×c is the skew product extension of (X, α). Suppose that α×c
is minimal. Then C∗(X × Zl, α × c) is a unital simple AT algebra with real rank zero. Define
γ ∈ Homeo(X × Zl) by γ(x, k) = (x, k + 1). Since γ commutes with α × c, it induces an action
θ of Zl on C∗(X ×Zl, α× c). We would like to see that θ satisfies the hypothesis of Proposition
5.4.

Let
P = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

be a Kakutani-Rohlin partition of (X, α). We may assume that the function c is constant on
each clopen set belonging to P. For a given ε > 0, it is possible to choose P so that h(v) is
greater than ε−1 for all v ∈ V . Thus, µ(R(P)) is less than ε for all µ ∈ Mα, where R(P) is the
roof set. For every v ∈ V and k = 1, 2, . . . , h(v), define c(v, k) ∈ Zl by c(v, 1) = 0 and

c(v, k) =
k−1∑

i=1

c(αi−1(x)),

where x is a point in X(v, 1). We define a clopen subset U of X × Zl by

U =
⋃

v∈V

h(v)⋃

k=1

X(v, k) × {c(v, k)},

and put e = 1U ∈ C∗(X × Zl, α × c). It is easy to check that e, θ(e), . . . , θl−1(e) are mutually
orthogonal and

∑
i∈Zl

θi(e) = 1. Clearly e commutes with elements of C(X × Zl). Furthermore
we have

(u∗eu − e)2 ≤ 1R(P)×Zl
,

where u is the implementing unitary of C∗(X × Zl, α × c). It follows that

∥u∗eu − e∥2 < ε.
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Consequently θ satisfies the hypothesis of Proposition 5.4, and so it has the tracial Rohlin
property. Indeed, it can be easily checked that the crossed product

C∗(X × Zl, α × c) oθ Zl

is stably isomorphic to C∗(X,α) (see [M1]).

Now we turn to minimal dynamical systems on X × T. Let (X, α) be a Cantor minimal
system and ϕ : X → Homeo(T) be a continuous map. Suppose that α × ϕ is minimal and
non-orientation preserving. Then α × o(ϕ) is a minimal homeomorphism on X × Z2. Let π be
the projection from X × Z2 to the first coordinate. By [LM2, Lemma 8.1, 8.3], α × o(ϕ) × ϕπ
is a minimal orientation preserving homeomorphism. Put

A = C∗(X × Z2 × T, α × o(ϕ) × ϕπ).

Then, as in the Cantor case, the shift map (x, k, t) 7→ (x, k + 1, t) commutes with the minimal
homeomorphism α × o(ϕ) × ϕπ. Let us denote the corresponding action of Z2 on A by θ. It is
not hard to see that θ globally preserves the subalgebra C∗(X × Z2, α × o(ϕ)). Therefore, as
discussed before, there exists a projection e ∈ C(X×Z2) satisfying the hypothesis of Proposition
5.4. But, e clearly commutes with elements of C(X × Z2 × T), and so we can conclude that θ
on A also satisfies the hypothesis of Proposition 5.4.

As a direct consequence, we have the following.

Theorem 5.5. Let α × ϕ be a minimal non-orientation preserving homeomorphism on X × T.
Suppose that

A = C∗(X × Z2 × T, α × o(ϕ) × ϕπ)

has tracial rank zero. Then, the action θ has the tracial Rohlin property. In particular, C∗(X ×
T, α × ϕ) also has tracial rank zero.

Proof. This is immediate from Proposition 5.4 and [Ph, Theorem 2.6].

Corollary 5.6. Let (X, α) be a Cantor minimal system and let ϕ : X → Isom(T) be a continuous
map. If α × ϕ is rigid, then C∗(X × T, α × ϕ) has tracial rank zero.

Proof. If α × ϕ is orientation preserving, the result follows from [LM2, Theorem 5.6]. Suppose
that α×ϕ is not orientation preserving. By [LM2, Lemma 8.4], α×o(ϕ)×ϕπ is rigid. It follows
from [LM2, Theorem 5.6] that

A = C∗(X × Z2 × T, α × o(ϕ) × ϕπ)

has tracial rank zero. By Theorem 5.5, we get the conclusion.

6 C∗-strongly approximate flip conjugacy

Let (X,α) and (Y, β) be two topological transitive systems. Let A = C∗(X,α) and B = C∗(Y, β)
be crossed products. In [To], J. Tomiyama showed that (X, α) and (Y, β) are flip conjugate if
and only if there exists an isomorphism Φ : A → B such that Φ maps jα(C(X)) onto jβ(C(Y )).

The following is an approximate version of Tomiyama’s C∗-algebra flip conjugacy.

Definition 6.1. Let (X, α) and (Y, β) be two topological transitive systems. We say that (X, α)
and (Y, β) are C∗-strongly approximately flip conjugate if there exist sequences of isomorphisms
ϕn : A → B, ψn : B → A, χn : C(X) → C(Y ) and ωn : C(Y ) → C(X) such that [ϕn] = [ϕ1] in
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KL(A,B), [ψn] = [ψ1] in KL(B,A) (ϕn)♮ = (ϕ1)♮, (ψn)♮ = (ψ1)♮, ϕ♯
n = ϕ♯

1 and ψ♯
n = ψ♯

1 for all
n ∈ N, and

lim
n→∞

∥ϕn ◦ jα(f) − jβ ◦ χn(f)∥ = 0

and
lim

n→∞
∥ψn ◦ jβ(g) − jα ◦ ωn(g)∥ = 0

for all f ∈ C(X) and g ∈ C(Y ).

Let A and B be two unital separable simple C∗-algebra with real rank zero and stable rank
one and suppose that there exists an order homomorphism

κ̃ : (K0(A),K0(A)+, [1A]) → (K0(B),K0(B)+, [1B]).

Let ρA : K0(A) → Aff(T (A)) be the homomorphism induced by ρA([p])(τ) = τ(p). It follows
from [BH] that ρA(K0(A)) is dense in Aff(T (A)). Thus κ̃ gives an affine continuous map κ♮ :
Aff(T (A)) → Aff(T (B)).

In the case that A and B are simple and have real rank zero and stable rank one, in Definition
6.1 above, if [ϕn] = [ϕ1] in KL(A,B), then one must have (ϕn)♮ = (ϕ1)♮. Moreover, in this case,
K1(B) = U(B)/U0(B) = U(B)/CU(B). Therefore ϕ♯

n = ϕ♯
1. In other words, in Definition 6.1

above, if both A and B have tracial rank zero, then one can omit (ϕn)♮ = (ϕ1)♮ as well as
ϕ♯

n = ϕ♯
1.

We identify T with R/Z in this section. Let (X, α) and (Y, β) be Cantor minimal systems
and let ϕ : X → Isom(T) and ψ : Y → Isom(T) be continuous maps. For the rest of this
section we assume that both α×ϕ and β ×ψ are minimal, but that neither α×ϕ nor β ×ψ are
orientation preserving except in Theorem 6.9. We denote the crossed product algebras arising
from (X × T, α × ϕ) and (Y × T, β × ψ) by A and B, respectively.

We identify Ki(C(X ×T)) with C(X, Z) for i = 0, 1. By Lemma 2.5 of [LM2], we know that
K0(A) is unital order isomorphic to K0(X, α) = Coker(id−α∗) and that K1(A) is isomorphic
to the direct sum of Z and Coker(id−α∗

ϕ). Note that the torsion subgroup of Coker(id−α∗
ϕ) is

isomorphic to Z2.
In the argument below, we will regard functions of C(X, Z) as elements of K0(A) and K1(A).

When we need to avoid confusion, we denote the equivalence class of f ∈ C(X, Z) in these groups
by [f ]0 and [f ]1, respectively.

Let x0 ∈ X. By Proposition 3.3 of [LM2], we know that K0(Ax0) is unital order isomorphic
to K0(A) and that K1(Ax0) is isomorphic to

C(X, Z)/{f − α∗
ϕ(f) : f ∈ C(X, Z) and f(x0) = 0}.

Furthermore, there exists a natural quotient map from K1(Ax0) to K1(A) and its kernel is
isomorphic to Z.

Define a function hϕ ∈ C(X, Z) by

hϕ(x) =

{
1 o(ϕ)(α−1(x)) = 1
0 otherwise.

Then hϕ is a representative of the torsion element in K1(A). Thus 2hϕ is zero in K1(A), and
so 2hϕ belongs to the kernel of the natural quotient map from K1(Ax0) to K1(A). By an easy
observation, we can see that 2hϕ is the generator of the kernel. Note that

1X − α∗
ϕ(1X) = 2hϕ.
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Let
P = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

be a Kakutani-Rohlin partition for (X, α). We denote the roof set of P by

R(P) =
⋃

v∈V

X(v, h(v)).

We also write
P̃ = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v) − 1} ∪ {R(P)}.

Suppose that P is so finer that o(ϕ) is constant on each clopen set belonging to P. We define
o(ϕ)v ∈ Z2 in the same way as in Section 4 of [M2]. Namely,

o(ϕ)v = o(ϕ)(x) + o(ϕ)(α(x)) + · · · + o(ϕ)(αh(v)−1(x)),

where x is a point in X(v, 1).

Lemma 6.2. Let x0 ∈ X and let

P = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

be a Kakutani-Rohlin partition for (X,α). Suppose that x0 belongs to R(P) and that o(ϕ) is
constant on each clopen set of P̃. Then hϕ is equivalent to

∑

o(ϕ)v=1

1X(v,h(v))

in K1(Ax0).

Proof. We assume that o(ϕ) is zero on the roof set. The other case can be shown similarly. For
every v ∈ V , set

Ev = {1 ≤ k ≤ h(v) : o(ϕ) is not zero on X(v, k)}.

Then we have
hϕ =

∑

v∈V

∑

k∈Ev

1X(v,k+1).

Let k1 < k2 < · · · < kn be the arranged list of elements in Ev. For every i = 1, 2, . . . , n, let
li = h(v) − ki + 1. It is easy to see that

(α∗
ϕ)li(1X(v,ki+1)) = (−1)n−i1X(v,h(v)).

Hence, if n is even, then
n∑

i=1

(α∗
ϕ)li(1X(v,ki+1)) = 0.

If n is odd, then
n∑

i=1

(α∗
ϕ)li(1X(v,ki+1)) = 1X(v,h(v)).

Therefore hϕ is equivalent to ∑

o(ϕ)v=1

1X(v,h(v))

in K1(Ax0).
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Let σ be an element of the topological full group of α. Then there exists a continuous
function n : X → Z such that σ(x) = αn(x)(x) for all x ∈ X. Put Xk = n−1(k) for k ∈ Z. Note
that Xk is a clopen subset of X. We define an automorphism σ∗

ϕ on C(X, Z) by

σ∗
ϕ(f) =

∑

k∈Z
(α∗

ϕ)k(f1Xk
)

for f ∈ C(X, Z). In other words,

σ∗
ϕ(f)(x) = (−1)c(x)f(σ−1(x)),

where c : X → Z2 is defined by

c(x) =





∑n(σ−1(x))
i=1 o(ϕ)(α−i(x)) n(σ−1(x)) > 0

0 n(σ−1(x)) = 0
∑−n(σ−1(x))

i=1 o(ϕ)(αi−1(x)) n(σ−1(x)) < 0.

From the C∗-algebraic viewpoint, this definition can be interpreted as follows. Define σ̃ ∈
Homeo(X × T) by

σ̃(x, t) = (α × ϕ)n(x)(x, t).

Thus σ̃ belongs to the topological full group of α × ϕ. Clearly σ̃ induces an automorphism of
K1(C(X × T)). Under the identification of K1(C(X × T)) with C(X, Z), we can see that this
automorphism agrees with σ∗

ϕ.

Lemma 6.3. For any x0 ∈ X, m ∈ Z and any nonempty clopen subset O of X, there exists a
clopen set U ⊂ O such that 1U is equivalent to mhϕ in K1(Ax0). Moreover, there exists σ ∈ [[α]]
such that σ(x) = x for all x ∈ U c and σ∗

ϕ(1U ) = −1U .

Proof. At first we deal with the case m = 1. Since α × o(ϕ) is a minimal homeomorphism on
X × Z2, there exists N ∈ N such that

N⋃

i=0

(α × o(ϕ))i(O × {0}) ⊃ X × {0}.

It follows that, for any x ∈ X, there exists i ∈ {0, 1, . . . , N} such that

(α × o(ϕ))−i(x, 0) ∈ O × {0}.

Choose a Kakutani-Rohlin partition

P = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

so that the following are satisfied:

• The roof set R(P) contains x0.

• h(v) is greater than N for every v ∈ V .

• 1O and o(ϕ) are constant on each clopen set belonging to P̃.
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By the choice of N , for each v ∈ V , we can find kv ∈ {1, 2, . . . , h(v)} such that X(v, kv) is
contained in O and (α∗

ϕ)h(v)−kv(1X(v,kv)) = 1X(v,h(v)). Put

U =
⋃

o(ϕ)v=1

X(v, kv).

Then, by Lemma 6.2, 1U is equivalent to hϕ in K1(Ax0).
Let σ be the first return map on U . By defining σ(x) = x for x ∈ U c, we can regard σ as an

element of [[α]]. We claim σ∗
ϕ(1U ) = −1U . There exists n ∈ C(X, Z) such that σ(x) = αn(x)(x)

for all x ∈ X. Define σ̃ ∈ Homeo(X × Z2) by

σ̃(x, k) = (α × o(ϕ))n(x)(x, k).

By the choice of U , we can see the following.

• If x ∈ X(v, kv) ⊂ U , then (α × o(ϕ))h(v)−kv(x, 0) = (αh(v)−kv(x), 0).

• If x ∈ R(P), α(x) ∈ X(v, 1) and o(ϕ)v = 0, then (α × o(ϕ))h(v)(x, 0) = (αh(v)(x), 0).

• If x ∈ R(P), α(x) ∈ X(v, 1) and o(ϕ)v = 1, then (α × o(ϕ))kv(x, 0) = (αkv(x), 1).

It follows that σ̃(x, 0) = (σ(x), 1) for all x ∈ U . Hence we have σ∗
ϕ(1U ) = −1U .

We can prove the case m = −1 in a similar fashion.
Let us consider the general case. Suppose m > 1. Choose non-empty clopen subsets

O1, O2, . . . , Om ⊂ O which are mutually disjoint. By applying the argument above to Oi,
we get a clopen set Ui ⊂ Oi such that 1Ui is equivalent to hϕ in K1(Ax0). Moreover, there
exists σi ∈ [[α]] such that σi(x) = x for all x ∈ U c

i and σ∗
iϕ(1Ui) = −1Ui . Let U =

⋃m
i=1 Ui

and σ = σ1σ2 . . . σm. Then, 1U is equivalent to mhϕ in K1(Ax0), σ(x) = x for all x ∈ U c and
σ∗

ϕ(1U ) = −1U .
When m is less than −1, a similar proof is valid.

We would like to show that C∗-strongly approximate flip conjugacy implies approximate
K-conjugacy under the assumption that both systems are rigid. If the systems are rigid, then
A and B has tracial rank zero. Hence, when two isomorphisms from B to A induce the same
element in KL(B, A), we can conclude that they are approximately unitarily equivalent. Thus,
we may assume that there exist an isomorphism Ψ : B → A, a sequence of unitaries wn ∈ A
and a sequence of isomorphisms χn : C(Y × T) → C(X × T) such that

lim
n→∞

∥vnΨ(g)v∗n − χn(g))∥ = 0

for all g ∈ C(Y ). The isomorphism Ψ induces a unital order isomorphism κ0 : K0(B) → K0(A)
and an isomorphism κ1 : K1(B) → K1(A).

Let
Q = {Y (w, l) : w ∈ W, l = 1, 2, . . . , h(w)}

be a Kakutani-Rohlin partition for (Y, β) such that o(ψ) is constant on each clopen set of Q̃.
The above hypothesis implies that there exists an isomorphism χ : C(Y ×T) → C(X ×T) such
that the following conditions hold (we omit the index n to simplify the notation): for every
U ∈ Q,

[χ0∗(1U )]0 = κ0([1U ]0)

in K0(A) and
[χ1∗(1U )]1 = κ1([1U ]1)
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in K1(A).
Keeping these notations, we will show the approximate K-conjugacy. The proof goes by

perturbing χ with elements of the topological full group [[α]].

Lemma 6.4. Let x0 ∈ X and let

g =
∑

o(ψ)w=1

1Y (w,h(w)).

Then there exists a homeomorphism σ ∈ [[α]] such that the following conditions are satisfied.

(1) [σ∗χ0∗(1U )]0 = κ0([1U ]0) in K0(A) and [σ∗
ϕχ1∗(1U )]1 = κ1([1U ]1) in K1(A) for all U ∈ Q.

(2) For every U ∈ Q̃ \ {R(Q)}, σ∗
ϕχ1∗(1U ) is equivalent to σ∗

ϕχ1∗(β∗
ψ(1U )) in K1(Ax0).

(3) σ∗
ϕχ1∗(g) is equivalent to hϕ in K1(Ax0).

Proof. We have to remark that (1) is automatically satisfied if we choose σ in [[α]].
At first let us consider (3). Suppose that there exist a homeomorphism γ : Y → X and a

continuous map ω : Y → Z2 such that χ0∗ and χ1∗ are given by

χ0∗(f)(x) = f(γ−1(x))

and
χ1∗(f)(x) = (−1)ωγ−1(x)f(γ−1(x))

for f ∈ C(Y, Z) and x ∈ X. By Lemma 6.2, [g]1 is the unique torsion element of K1(B). Then
κ1([g]1) must be [hϕ]1, because κ1 is an isomorphism. We already have [χ1∗(g)]1 = κ1([g]1) in
K1(A). It follows that χ1∗(g) is equivalent to (2n + 1)hϕ in K1(Ax0) for some n ∈ Z. Choose
w0 ∈ W and y0 ∈ Y such that o(ψ)w0 = 1 and y0 ∈ Y (w0, h(w0)). We have two possibilities:
ω(y0) = 0 or ω(y0) = 1. We assume ω(y0) = 0. The other case can be dealt with in a similar
fashion. We can find a clopen neighborhood O of y0 so that O ⊂ Y (w0, h(w0)) and ω(y) = 0
for all y ∈ O. By Lemma 6.3, we can find a clopen set O′ ⊂ γ(O) such that 1O′ is equivalent to
nhϕ in K1(Ax0). Besides, there exists σ ∈ [[α]] such that σ∗

ϕ(1O′) = −1O′ and σ(x) = x for all
x /∈ O′. Evidently we have σ∗

ϕχ1∗(1U ) = χ1∗(1U ) for all U ∈ Q \ {Y (w0, h(w0))}, because the
support of σ is contained in γ(Y (w0, h(w0))). When U = Y (w0, h(w0)), for x ∈ X,

σ∗
ϕχ1∗(1Y (w0,h(w0)))(x) = (1 − 21O′(x))(−1)ω(γ−1(x))1Y (w0,h(w0))(γ

−1σ−1(x)).

Hence we have
σ∗

ϕχ1∗(1Y (w0,h(w0))) = χ1∗(1Y (w0,h(w0))) − 21O′ .

It follows that
σ∗

ϕχ1∗(g) = χ1∗(g) − 21O′ ,

and this is equivalent to (2n + 1)hϕ − 2nhϕ = hϕ in K1(Ax0). Thus (3) is achieved.
Next, in order to achieve (2), we would like to further perturb σ∗

ϕχ1∗ obtained above. To
simplify the notation, we write σ∗

ϕχ1∗ obtained above by χ1∗. Choose w0 ∈ W arbitrarily. Put
U = Y (w0, h(w0) − 1). Since o(ψ) is constant on U ,

[χ1∗(1U )]1 = [χ1∗(β∗
ψ(1U ))]1.

Therefore there exists m ∈ Z such that χ1∗(1U )+2mhϕ is equivalent to χ1∗(β∗
ψ(1U )) in K1(Ax0).

In a similar fashion to the argument in the preceding paragraph, we can find σ ∈ [[α]] whose
support is contained in γ(U) and σ∗

ϕχ1∗(1U ) is equivalent to χ1∗(1U )+2mhϕ in K1(Ax0). Hence
we can conclude that σ∗

ϕχ1∗(1U ) is equivalent to σ∗
ϕχ1∗(β∗

ψ(1U )) = χ1∗(β∗
ψ(1U )) in K1(Ax0).

By repeating this procedure, we can achieve the condition (2) finally.
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The following technical lemma plays a critical role in the proof of Theorem 6.9.

Lemma 6.5. There exists a homeomorphism σ ∈ [[α]] such that the following conditions are
satisfied.

(a) For every U ∈ Q̃, we have α∗σ∗χ0∗(1U ) = σ∗χ0∗β
∗(1U ).

(b) For every U ∈ Q̃, we have α∗
ϕσ∗

ϕχ1∗(1U ) = σ∗
ϕχ1∗β

∗
ψ(1U ).

Proof. Let x0 ∈ X. By using Lemma 6.4, we can perturb χ : C(Y × T) → C(X × T) with an
element of [[α]] so that the following are satisfied.

(1) [χ0∗(1U )]0 = κ0([1U ]0) in K0(A) and [χ1∗(1U )]1 = κ1([1U ]1) in K1(A) for all U ∈ Q.

(2) For every U ∈ Q̃ \ {R(Q)}, χ1∗(1U ) is equivalent to χ1∗(β∗
ψ(1U )) in K1(Ax0).

(3) χ1∗(g) is equivalent to hϕ in K1(Ax0).

Suppose that there exist a homeomorphism γ : Y → X and a continuous map ω : Y → Z2 such
that χ0∗ and χ1∗ are given by

χ0∗(f)(x) = f(γ−1(x))

and
χ1∗(f)(x) = (−1)ωγ−1(x)f(γ−1(x))

for f ∈ C(Y, Z) and x ∈ X. Let

P = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

be a Kakutani-Rohlin partition for (X, α) such that the roof set R(P) contains x0. By choosing
P sufficiently finer, we may assume the following.

• ωγ−1 is constant on each clopen set belonging to P.

• o(ϕ) is constant on each clopen set belonging to P̃.

• γ−1(X(v, k)) is contained in some Y (w, l) ∈ Q.

Define ω′ ∈ C(X, Z2) as follows. For x ∈ R(P), put ω′(x) = ωγ−1(x). If x ∈ X(v, k) and
k ̸= h(v), then put

ω′(x) = ωγ−1(x) +
h(v)−1−k∑

i=0

o(ϕ)(αi(x)).

We remark that ω′ is also constant on each clopen set of P. It is easy to see that

(α∗
ϕ)h(v)−k(χ1∗(1γ−1(X(v,k)))) = (−1)ω′(x)1X(v,h(v)),

where x is a point in X(v, k). For v ∈ V , w ∈ W , l = 1, 2, . . . , h(w) and c ∈ Z2, let us define a
subset N(v, w, l, c) of {1, 2, . . . , h(v)} by

N(v, w, l, c) = {k = 1, 2, . . . , h(v) : X(v, k) ⊂ γ(Y (w, l)), ω′|X(v,k) = c}.

Then, χ0∗(1Y (w,l)) is equivalent to

∑

v∈V

(#N(v, w, l, 0) + #N(v, w, l, 1))1X(v,h(v))
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in K0(A), and χ1∗(1Y (w,l)) is equivalent to
∑

v∈V

(#N(v, w, l, 0) − #N(v, w, l, 1))1X(v,h(v))

in K1(Ax0). Hence, the conditions (1) and (2) above tell us that, by choosing P sufficiently
finer, for every Y (w, l) ∈ Q̃ \ {R(Q)} and v ∈ V , we have

#N(v, w, l, 0) = #N(v, w, l + 1, 0) and #N(v, w, l, 1) = #N(v, w, l + 1, 1)

if o(ψ)|Y (w,l) = 0, and

#N(v, w, l, 0) = #N(v, w, l + 1, 1) and #N(v, w, l, 1) = #N(v, w, l + 1, 0)

if o(ψ)|Y (w,l) = 1. It follows that there exists a permutation πv on {1, 2, . . . , h(v)} such that the
following holds: if

πv(k) ∈ N(v, w, l, c),

k ̸= h(v) and l ̸= h(w), then

πv(k + 1) ∈ N(v, w, l + 1, c + o(ψ)|Y (w,l)).

Moreover, by (3), we may also assume that, for every v ∈ V ,

∑

o(ψ)w=1

#N(v, w, h(w), 0) − #N(v, w, h(w), 1) =

{
0 o(ϕ)v = 0
1 o(ϕ)v = 1.

Therefore, we can make the permutation πv so that the following hold:

• If πv(k) ∈ N(v, w, h(w), c) and k ̸= h(v), then

πv(k + 1) ∈ N(v, w′, 1, c + o(ψ)|Y (w,h(w)))

for some w′ ∈ W .

• πv(h(v)) ∈ N(v, w, h(w), 0) for some w ∈ W .

Notice that the latter condition implies

ω′|X(v,πv(1)) = o(ψ)|R(Q) + o(ϕ)v

for all v ∈ V .
We define σ ∈ [[α]] by

σ(x) = αk−πv(k)(x)

for x ∈ X(v, πv(k)). Then one can verify that

γ−1σ−1ασγ(U) = β(U)

for all U ∈ Q̃, which means (a).
Define θ : X → Z2 by

θ(x) = ωγ−1(x) + ω′(x) + ω′(σ−1(x))

for x ∈ X. Then it is easily verified that

σ∗
ϕχ1∗(f)(x) = (−1)θ(x)f(γ−1σ−1(x))
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for every f ∈ C(Y, Z) and x ∈ X.
Let us check the condition (b). For every U ∈ Q̃ and x ∈ X, we have

(α∗
ϕσ∗

ϕχ1∗)(1U )(α(x)) = (−1)o(ϕ)(x)(σ∗
ϕχ1∗)(1U )(x)

= (−1)o(ϕ)(x)+θ(x)1U (γ−1σ−1(x)).

On the other hand,

(σ∗
ϕχ1∗β

∗
ψ)(1U )(α(x)) = (−1)o(ψ)|U (σ∗

ϕχ1∗)(1β(U))(α(x))

= (−1)o(ψ)|U+θ(α(x))1β(U)(γ
−1σ−1α(x)).

Since γ−1σ−1ασγ(U) = β(U), γ−1σ−1(x) belongs to U if and only if γ−1σ−1α(x) belongs to
β(U). Thus, it suffices to show

o(ϕ)(x) + θ(x) = o(ψ)|U + θ(α(x))

for x ∈ σγ(U).
Let x ∈ X(v, k). We would like to compute θ(α(x)) + o(ϕ)(x) + θ(x). Suppose k ̸= h(v) and

πv(k) ∈ N(v, w, l, c). Then

θ(x) = ωγ−1(x) + ω′(x) + ω′(απv(k)−k(x)) = ωγ−1(x) + ω′(x) + c.

By the construction of πv, we have

πv(k + 1) ∈ N(v, w, l + 1, c + o(ψ)|Y (w,l))

if l ̸= h(w), and
πv(k + 1) ∈ N(v, w′, 1, c + o(ψ)|Y (w,h(w)))

for some w′ ∈ W if l = h(w). In either case, we get

θ(α(x)) = ωγ−1(α(x)) + ω′(α(x)) + c + o(ψ)|Y (w,l).

It follows that
θ(α(x)) + o(ϕ)(x) + θ(x) = o(ψ)|Y (w,l).

If k = h(v), then α(x) belongs to X(v′, 1) for some v′ ∈ V . Since ωγ−1(x) = ω′(x), we have

θ(x) = ω′|X(v,πv(h(v))) = 0.

On the other hand,
θ(α(x)) = o(ϕ)v′ − o(ϕ)|R(P) + ω′|X(v′,πv′ (1))

.

Together with o(ϕ)(x) = o(ϕ)|R(P), we obtain

θ(α(x)) + o(ϕ)(x) + θ(x) = o(ϕ)v′ + ω′|X(v′,πv′ (1))
= o(ψ)R(Q).

Consequently we have
θ(α(x)) + o(ϕ)(x) + θ(x) = o(ψ)|U

for all U ∈ Q̃ and x ∈ σγ(U), which implies the condition (b).

Lemma 6.6. Suppose that both (X × T, α × ϕ) and (Y × T, β × ψ) are rigid. For any finite
subset F of C(Y ×T) and ε > 0, there exist a unitary v ∈ A, a homeomorphism γ : Y → X and
a continuous map ω : Y → Isom(T) such that

∥vΨ(f)v∗ − f ◦ (γ × ω)−1∥ < ε

for all f ∈ F .
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Proof. We may assume that F is of the form F = {1U : U ∈ Q} ∪ {z}, where Q is a clopen
partition of Y . There exist a unitary v0 ∈ A and a homeomorphism γ×ρ : Y ×T → X ×T such
that

∥v0Ψ(f)v∗0 − f ◦ (γ × ρ)−1∥ < 1/4

for all f ∈ F . Put ω(x) = λo(ρx), where λ ∈ Homeo(T) is given by λ(t) = −t for t ∈ T. We can
find a unitary v1 ∈ A such that

v1v0Ψ(1U )v∗0v
∗
1 = 1U ◦ (γ × ω)−1 = 1γ(U)

for all U ∈ Q. Note that

[v1v0Ψ(z1U )v∗0v
∗
1]1 = [z1U ◦ (γ × ω)−1]1

in K1(A) for all U ∈ Q. Since the system is rigid, every invariant measure is the product of
a measure on the Cantor set and the Lebesgue measure on T. Hence, for every tracial state
τ ∈ T (A) and every n ∈ Z \ {0} we have

τ(v1v0Ψ(zn1U )v∗0v
∗
1) = 0

and
τ(zn1U ◦ (γ × ω)−1) = 0.

The tracial rank of 1UA1U is zero, and so U(A)/CU(A) = U(A)/U0(A). Therefore we can apply
Corollary 3.13 and get a unitary vU ∈ 1UA1U such that

∥vUv1v0Ψ(z1U )v∗0v
∗
1v

∗
U − z1U ◦ (γ × ω)−1∥ < ε.

Let v2 be the direct sum of all the vU ’s. Then v = v2v1v0 does the work.

Lemma 6.7. Suppose that (X × T, α × ϕ) and (Y × T, β × ψ) are C∗-strongly approximately
conjugate. Let Q be a Kakutani-Rohlin partition of Y such that o(ψ) is constant on each clopen
set of Q̃. For any ε > 0, there exist a unitary v ∈ A, a homeomorphism γ ×ω : Y ×T → X ×T
and a continuous function ξ : Y → T such that the following are satisfied.

(1) ∥vΨ(f)v∗ − f ◦ (γ × ω)−1∥ < ε for all f ∈ {1U : U ∈ Q} ∪ {z}.

(2) γ−1αγ(U) = β(U) for all U ∈ Q̃.

(3) ϕγ(y)(ωy(t)) = ωγ−1αγ(y)(ψy(t)) + ξ(y) for all (y, t) ∈ Y × T.

Proof. We may assume that ε is less than 1/4. Since (X ×T, α×ϕ) and (Y ×T, β ×ψ) are C∗-
strongly approximately conjugate, there exist a unitary v1 and a homeomorphism γ0 : Y ×T →
X × T such that

∥v1Ψ(f)v∗1 − f ◦ γ−1
0 ∥ < ε

for all f ∈ {1U : U ∈ Q} ∪ {z}. From Lemma 6.6, we may assume that γ0 arises from a cocycle
with values in Isom(T). By Lemma 6.5, we obtain an element of the topological full group [[α]]
which satisfies (a) and (b) in Lemma 6.5. There exists a unitary v2 ∈ A which corresponds to
this element. Let σ0 ∈ [[α × ϕ]] be the homeomorphism on X × T induced by v2. Then

∥v2v1Ψ(f)v∗1v
∗
2 − f ◦ γ−1

0 σ−1
0 ∥ < ε

for all f ∈ {1U : U ∈ Q} ∪ {z}. Put v = v2v1 and γ × ω = σ0γ0. The condition (a) of Lemma
6.5 implies (2) directly. The condition (b) of Lemma 6.5 implies that, for every U ∈ Q̃,

z1U ◦ (γ × ω)−1 ◦ (α × ϕ)−1
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and
z1U ◦ (β × ψ)−1 ◦ (γ × ω)−1

have the same K1-class in K1(C(X × T)). Since ϕ, ω and ψ take their values in Isom(T), there
must exist a continuous function ξ : U → T such that

ϕγ(y)(ωy(t)) = ωγ−1αγ(y)(ψy(t)) + ξ(y)

for all (y, t) ∈ U × T.

Lemma 6.8. Suppose that (X × T, α × ϕ) is rigid. For any ξ ∈ C(X, T), ε > 0 and a finite
subset F ⊂ C(X × T), there exists a unitary w ∈ A such that

∥vjα(f)v∗ − jα(f ◦ (id×Rξ)−1)∥ < ε

for all f ∈ F .

Proof. Consider the monomorphism λ : C(X × T) → A defined by λ(f) = jα(f ◦ (id×Rξ)−1)
for f ∈ C(X × T). Then [jα] = [λ] in KL(C(X × T), A). Since (X × T, α × ϕ) is rigid, every
invariant measure has the form µ × m, where µ is an α-invariant measure on X and m is the
Lebesgue measure on T (see Lemma 4.4 of [LM2]). Since m is invariant under rotations, for any
τ ∈ T (A), we have

τ(jα(f)) = τ(λ(f))

for all f ∈ C(X × T). Again, since (X × T, α × ϕ) is rigid, tracial rank of A is zero. Therefore
U(A)/CU(A) = K1(A). Thus, by Theorem 3.15, there is a unitary v ∈ A such that

∥vjα(f)v∗ − λ(f)∥ < ε

for all f ∈ F . The proof is completed.

Note that in the following statement, we do not assume that both systems are non-orientation
preserving.

Theorem 6.9. Suppose that (X × T, α × ϕ) and (Y × T, β × ψ) are C∗-strongly approximately
flip conjugate and that both systems are minimal and rigid. Then there exist an isomorphism
Ψ : B → A, a sequence of unitaries vn ∈ A and a sequence of homeomorphisms σn : X × T →
Y × T such that the following conditions are satisfied.

(1) limn→∞∥vnΨ(f)v∗n − f ◦ σn∥ = 0 for all f ∈ C(Y × T).

(2) limn→∞∥f ◦ σn(α × ϕ)σ−1
n − f ◦ β × ψ∥ = 0 for all f ∈ C(Y × T).

Proof. Let Ψ : B → A be the isomorphism associated with the C∗-strongly approximate conju-
gacy. Take ε > 0 arbitrarily. Fix a finite subset F ⊂ C(Y × T). Without loss of generality, we
may assume that F = {1U : U ∈ Q̃} ∪ {z} for some Kakutani-Rohlin partition

Q = {Y (w, l) : w ∈ W, 1 ≤ l ≤ h(w)}

for (Y, β). It suffices to show that there exist a unitary v ∈ A and a homeomorphism σ : X×T →
Y × T such that

∥vΨ(f)v∗ − f ◦ σn∥ < ε

and
∥f ◦ σn(α × ϕ)−1σ−1

n − f ◦ (β × ϕ)−1∥ < ε
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for all f ∈ {1U : U ∈ Q̃} ∪ {z}.
It follows from Lemma 2.4 and 2.5 of [LM2] that, if the system is orientation preserving,

then K1 of the crossed product is torsion free, and if the system is not orientation preserving,
then K1 must contain a torsion. Thus, we have two cases: both α×ϕ and β ×ψ are orientation
preserving, or neither of them are so.

Let us consider the non-orientation preserving case. By Lemma 6.7, we can find a unitary
v1 ∈ A, a homeomorphism γ×ω : Y ×T → X×T and a continuous function ξ : Y → T satisfying
the following.

• ∥v1Ψ(f)v∗1 − f ◦ (γ × ω)−1∥ < ε/2 for all f ∈ {1U : U ∈ Q} ∪ {z}.

• γ−1αγ(U) = β(U) for all U ∈ Q̃.

• ϕγ(y)(ωy(t)) = ωγ−1αγ(y)(ψy(t)) + ξ(y) for all (y, t) ∈ Y × T.

By applying Lemma 6.2 of [LM2] to the continuous functions

X ∋ x 7→ (−1)o(ϕ)(x)ξ(γ−1(x)) ∈ T

and o(ϕ) : X → Z2, we obtain η ∈ C(X, T) such that

|(−1)o(ϕ)(x)ξ(γ−1(x)) + η(x) − (−1)o(ϕ)(x)η(α(x))| < ε.

Then we have

ϕγ(y)(ωy(t) + η(γ(y)))

= ϕγ(y)(ωy(t)) + (−1)o(ϕ)(γ(y))η(γ(y))

= ωγ−1αγ(y)(ψy(t)) + ξ(y) + (−1)o(ϕ)(γ(y))η(γ(y))
ε≈ ωγ−1αγ(y)(ψy(t)) + η(α(γ(y)))

for all (y, t) ∈ Y × T.
Hence, when we put σ = (γ × ω)−1(id×Rη)−1, one can check

∥f ◦ σ(α × ϕ)−1σ−1 − f ◦ (β × ϕ)−1∥ < ε

for all f ∈ {1U : U ∈ Q̃} ∪ {z}. By applying the lemma above to η and f ◦ (γ × ω)−1 for
f ∈ {1U : U ∈ Q̃} ∪ {z}, we can find a unitary v2 ∈ A such that

∥v2v1Ψ(f)v∗1v
∗
2 − f ◦ σ∥ < ε

for all f ∈ {1U : U ∈ Q̃} ∪ {z}. Thus, we get the unitary v = v2v1.
We now turn to the orientation preserving case. We may assume that ϕ and ψ take their

values in rotations on T. The isomorphism Ψ induces a unital order isomorphism Ψ∗0 between
K0(A) ∼= K0(X, α)⊕Z and K0(B) ∼= K0(Y, β)⊕Z. By the definition of C∗-strongly approximate
conjugacy, we see that the restriction of Ψ∗0 on K0(Y, β) gives a unital order isomorphism from
K0(Y, β) onto K0(X, α). We can identify K1(A) and K1(B) with K0(X, α)⊕Z and K0(Y, β)⊕Z
respectively. Since both A and B have tracial rank zero, by [L1], there exists an isomorphism
Φ : B → A such that Φ0∗ = Ψ0∗ and Φ1∗ = κ ⊕ id.

By [LM1, Theorem 5.4] or [M2, Theorem 3.4], there exists a homeomorphism γ : Y → X
such that γ−1αγ(U) = β(U) for every U ∈ Q and κ([1U ]) = [1γ(U)] for every clopen subset U of
Y . Define a continuous function ξ : Y → T by

ξ(y) = ϕγ(y)(0) − ψy(0)
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for all y ∈ Y . By applying [LM2, Lemma 6.1] to the continuous function ξ ◦ γ−1 : X → T, we
obtain η ∈ C(X, T) such that

|ξ(γ−1(x)) + η(x) − η(α(x))| < ε

for all x ∈ X. Then we have

η(γ(y)) + ϕγ(y)(0) = η(γ(y)) + ξ(y) + ψy(0)
ε≈ ψy(0) + η(α(γ(y)))

for all y ∈ Y . Therefore, when we put σ = (γ × Rη)−1, one can check

∥f ◦ σ(α × ϕ)−1σ−1 − f ◦ (β × ϕ)−1∥ < ε

for all f ∈ {1U : U ∈ Q̃} ∪ {z}. It is easily verified that Φ0∗([1U ]) = [1U ◦ σ] in K0(A) and
Φ1∗([z1U ]) = [z1U ◦ σ] in K1(A) for each clopen subset U of Y . By a similar argument to the
proof of Lemma 6.6, we can find a unitary v ∈ A such that

∥vΦ(f)v∗ − f ◦ σ∥ < ε

for finitely many f ∈ C(Y × T), thereby completing the proof.

7 Approximate K-conjugacy for minimal rigid systems

The purpose of this section is to present a K-theoretical condition for which two minimal systems
(X × T, α × ϕ) and (Y × T, β × ψ) are approximately K-conjugate.

We first start with the following definition.

Definition 7.1. Let (X, α) and (Y, β) be dynamical systems and put A = C∗(X,α) and
B = C∗(Y, β). We say that (X, α) and (Y, β) are approximately K-conjugate if there are
homeomorphisms σn : X → Y and γn : Y → X such that

lim
n→∞

∥g ◦ σn ◦ α ◦ σ−1
n − g ◦ β∥ = 0 for all g ∈ C(Y ),

lim
n→∞

∥f ◦ γn ◦ β ◦ γ−1
n − f ◦ α∥ = 0 for all f ∈ C(X),

and there are isomorphisms ψn : B → A and ϕn : A → B such that

lim
n→∞

∥jβ(f ◦ γn) − ϕn(jα(f))∥ = 0 and lim
n→∞

∥jα(g ◦ σn) − ψn(jβ(g))∥ = 0

for all f ∈ C(X) and g ∈ C(Y ). Moreover, there exists κ ∈ KL(A,B) and an isomorphism

κ̃ : (K0(A), K0(A)+, [1A],K1(A), T (A)) → (K0(B),K0(B)+, [1B],K1(B), T (B))

such that κ induces κ̃ on K∗(A), [ϕn] = κ and [ψn] = κ−1.

Remark 7.2. Several remarks about the approximate K-conjugacy are in order.
First, if α and β are actually conjugate, then there exists a homeomorphism σ : X → Y

such that σ ◦ α ◦ σ−1 = β. Define Φ(
∑

−L≤j≤L fju
j
α) =

∑
−L≤j≤L fj ◦ σ−1uj

β for fj ∈ C(X),
−L ≤ j ≤ L. It is clear that Φ gives an isomorphism from A onto B. Therefore certainly that α
and β are conjugate implies that they are approximately K-conjugate.

Second, when TR(A) = TR(B) = 0 (as the case that we study in this section), one
only needs to require that κ induces an order isomorphism: (K0(A),K0(A)+, [1A],K1(A)) →
(K0(B),K0(B)+, [1B],K1(B)).
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Third, if we simply require that g ◦ σn ◦ α ◦ σ−1
n → g ◦ β and f ◦ γn ◦ β ◦ γ−1

n → f ◦ α for
all f ∈ C(X) and g ∈ C(Y ), then {σn} and {γn} may have no consistent information. In fact,
it was shown in [LM1] that this requirements are too weak to be interesting enough in general.
For example, given a projection p ∈ C(Y ), we certainly wish that [jα(p ◦ σn)] eventually gives
the same element in K0(A). These K-theoretical consistency on the maps σn eventually leads
to the above definition. The reader may notice that when Ki(A), Ki(B), Ki(C(X)), Ki(C(Y ))
(i = 0, 1) are torsion free (and X and Y are connected), Definition 7.1 can be greatly simplified
further.

Theorem 7.3. Let X and Y be the Cantor sets and let (X × T, α × ϕ) and (Y × T, β × ψ) be
two minimal rigid systems. Let A = C∗(X ×T, α×ϕ) and B = C∗(Y ×T, β ×ψ). Suppose that
ϕx, ψy ∈ Isom(T) for each x ∈ X and y ∈ Y. Then the following are equivalent.

(1) (X × T, α × ϕ) and (Y × T, β × ψ) are approximately K-conjugate;

(2) There exists an isomorphism

κ : (K0(A),K0(A)+, [1A],K1(A)) → (K0(B), K0(B)+, [1B],K1(B)),

and sequences of isomorphisms χn : C(X×T) → C(Y ×T) and χ′
n : C(Y ×T) → C(X×T)

such that, for every finitely generated subgroups Gi ⊂ Ki(C(X × T)) and Fi ⊂ Ki(C(Y ×
T)),

κ ◦ (jα)∗|Gi = (jβ ◦ χn)∗|Gi and κ−1 ◦ (jβ)∗|Fi = (jα ◦ χ′
n)∗|Fi

for i = 0, 1 and all sufficiently large n;

(3) There exists an isomorphism Φ : B → A, sequences of unitaries {un} ⊂ A, {vn} ⊂ B and
sequences of homeomorphisms σn : X × T → Y × T and γn : Y × T → X × T such that

lim
n→∞

∥unΦ(jβ(g))u∗
n − jα(g ◦ σn)∥ = 0

and
lim

n→∞
∥g ◦ σn ◦ (α × ϕ) ◦ σ−1

n − g ◦ (β × ψ)∥ = 0

for all g ∈ C(Y × T), and

lim
n→∞

∥vnΦ−1(jα(f))v∗n − jβ(f ◦ γn)∥ = 0

and
lim

n→∞
∥f ◦ γn ◦ (β × ψ) ◦ γ−1

n − f ◦ (α × ϕ)∥ = 0

for all f ∈ C(X × T).

Proof. (1)⇒(2). This can be verified directly from Definition 7.1.
(2)⇒(3). We first note that, either both K1(A) and K1(B) are torsion free or both has

torsion. By Lemma 2.4 and 2.5 of [LM2], we note that either both α × ϕ and β × ψ are
orientation preserving or both are non-orientation preserving.

It follows from Corollary 5.6 that TR(A) = TR(B) = 0. It then follows from [L1] that there
exists an isomorphism Φ : A → B such that Φ induces κ. Define Σn : C(X × T) → B by
Σn(f) = jβ ◦ χn(f). Then, by the assumption, one has, for each finitely generated subgroup
Gi ⊂ Ki(C(X × T)) (i = 0, 1),

(Φ ◦ jα)∗|Gi = (Σn)∗|Gi
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for all sufficiently large n. Let P0 be a set of projections in C(X ×T) which generates G0. Thus,
for any projection p ∈ P0, [Φ ◦ jα(p)] = [Σn(p)]. In particular, for any τ ∈ T (B),

τ(Φ(jα(p)) = τ(Σn(p)).

Since both systems are rigid and ϕx, ψy ∈ Isom(T), each invariant measure has the form µ×m,
where m is the normalized Lebesgue measure on T. It follows that

τ(Φ(jα(f))) = lim
n→∞

τ(Σn(f))

for all f ∈ C(X × T) and τ ∈ T (B). Note in the case that TR(B) = 0 U(B)/CU(B) =
U(B)/U0(B) = K1(B). Thus, by applying Corollary 3.16, we obtain a sequence of unitaries
wn ∈ U(B) such that

lim
n→∞

∥wnΦ(jα(f))w∗
n − jβ ◦ χn(f)∥ = 0

for all f ∈ C(X ×T). Exactly the same argument gives a sequence of unitaries vn ∈ B such that

lim
n→∞

∥vnΦ−1(jβ(g))v∗n − jα ◦ χ′
n(f)∥ = 0

for all g ∈ C(Y × T). It follows from Theorem 6.9 that (3) holds.
(3)⇒(1). This is immediate.

Remark 7.4. Consider the case that both α×ϕ and β×ψ are orientation preserving. It follows
from [LM2, Lemma 2.4] that Ki(A) = K0(X, α) ⊕ Z and Ki(B) = K0(Y, β) ⊕ Z for i = 0, 1.
Moreover, the embedding K0(X, α) → K0(A) is an order isomorphism. Suppose that there
exists an isomorphism

κ : (K0(A),K0(A)+, [1A]) → (K0(B),K0(B)+, [1B])

such that κ0 ◦ (jα)∗0 maps K0(C(X × T)) ∼= K0(C(X)) onto (jβ)∗0(K0(C(Y × T))). Thus, the
restriction of κ0 to K0(X,α) ⊂ K0(A) gives a unital order isomorphism. Then, by Theorem
2.6 of [LM1], one has an isomorphism λ : C(X) → C(Y ) such that (jβ)∗0 ◦ λ∗0 = κ ◦ (jα)∗0.
Note that, in the orientation preserving case, we have K1(A) ∼= K0(A) and K1(B) ∼= K0(B).
Define χ = λ × id . Then it follows that κ ◦ (jα)∗i = (jβ ◦ χ)∗i for i = 0, 1. One also has
κ−1 ◦ (jβ)∗i = (jα ◦ χ−1)∗i for i = 0, 1.

Thus if α×ϕ and β×ψ are assumed to preserve the orientation, Theorem 7.3 can be replaced
by the following corollary.

Corollary 7.5. Let X and Y be the Cantor sets and let (X × T, α × Rξ) and (Y × T, β × Rζ)
be two minimal rigid systems, where ξ ∈ C(X, T) and ζ ∈ C(Y, T). Let A = C∗(X × T, α × Rξ)
and B = C∗(Y × T, β × Rζ). Then the following are equivalent.

(1) (X × T, α × Rξ) and (Y × T, β × Rζ) are approximately K-conjugate;

(2) There is an isomorphism

κ : (K0(A),K0(A)+, [1A]) → (K0(B),K0(B)+, [1B])

such that κ0 maps (jα)∗(K0(C(X × T))) onto (jβ)∗(K0(C(Y × T)));
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(3) There exists an isomorphism Φ : B → A, sequences of unitaries {un} ⊂ A, {vn} ⊂ B and
sequences of homeomorphisms σn : X × T → Y × T and γn : Y × T → X × T such that

lim
n→∞

∥unΦ(jβ(g))u∗
n − jα(g ◦ σn)∥ = 0

and
lim

n→∞
∥g ◦ σn ◦ (α × Rξ) ◦ σ−1

n − g ◦ (β × Rζ)∥ = 0

for all g ∈ C(Y × T), and

lim
n→∞

∥vnΦ−1(jα(f))v∗n − jβ(f ◦ γn)∥ = 0

and
lim

n→∞
∥f ◦ γn ◦ (β × Rζ) ◦ γ−1

n − f ◦ (α × Rξ)∥ = 0

for all f ∈ C(X × T).

Remark 7.6. Let (X,α) and (Y, β) be two minimal dynamical systems and let A = C∗(X, α)
and B = C∗(Y, β). Let σn : X → Y and γn : Y → X be homeomorphisms such that

lim
n→∞

∥g ◦ σn ◦ α ◦ σ−1
n − g ◦ β∥ = 0

and
lim

n→∞
∥f ◦ γn ◦ β ◦ γ−1

n − f ◦ α∥ = 0

for all f ∈ C(X) and g ∈ C(Y ). In Definition 7.1, we required that there exist isomorphisms
which satisfy other requirements.

However, since A and B are nuclear, as in Proposition 3.2 of [LM1], there are sequential
morphisms ψn : B → A and ϕn : A → B such that

lim
n→∞

∥∥∥∥∥ψn(
n∑

i=−m

giu
i
β) −

n∑

i=−m

gi ◦ σnui
α

∥∥∥∥∥ = 0

and

lim
n→∞

∥∥∥∥∥ϕn(
n∑

i=−m

fiu
i
α) −

n∑

i=−m

fi ◦ γnui
β

∥∥∥∥∥ = 0,

where fi ∈ C(X) and gi ∈ C(Y ). Unfortunately, in general, {ϕn} and {ψn} do not give
isomorphisms (not even homomorphisms).

Suppose that, for any projection p ∈ A and any unitary w ∈ A, we have [ϕn(p)] = [ϕm(p)]
and [ϕn(w)] = [ϕm(w)] for all sufficiently large n and m. Also assume that {ϕn} induces an order
isomorphism κ0 : K0(A) → K0(B) and an isomorphism κ1 : K1(A) → K1(B). If we assume that
TR(A) = TR(B) = 0, then it follows from [L1] that there is an isomorphism Φ : A → B such
that Φ∗i = κi for i = 0, 1. Suppose also that, for each projection q ∈ B and each unitary v ∈ B,
we have [ψn(q)] = [ψm(q)] and [ψn(v)] = [ψm(v)] for all sufficiently large n and m. Then, from
ϕn(jα(f)) − jβ(f ◦ γn) → 0 and ψn(jβ(g)) − jα(g ◦ σn) → 0, one sees that, for every finitely
generated subgroups Gi ⊂ Ki(C(X × T)) and Fi ⊂ Ki(C(Y × T)),

κi ◦ (jα)∗i|Gi = (jβ ◦ γn)∗i|Gi and κ−1
i ◦ (jβ)∗i|Fi = (jα ◦ σn)∗i|Fi

for i = 0, 1.

Therefore we have the following proposition which also explains why we choose the term
approximately K-conjugacy.
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Proposition 7.7. Let X and Y be the Cantor sets and let (X × T, α × ϕ) and (Y × T, β × ψ)
be two minimal rigid systems. Suppose that ϕx and ψy are in Isom(T) for each x ∈ X and
y ∈ Y. Denote A = C∗(X × T, α × ϕ) and B = C∗(Y × T, β × ψ). Then, α × ϕ and β × ψ are
approximately K-conjugate if the following hold:

(1) There are homeomorphisms σn : X → Y and γn : Y → X such that

lim
n→∞

∥g ◦ σn ◦ α ◦ σ−1
n − g ◦ β∥ = 0

and
lim

n→∞
∥f ◦ γn ◦ β ◦ γ−1

n − f ◦ α∥ = 0

for all f ∈ C(X) and g ∈ C(Y ).

Suppose that Φn : A → B and Ψn : B → A are the sequential morphisms induced by {σn}
and {γn} as defined in Remark 7.6.

(2) For any projection p ∈ A and unitary v ∈ A, [Φn(p)] = [Φm(p)] and [Φn(v)] = [Φm(v)] for
all sufficiently large n and m, and {Φn} gives a unital order isomorphism κi : Ki(A) →
Ki(B), and

(3) for any projection q ∈ B and unitary w ∈ B, [Ψn(q)] = [Ψm(q)] and [Φn(w)] = [Φm(w)]
for all sufficiently large n and m, and {Ψn} gives κ−1

i (i = 0, 1).

8 Examples

In this section, we will give two examples. One example shows that two minimal systems
are approximately K-conjugate but not flip conjugate. Another example shows that there are
minimal systems whose associated crossed products are isomorphic as C∗-algebras (and they are
weakly approximately conjugate) but they are not approximately K-conjugate.

Example 8.1. Let (Y, β) be the odometer system of type 5∞. Let (X, α) be the Cantor minimal
system described by Figure 2 in [M1, Section 7]. Since both K0(X, α) and K0(Y, β) are unital
order isomorphic to (Z[1/5], Z[1/5]+, 1), they are strong orbit equivalent. But, they are not flip
conjugate. Define c : X → Z2 by c(x) = 1 for all x ∈ X. Then [c] is a nontrivial element of
K0(X, α)⊗Z2

∼= Z2. As explained in [M1, Section 7], the skew product extension (X×Z2, α×c)
is a Cantor minimal system and K0(X × Z2, α × c) is also isomorphic to Z[1/5]. Besides, the
canonical inclusion map K0(X, α) into K0(X × Z2, α × c) is given by r 7→ 2r. Thus, we have

K0(X × Z2, α × c)/K0(X, α) ∼= Z2.

Notice that, if we replace (X,α) with (Y, β), we obtain exactly the same conclusion.
Let ξ : X → T and ζ : Y → T be continuous functions and put ϕx = Rξ(x)λ and ψy = Rζ(y)λ

for all x ∈ X and y ∈ Y , where λ ∈ Homeo(T) is defined by λ(t) = −t. Suppose that α×ϕ and
β×ψ are minimal and rigid. We denote A = C∗(X×T, α×ϕ) and B = C∗(Y ×T, β×ψ). It follows
from Corollary 5.6 that both A and B have tracial rank zero. By Lemma 2.5 of [LM2], K0(A)
and K0(B) are unital order isomorphic to K0(X, α) ∼= K0(Y, β), and K1(A) ∼= K1(B) ∼= Z⊕Z2.
Therefore A is isomorphic to B. We remark that [z1U ] is nonzero in the K1-group if and only
if [1U ] is not 2-divisible in the K0-group.

Since K0(X, α) is unital order isomorphic to K0(Y, β), there exists an isomorphism ρ :
C(X) → C(Y ) which achieves the order isomorphism K0(X, α) ∼= K0(Y, β), that is, [1U ] 7→
[ρ(1U )] gives the order isomorphism. (See [LM1, Theorem 2.6 (3)] for example. Although we
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only constructed an order isomorphism from C(X, Z) to C(Y, Z) there, it can be extended to
the isomorphism ρ.) Then, we can check the condition (2) of Theorem 7.3 and conclude that
α × ϕ and β × ψ are approximately K-conjugate. But, they are not flip conjugate because α is
not flip conjugate to β.

To present examples of two minimal rigid systems whose associated crossed products are
isomorphic but they are not approximately K-conjugate, by applying 7.3 and by applying the
classification of unital simple separable amenable C∗-algebras with tracial rank zero, one only
needs to construct two systems whose K-theory of the associated crossed products are unital
order isomorphic but no χn makes the following diagram

K∗(Aα) κ−−−−→ K∗(Aβ)

(jα)∗

x
x(jβ)∗

K∗(C(X × T))
(χn)∗−−−−→ K∗(C(Y × T))

commute (locally). In the orientation preserving cases, such examples have been given ([LM2,
Example 9.2]). In what follows, we construct two non-orientation preserving minimal rigid
systems whose crossed products are isomorphic but they are not approximately K-conjugate.
Besides, we construct them so that they are also weakly approximately conjugate.

Example 8.2. Let θ1, θ2 ∈ (0, 1) be two irrational numbers which are linearly independent over
Q. By cutting T at nθ1 and θ2 + nθ1 for every n ∈ Z, we get a Cantor set X. Let us denote the
θ1-rotation on X by α. Then (X, α) is a Cantor minimal system and K0(X, α) is unital order
isomorphic to

(Z + Zθ1 + Zθ2, (Z + Zθ1 + Zθ2)+, 1).

By cutting T at nθ2 and θ1 + nθ2 for every n ∈ Z, we get another Cantor set Y . Let us denote
the θ2-rotation on Y by β. Then (Y, β) is also a Cantor minimal system and K0(Y, β) is unital
order isomorphic to K0(X,α). Hence (X, α) and (Y, β) are strong orbit equivalent.

Let U ⊂ X be a clopen subset corresponding to [0, θ1). Define a continuous function c : X →
Z2 by c(x) = 1 if and only if x ∈ U . The skew product extension (X × Z2, α × c) is a Cantor
minimal system. By the computation in (2) of [M1, Section 7], we see that K0(X × Z2, α × c)
is isomorphic to Z5 and

K0(X × Z2, α × c)/K0(X, α) ∼= Z2 ⊕ Z2.

Let ξ : X → T be a continuous function and put ϕx = Rξ(x)λ
c(x) for all x ∈ X. Suppose that

α × ϕ is minimal and rigid. Denote A = C∗(X × T, α × ϕ). By Lemma 2.5 of [LM2], we have
K0(A) ∼= K0(X, α) and K1(A) ∼= Z ⊕ Z2 ⊕ Z2.

Let V ⊂ Y be a clopen subset corresponding to [0, θ2). By the same way as in the preceding
paragraph, we consider a minimal rigid homeomorphism β × ψ such that o(ψ)(y) = 1 if and
only if y ∈ V . We write B = C∗(Y × T, β × ψ). By Lemma 2.5 of [LM2], we also have
K0(B) ∼= K0(Y, β) and K1(B) ∼= Z ⊕ Z2 ⊕ Z2. It follows from Corollary 5.6 that both A and B
have tracial rank zero. Hence A and B are isomorphic.

It can be easily seen that PS(α) = PS(β) = PS(α × o(ϕ)) = PS(β × o(ψ)) = {1}, where
PS(·) denotes the set of periodic spectrum. Therefore, from Corollary 4.10 of [M2], α × ϕ and
β × ψ are weakly approximately conjugate.

Nevertheless, we would like to show that α×ϕ and β×ψ are not approximately K-conjugate.
As in Section 6, we identify Ki(C(X × T)) and Ki(C(Y × T)) with C(X, Z) and C(Y, Z) for
each i = 0, 1. Note that, as explained in Section 6, 1U is a representative of the unique torsion
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element of Coker(id−α∗
ϕ) ⊂ K1(A) and 1V is a representative of the unique torsion element of

Coker(id−β∗
ψ) ⊂ K1(B).

Assume that α×ϕ and β×ψ are approximately K-conjugate. We will show a contradiction.
By Theorem 7.3, there exist isomorphisms

κ : (K0(A),K0(A)+, [1A],K1(A)) → (K0(B),K0(B)+, [1B],K1(B))

and χ : C(X × T) → C(Y × T) such that

κ0 ◦ (jα)0∗(1U ) = (jβ ◦ χ)0∗(1U )

and
κ1 ◦ (jα)1∗(1U ) = (jβ ◦ χ)1∗(1U ).

Since 1U and 1V are representatives of unique torsion elements in the K1-groups, we must have

κ1 ◦ (jα)1∗(1U ) = (jβ ◦ χ)1∗(1U ) = (jβ)1∗(1V ),

which implies
χ1∗(1U ) − 1V ∈ Coker(id−β∗

ψ).

It follows that there exists h : Y → Z such that

χ1∗(1U ) − 1V = h − β∗
ψ(h).

Note that χ1∗(f) − χ0∗(f) belongs to 2C(Y, Z) for all f ∈ C(X, Z). Hence

χ0∗(1U ) − 1V ∈ h − β∗
ψ(h) + 2C(Y, Z).

It is easy to see that β∗
ψ(g) − β∗(g) belongs to 2C(Y, Z) for all g ∈ C(Y, Z), and so we get

χ0∗(1U ) − 1V ∈ h − β∗(h) + 2C(Y, Z).

On the other hand,
κ0 ◦ (jα)0∗(1U ) = (jβ ◦ χ)0∗(1U )

is equal to
θ1 ∈ Z + Zθ1 + Zθ2

∼= K0(B),

because κ0 is a unital order isomorphism. But, 1V corresponds to θ2 in K0(B). It follows that
χ0∗(1U ) − 1V does not belong to 2K0(B). In other words, there does not exist h : Y → Z such
that

χ0∗(1U ) − 1V ∈ h − β∗(h) + 2C(Y, Z),

which is a contradiction.
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