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Abstract

We compute the dimension group of the skew product extension of a Cantor
minimal system associated with a finite group valued cocycle. Using it, we study
finite subgroups in the commutant group of a Cantor minimal system and prove
that a finite subgroup of the kernel of the mod map must be cyclic. Moreover, we
give a certain obstruction for finite subgroups of commutant groups to have non-
zero intersection to the kernel of mod maps. We also give a necessary and sufficient
condition for dimension groups so that the kernel of the mod map can include a
finite order element.

1 Introduction

When X is the Cantor set and φ is a homeomorphism on X which has no non-trivial
invariant closed subset, the topological dynamical system (X,φ) is called a Cantor mini-
mal system. Cantor minimal systems are analogues of ergodic systems in the topological
setting and several authors have studied them in the various ways. Among many subjects
about Cantor minimal systems, the study of automorphism groups is one of the most
mysterious parts. We denote by C(φ) the set of all homeomorphisms on X commut-
ing with φ for a Cantor minimal system (X,φ) and call it the automorphism group or
commutant group of (X,φ). The symbol C(φ) usually means the set of all continuous
maps γ : X → X which commute with φ, but we restrict our attention only on the set
of commuting homeomorphisms in this paper. As φ is minimal, C(φ) acts on X freely.
We denote by Zφ the subgroup generated by φ in C(φ). In the present paper, we give
a new direction in the study of commutant groups, by using dimension groups of Cantor
minimal systems.

The notion of dimension group was introduced for Cantor minimal systems in [HPS]
and this new invariant threw a new light on the study of Cantor minimal systems. Let
(X,φ) be a Cantor minimal system and

Bφ = {f − f ◦ φ−1 ; f ∈ C(X,Z)}
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be the coboundary subgroup of integer valued continuous functions C(X,Z). The dimen-
sion group K0(X,φ) of a Cantor minimal system (X,φ) is the quotient of C(X,Z) by Bφ.
Define the positive cone

K0(X,φ)+ = {[f ] ∈ K0(X,φ) ; f ∈ C(X,Z)+},

where the bracket means the quotient map. The dimension group K0(X,φ) is an ordered
group with this positive cone and the equivalence class [1] of the constant function one is
called the order unit of K0(X,φ). It was proved in [GPS] that K0(X,φ), as an ordered
group with a distinguished order unit, characterizes the strong orbit equivalence class
of (X,φ). The dimension group K0(X,φ) is order isomorphic to the K0-group of the
C∗-algebra C∗(X,φ). In this paper, however, we don’t deal with C∗-algebras.

One of purposes of this paper is to compute the dimension group of the Cantor minimal
system (Y, ψ) arising from the skew product extension of a Cantor minimal system (X,φ)
associated with a finite group valued cocycle. The dimension group of a Cantor minimal
system (X,φ) is usually computed as the inductive limit system arising from the ordered
Bratteli diagram of (X,φ) ([HPS]). Unfortunately, however, there is no explicit way to
write down the ordered Bratteli diagram of the skew product system (Y, ψ) by means of the
ordered Bratteli diagram of the original system (X,φ) and the cocycle. In Theorem 2.5,
we will describe the dimension group K0(Y, ψ) as the quotient of the restricted dimension
group by the canonical infinitesimal subgroup.

Our main tool for the study of commutants is the mod map. Since γ ∈ C(φ) satisfies
g ◦ γ−1 ∈ Bφ for all g ∈ Bφ,

mod(γ)([f ]) = [f ◦ γ−1]

gives rise to an order automorphism of K0(X,φ) preserving the order unit ([GPS2]).
It can be easily checked that the mod map is a group homomorphism from C(φ) to
Aut(K0(X,φ)). We define T (φ) = C(φ)∩ ker mod. In Section 3, we will prove that every
finite subgroup of T (φ) is cyclic. Moreover, we will show that if a finite subgroup G of
C(φ) includes an element of prime order p and it is in T (φ), then the p-Sylow group
of G is cyclic. It should be remarked that every finite group can be embedded into the
commutant group of a Cantor minimal system, which was shown in [LM]. Next, we will
consider when the kernel of the mod map can contain a finite order automorphism, and
give a necessary and sufficient condition for dimension groups. The invariant η defined
in [M] will be computed for finite order elements. Several examples of finite subgroups
of C(φ) and T (φ) are given in Section 4. In our examples, every T (φ) is abelian. As
mentioned above, T (φ) cannot contain non-abelian finite groups. But, we have no idea
to deal with infinite order elements of C(φ). It’s an interesting open problem whether or
not the subgroup T (φ) is always abelian.

Acknowledgments.
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2 Dimension groups of skew products

In this section, we define skew product extensions of Cantor minimal systems associated
with finite group valued cocycles, and give an algorithm of computing the dimension group
of skew product systems.
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Definition 2.1 Let (X,φ) be a Cantor minimal system and G be a finite group.
A continuous map c : X → G is called a G-valued cocycle.
G-valued cocycles c and c′ are cohomologous if there is a continuous map b : X → G

such that b(x)c(x)b(φ(x))−1 = c′(x) holds for all x ∈ X.
Let c : X → G be a cocycle. We set Y = X × G and a homeomorphism ψ on

Y such as ψ(x, g) = (φ(x), gc(φ(x))). This dynamical system (Y, ψ) is called the skew
product extension or extension, simply, of (X,φ) associated with the G-valued cocycle c.
Of course, cohomologous cocycles determine isomorphic systems.

Let (Y, ψ) be the extension of (X,φ) associated with a cocycle c. Obviously, there is a
factor map from (Y, ψ) to (X,φ). For each element h ∈ G, let γh be the homeomorphism
on Y which sends (x, g) to (x, hg). Then {γg}g∈G forms a subgroup of C(ψ) isomorphic
to G. We call this finite subgroup a canonical commutant of the skew product extension.

Notice that the extension (Y, ψ) is not always minimal. For example, when (X,φ) is
an odometer system and G is a finite group and not cyclic, the skew product extension
(Y, ψ) is never minimal for any G-valued cocycle, because every cocycle c : X → G is
cohomologous to a cocycle c′ whose range contains only the identity e and a single element
g. The reader may refer to Section VIII.4 of [D] for odometer systems.

Lemma 2.2 Let (Y, ψ) be a Cantor minimal system and G ⊂ C(ψ) be a finite subgroup.
Then, there exist a Cantor minimal system (X,φ) and a cocycle c : X → G, such that the
extension of (X,φ) by the cocycle c is isomorphic to (Y, ψ) and the subgroup G coincides
with the canonical commutant under this isomorphism.

Proof. Let {γg}g∈G be the finite subgroup of C(ψ). We can consider the quotient system
(X,φ) of (Y, ψ) by the action of {γg}g. Denote the factor map by π. Since Y is the
Cantor set, there exists a clopen subset Y0 such that the restriction π̃ of π on Y0 is a
homeomorphism onto X. Set Yg = γg(Y0) for each g ∈ G. Then, {Yg}g is a clopen
partition of Y and a map ρ sending (x, g) ∈ X × G to γg(π̃

−1(x)) is a homeomorphism.
The minimal homeomorphism ρ−1 ◦ ψ ◦ ρ on X ×G determines a cocycle c : X → G. It
is clear that {γg}g coincides with the canonical commutant. �

We fix a Cantor minimal system (X,φ) and a finite group valued cocycle c : X → G.
Let (Y, ψ) be the extension. We would like to compute the dimension group K0(Y, ψ). In
order to do this, at first, we must represent the system (X,φ) by using an ordered Bratteli
diagram ([HPS]) and fix the notation.

Let B = (V,E,≤) be a simple ordered Bratteli diagram associated with (X,φ), where
V =

⋃∞
n=0 Vn and E =

⋃∞
n=1En are the sets of vertices and edges. We denote the range

and source map by r and s. For every v ∈ V \ V0, a linear order is defined on r−1(v). Let
(e1, e2, · · · , em) be the ordered list of the edges in r−1(v). We define a map θ from V \ V0

to the set of finite sequences consisting of vertices such as θ(v) = (s(e1), s(e2), · · · , s(em)).
In this paper, we use the map θ to describe the partial order on E. We can identify (X,φ)
with the infinite path space of B and the Bratteli-Vershik map on it. For each n ∈ N,
the vertex set Vn corresponds to towers of Kakutani-Rohlin partitions of X. We denote
this partition by

Pn = {X(n, v, k) ; v ∈ Vn, 1 ≤ k ≤ h(v)},
where each X(n, v, k) is the clopen set of level k in the tower corresponding to v and
h : V → N is the height of the tower. Here, we have φ(X(n, v, k)) = X(n, v, k + 1) for
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v ∈ Vn and 0 ≤ k ≤ h(v) − 1. We set

Xn =
⋃

v∈Vn

X(n, v, h(v))

and call it the top set of n-th step. Then, we also get

φ(Xn) =
⋃

v∈Vn

X(n, v, 1).

The sequence of the top sets {Xn}n is decreasing and shrinks to one point set {xmax}.
We also have that Pn+1 is a finer partition than Pn and {Pn}n generates the topology of
X.

Let us recall the way of computing the dimension group K0(X,φ). We denote by
C(Pn) the set of integer valued functions on X which are constant on each clopen set of
Pn. The characteristic functions on the clopen sets contained in the same tower of Pn give
the same element of K0(X,φ). Therefore, we can view that C(Pn) forms a free abelian
group ZVn . We denote the canonical basis of ZVn by the same symbols {v; v ∈ Vn} as
vertices. For each n ∈ N, the edge set En determines the incidence matrix An from ZVn

to ZVn+1 , which is given by

An(v, w) = #{k ; 1 ≤ k ≤ h(w), X(n+ 1, w, k) ⊂ X(n, v, h(v))}

for v ∈ Vn and w ∈ Vn+1. Hence, the dimension group is computed such as

K0(X,φ) = limAn : ZVn → ZVn+1 .

If we set un =
∑

v∈Vn
h(v)v ∈ ZVn for all n ∈ N, we get unAn = un+1 and {un}n is the

order unit of K0(X,φ).
We would like to consider the dimension group of the skew product (Y, ψ). We may as-

sume that the Kakutani-Rohlin partition P1 is finer than the clopen partition determined
by the cocycle c. We can define a map d from V \ V0 to G as follows;

d(v) = c(x)c(φ(x))c(φ2(x)) · · · c(φh(v)−1(x)),

where x is an arbitrary point in X(n, v, 1). We call d(v) the label of the vertex v de-
termined by the cocycle c. Let w be a vertex of Vn+1. If θ(w) = (v1, v2, · · · , vm), we
get

d(w) = d(v1)d(v2) · · · d(vm)

from the definition of d.

Lemma 2.3 In the above setting, the skew product (Y, ψ) is a Cantor minimal system if
and only if {d(v) ; v ∈ Vn} generates G for every n ∈ N.

Proof. Assume {d(v) ; v ∈ Vn} does not generate G for some n. We can replace the
cocycle c to c′, in the same cohomology class, whose range generates a proper subgroup
of G, and so the extension (Y, ψ) is not minimal.

Let us prove the converse. We assume that d(Vn) generates G for all n. We can
identify X and xmax ∈ X with the infinite path space of B = (V,E,≤) and the unique
maximal path. It suffices to show that the set

H = {g ∈ G ; (xmax, g) ∈ Orbψ((xmax, e))}
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coincides with G. Since H is a subgroup of G, it is enough to show that H includes a
generating set of G. Let xmax = (e1, e2, · · ·) and φ(xmax) = (f1, f2, · · ·) be the unique
maximal and minimal paths. We also assume that all maximal edges of En have the same
source vertex as en. Take n ∈ N \ {1, 2} and set θ(r(fn)) = (v1, v2, · · · , vm). When we
define

hi =
i∑

j=1

h(vj), gi = d(v1)d(v2) · · · d(vi)

for i = 1, 2, · · · ,m, we have ψhi(xmax, e) = (φhi(xmax), gi) and the first n − 2 edges of
φhi(xmax) agree with (e1, e2, · · · , en−2). We set Kn = {gi ∈ G ; i = 1, 2, · · · ,m}. From
the assumption, Kn is a generating set of G. Because G is a finite set, there exists a
generating set K of G such that Kn = K holds for infinitely many n. Then we get
(xmax, g) ∈ Orbψ((xmax, e)) for all g ∈ K, and so the proof is completed. �

From now on, we assume that the skew product (Y, ψ) is a Cantor minimal system.
We define Kakutani-Rohlin partitions {Qn}n for (Y, ψ) as the following;

Y (n, v, k, g) = X(n, v, k) × {g},

Qn = {Y (n, v, k, g) ; v ∈ Vn, 1 ≤ k ≤ h(v), g ∈ G},

and we set the top set as

Yn = Xn ×G =
⋃

v∈Vn,g∈G

Y (n, v, h(v), g).

The partition Qn consists of #(Vn ×G) towers, and {Qn}n generates the topology of Y .
However, we should note that the intersection of the top sets {Yn}n is not one point. It
is equal to {xmax} ×G. Therefore, we cannot use the same method as the case of (X,φ).
We need a proposition obtained by Putnam in order to compute the dimension group
K0(Y, ψ).

Proposition 2.4 ([P, Theorem 4.1]) Let (Y, ψ) be a Cantor minimal system and {yi}mi=1

be a finite subset of Y lying in distinct orbits. When we define

D = C(Y,Z)/{f − f ◦ ψ−1 ; f ∈ C(Y,Z), f(yi) = 0 for all i = 1, 2, · · · ,m},

it is an ordered group. Moreover, the sequence

0 → Z
j−→ Zm δ−→ D

q−→ K0(Y, ψ) → 0

is exact, where the map j sends the generator of Z to (1, 1, · · · , 1) and q is the natural
quotient map. The map δ is given as follows; for u = (ui)i ∈ Zm, we take f ∈ C(Y,Z)
such as f(yi) = ui and define δ(u) to be the equivalence class of f − f ◦ ψ−1.

We would like to apply the proposition above for the extension (Y, ψ) and the finite subset
{xmax} ×G. Let us define

K0(Y, ψ;G) = C(Y,Z)/{f − f ◦ ψ−1 ; f ∈ C(Y, ψ), f(xmax, g) = 0 for all g ∈ G},
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and call it the restricted dimension group of (Y, ψ). The restricted dimension group
K0(Y, ψ;G) can be represented as an inductive limit sequence by means of the Kakutani-
Rohlin partitions {Qn}n. At first, we give this description of K0(Y, ψ;G).

Since the partition Qn consists of #(Vn×G) towers, we can consider that C(Qn) forms
a free abelian group ZVn×G ∼= ZVn ⊗ Z[G]. We denote the canonical basis of ZVn ⊗ Z[G]
by {v ⊗ g ; v ∈ Vn, g ∈ G}, and choose the characteristic function on Y (n, v, h(v), g) as
the representative of v ⊗ g. Let us consider the incidence matrix Bn from n-th step to
n + 1-th step. If v ∈ Vn and w ∈ Vn+1 satisfy X(n + 1, w, k) ⊂ X(n, v, h(v)) for some
k ∈ {1, 2, · · · , h(w)}, then, for all g ∈ G, Y (n + 1, w, k, g) ⊂ Y (n, v, h(v), g) holds and
there exists h ∈ G such that ψh(w)−k(Y (n+1, w, k, g)) = Y (n+1, w, h(w), gh). Of course,
if k = h(w), h is the identity. Otherwise, the element h is given by

h = c(x)c(ψ(x))c(ψ2(x)) · · · c(ψh(w)−k−1(x)),

where x is an arbitrary point in X(n + 1, w, k + 1). We would like to write down the
incidence matrix as the matrix the size of Vn × Vn+1 which has entries in the group ring
Z[G]. Let w be a vertex in Vn+1 and assume θ(w) = (v1, v2, · · · , vm). For a vertex v ∈ Vn,
we define non-negative integers {λg}g as follows;

λg = #{i ; 1 ≤ i ≤ m, v = vi, g = d(vi+1)d(vi+2) · · · d(vm)},

and set Bn(v, w) =
∑

g∈G λgg. From the argument above, we see that the matrix Bn

represents the connecting map from n-th step to n+ 1-th step. Then, we get

K0(Y, ψ;G) = limBn : ZVn ⊗ Z[G] → ZVn+1 ⊗ Z[G],

where vectors are considered as row vectors of Z[G]Vn and the product of vectors and
matrices are computed in the obvious way. The positive cone is obtained by the induc-
tive limit of the canonical positive cone of ZVn+1 ⊗ Z[G], and the order unit is given by∑

g∈G un ⊗ g ∈ ZVn+1 ⊗ Z[G] at n-th step.
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Fig. 1

θ(w1) = (v1, v1, v2)
θ(w2) = (v1, v2, v2, v1, v2)
θ(w3) = (v1, v2, v2)

For example, consider the case of the diagram in Fig. 1, where the partial order in the
edge set En is expressed by the map θ. If the label of vi is gi ∈ G for each i = 1, 2, then we
have d(w1) = g1g1g2, d(w2) = g1g2g2g1g2 and d(w3) = g1g2g2. The usual incidence matrix
An : ZVn → ZVn+1 and the incidence matrix Bn : Z[G]Vn → Z[G]Vn+1 of the extension are
given by

An =

[
2 2 1
1 3 2

]
, Bn =

[
g1g2 + g2 g2g2g1g2 + g2 g2g2

e g2g1g2 + g1g2 + e g2 + e

]
.

We can obtain An from Bn, sending each entry of Bn by the canonical ring homomorphism
from Z[G] to Z.
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In order to compute the dimension group K0(Y, ψ), we must describe explicitly the
image of the map δ in Proposition 2.4. We can realize that δ is the map from Z[G]. For
g ∈ G and n ∈ N, let f be the characteristic function on the clopen set Xn × {g}. Then,
we have f(xmax, g) = 1 and f(xmax, h) = 0 for h 6= g, and so the image of g ∈ Z[G] by the
map δ is given by the equivalence class of f − f ◦ ψ−1 in K0(Y, ψ;G). When xv ∈ X is a
point in X(n, v, 1) for each v ∈ Vn, the function f ◦ψ−1 is the characteristic function on the
clopen set

⋃
v∈Vn

Y (n, v, 1, gc(xv)). Since ψh(v)−1(Y (n, v, 1, gc(xv)) = Y (n, v, h(v), gd(v))
for every v ∈ Vn, we can conclude that δ(g) equals

e(n, g) =
∑

v∈Vn

v ⊗ g − v ⊗ gd(v) ∈ ZVn ⊗ Z[G]

at n-th step. The equation e(n, g)Bn = e(n+1, g) can be checked easily, and so {e(n, g)}n
determines a subgroup Z in K0(Y, ψ;G). We denote by Zn the subgroup of ZVn ⊗ Z[G]
generated by {e(n, g) ; g ∈ G}. Remark that

∑
g e(n, g) equals zero for all n.

Theorem 2.5 Keep the above notation. The dimension group K0(Y, ψ) of the skew prod-
uct (Y, ψ) is obtained as the quotient of

K0(Y, ψ;G) = limBn : ZVn ⊗ Z[G] → ZVn+1 ⊗ Z[G]

by the subgroup {Zn}n which is isomorphic to Z#G−1.

Let us consider the action on K0(Y, ψ) induced by the canonical commutant {γg}g. In
the following argument, we use the description of K0(Y, ψ) in the above theorem. Because
γh transfers Y (n, v, h(v), g) to Y (n, v, h(v), hg), the induced action on ZVn ⊗ Z[G] sends
v ⊗ g to v ⊗ hg for all v ∈ Vn and g ∈ G. Assume γh ∈ T (ψ), that is, mod(γh) = id.
Then, for all n ∈ N, v ∈ Vn and g ∈ G, there exists m such that

(v ⊗ (g − hg))BnBn+1 · · ·Bn+m

is contained in Zn+m+1. The following lemma is needed to prove the main theorem in the
next section.

Lemma 2.6 Let (Y, ψ) be the skew product as above and H be a normal subgroup of
G such that mod(γh) = id for all h ∈ H. By telescoping the ordered Bratteli diagram
B = (V,E,≤), we may assume that (v ⊗ (g − hg))Bn ∈ Zn+1 for all v ∈ Vn, g ∈ G and
h ∈ H.

For w ∈ Vn+1, let K be the cyclic subgroup of G generated by d(w). Then, we have
An(v, w) ∈ lZ for all v ∈ Vn, where the natural number l is the index of the subgroup
H ∩K in H.

Proof. Let v be a vertex of Vn, and Bn(v, w) =
∑

g∈G λgg. We will prove
∑

g∈G λg ∈ lZ.
From the assumption, there exists {µg}g∈G ⊂ Z such that

(v ⊗ (e− h))Bn =
∑

g∈G

µge(n+ 1, g),

and so we have
(e− h)

∑

g∈G

λgg =
∑

g∈G

µg(g − gd(w)),
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which implies λg − λh−1g = µg − µgd(w)−1 for all g ∈ G. When we write λ̃g =
∑

k∈K λgk,

we get λ̃g = λ̃hg and this equation holds for all h ∈ H. Let G =
⋃m
i=1HgiK be the

decomposition into double cosets by H and K. Since H is a normal subgroup of G, each
double coset consists of l left K-cosets. Hence, we get

∑
g∈G λg = l

∑m
i=1 λ̃gi

∈ lZ. �

3 Commutants and dimension groups

We will prove the main theorems about finite subgroups of the commutant group in
this section. When a Cantor minimal system (Y, ψ) has a finite subgroup G in C(ψ), by
Lemma 2.2, we can regard it as the skew product extension obtained by a Cantor minimal
system (X,φ) and a cocycle c. Moreover, the dimension group K0(Y, ψ) can be described
as in Theorem 2.5 by means of the ordered Bratteli diagram of (X,φ). We often use this
identification in the following argument.

Lemma 3.1 Let (Y, ψ) be a Cantor minimal system and τ ∈ C(ψ) be an element of finite
order n. If γ ∈ T (ψ) satisfies γ ◦ τ ◦ γ−1 = τ k for some k, then k must be one.

Proof. We may assume there exist a Cantor minimal system (X,φ) and a continuous
function f : X → Z/nZ such that

Y = X × Z/nZ, ψ(x, l) = (φ(x), l + f(x)), τ(x, l) = (x, l + 1)

for all x ∈ X and l ∈ Z/nZ. Let π be the factor map from (Y, ψ) to (X,φ). From the
assumption we have π ◦γ ◦ τ = π ◦γ, and so there exists γ̃ ∈ C(φ) such that γ̃ ◦π = π ◦γ.
We denote by π∗ the injection from K0(X,φ) to K0(Y, ψ) induced by π ([GW, Proposition
3.1]). It can be easily seen that mod(γ) ◦ π∗ = π∗ ◦ mod(γ̃), hence we get mod(γ̃) = id,
thus γ̃ ∈ T (φ). Therefore we can find a continuous function g : X → Z/nZ such as

f − f ◦ γ̃ = g − g ◦ φ.

We define a homeomorphism γ0 on Y = X × Z/nZ by γ0(x, l) = (γ̃(x), l + g(x)) for
(x, l) ∈ Y . It is clear that γ0 commutes with τ . We can also check that π ◦ γ−1 ◦ γ0 = π
and

ψ ◦ γ0(x, l) = (φ ◦ γ̃(x), l + g(x) + f(γ̃(x)))

= (γ̃ ◦ φ(x), l + f(x) + g(φ(x)))

= γ0 ◦ ψ(x, l)

for all (x, l) ∈ Y . Then we conclude that there exists m such that γ−1 ◦ γ0 = τm holds,
which implies that γ commutes with τ . �

The following lemma shows that if T (ψ) contains a finite abelian subgroup H, then
H is cyclic.

Lemma 3.2 Let (Y, ψ) be a Cantor minimal system and G be a finite p-subgroup of C(ψ)
for a prime p. If a normal subgroup H of G is included in T (ψ) and the quotient of G by
H is cyclic, then G is also cyclic.
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Proof. Let ρ be the quotient map from G to G/H. We may consider that (Y, ψ) is
the extension of (X,φ) by a G-valued cocycle c, and (X,φ) is represented by an ordered
Bratteli diagram. We use the same notation as in Section 2. Because {γh}h ∈ H is
contained in T (φ), we may assume (v ⊗ (e− h))B1 ∈ Z2 for all v ∈ V1 and h ∈ H. Since
(Y, ψ) is minimal, d(V2) generates G, which implies that there exists a vertex w ∈ V2 such
that ρ(d(w)) is a generator of the cyclic group G/H. Let K be the cyclic subgroup of G
generated by d(w). By Lemma 2.6, we have A1(v, w) ∈ lZ for every v ∈ V1, where l is the
index of H ∩K in H. On the other hand, when θ(w) is equal to (v1, v2, · · · , vm), d(w) is
the product of d(vi)’s, and so

ρ(d(w)) =
m∑

i=1

ρ(d(vi)) =
∑

v∈V1

A1(v, w)ρ(d(v)).

If l is a multiple of p, ρ(d(w)) cannot be a generator of G/H. Hence, l is one and H is
included in K, which means that G is a cyclic group generated by d(w). �

Using the above lemmas, we can prove the following.

Theorem 3.3 If (Y, ψ) is a Cantor minimal system and H is a finite subgroup of T (ψ),
then H is a cyclic group.

Proof. We say that a group G has a property M if there exists a Cantor minimal system
(Y, ψ) such that G is contained in T (ψ). The proof is by contradiction. Assume that H is
a finite non-cyclic group of minimum order which has the property M . It is clear that all
proper subgroups of H are cyclic. Take a Cantor minimal system (Y, ψ) which satisfies
H ⊂ T (ψ). Assume K is a non-trivial normal subgroup of H. Then we can consider the
quotient system (X,φ) of (Y, ψ) by the action of K. By the same argument as in Lemma
3.1, we can deduce that the quotient group H/K is contained in T (φ), that is, H/K has
property M . From the assumption we infer that H/K is cyclic. Choose a generator of
H/K and its lift h ∈ H. By applying Lemma 3.1 to a generator of K and h in H, we
obtain that H is an abelian group. However, we know that a finite abelian group having
property M must be cyclic by Lemma 3.2, and it contradicts the assumption of H. As
a consequence, H is a simple group whose every proper subgroup is cyclic. In light of
Exercise 7.(a) in Section 2.2 of [S], we get a contradiction. �

For substitution minimal subshifts of constant length, the automorphism groups were
computed in [LM] and [HP], and it was also shown that there is a substitution minimal
subshift (X,φ) for an arbitrary finite group G such that the commutant group C(φ) is
isomorphic to G⊕ Zφ. In these papers, actually, measure-theoretic automorphisms were
investigated and we can deduce the same results directly in the topological dynamical
setting. However, the above theorem says that the same statement never hold for T (φ).
We will show that there exists a Cantor minimal system (Y, ψ) for every n ∈ N, which
satisfies C(ψ) = T (ψ) = Z/nZ ⊕ Zψ, in the next section.

Lemma 3.4 Let (Y, ψ) be a Cantor minimal system and Q be the quaternion group. If
C(ψ) contains Q, then Q ∩ T (ψ) is trivial.
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Proof. Assume Q is generated by a, b, c ∈ Q satisfying a = b2 = c2, a2 = e and bc = acb.
We may consider that (Y, ψ) is the extension of a Cantor minimal system (X,φ) associated
with a Q-valued cocycle. We use the same notation as in Section 2. The proof is by
contradiction. If Q ∩ T (ψ) is non-trivial, a ∈ Q must be in T (ψ). We may assume that
(v ⊗ (e − a))B1 is included in Z2 for all v ∈ V1. Since d(V2) generates Q, we may also
assume that there exist vertices w1, w2 ∈ V2 such that d(w1) = b and d(w2) = c. Let
v ∈ V1 be an arbitrary vertex. When we set B1(v, wi) =

∑
g∈Q λ

i
gg for i = 1, 2, there

exists {νg}g ⊂ Z such that
∑

g∈Q

(e− a)λigg =
∑

g∈Q

νgg(e− d(wi))

holds for i = 1, 2. From these equations, we have

(λ1
e − λ1

a) + (λ1
b − λ1

ab) + (λ1
c − λ1

ac) + (λ1
abc − λ1

bc)

= νe − νab + νb − νe + νc − νbc + νabc − νc

= νb − νabc + νabc − νab + νabc − νab + νab − νbc

= (λ2
b − λ2

ab) + (λ2
abc − λ2

bc) + (λ2
abc − λ2

bc) + (λ2
ab − λ2

b) ∈ 2Z.

Consequently we get A1(v, w1) =
∑

g∈Q λ
1
g ∈ 2Z. Because v is an arbitrary vertex of V1,

we obtain a contradiction as in Lemma 3.2. �
In the next section, we will give some examples of finite subgroups of C(ψ) and T (ψ).

The following theorem, however, shows that there exists an obstruction for a finite group
G which has non-trivial intersection with T (ψ).

Theorem 3.5 Let (Y, ψ) be a Cantor minimal system, G be a finite subgroup of C(ψ)
and p be a prime. If a p-Sylow group of G has non-trivial intersection with T (ψ), then
the p-Sylow group is cyclic.

Proof. We may assume G is a p-group which has non-zero intersection with T (ψ). From
Lemma 3.2, we see that all the abelian subgroups of G are cyclic. Hence, by using of
(4.4) of Section 4.4 in [S], we deduce that G is a cyclic group or a generalized quaternion
group. If G is a generalized quaternion group, it contains the quaternion group Q and Q
has non-trivial intersection with T (ψ). By means of Lemma 3.4, we get a contradiction.

�

We would like to consider a finite cyclic subgroup Z/mZ of T (ψ). In the rest of this
section, we denote a generator of Z/mZ by a and the canonical ring homomorphism from
Z[Z/mZ] to Z by ρ and set P =

∑m−1
j=0 aj.

Let (Y, ψ) be the Cantor minimal system obtained as the extension of (X,φ) associated
with a cocycle c : X → Z/mZ. We denote the generator of the canonical commutant
by γ ∈ C(ψ). If a function f ∈ C(Y,Z) is fixed by mod(γ) in K0(Y, ψ), there exists
r ∈ Z[Z/mZ] such that

[f − f ◦ γ−1] = δ(r),

where the bracket means the equivalence class in the restricted dimension groupK0(Y, ψ;G)
and δ is as in Section 2. Then, we can define the map η̃(γ) from ker(id − mod(γ)) to
Z/mZ by

η̃(γ)([f ]) = ρ(r) +mZ.
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The following is another obstruction for actions of commutants. Note that we can identify
the dimension group K0(X,φ) with Im

∑m−1
j=0 mod(γ)j.

Lemma 3.6 When (Y, ψ) is a Cantor minimal system and γ ∈ C(ψ) is an element of
order m, we have

ker(id− mod(γ))/ Im
m−1∑

j=0

mod(γ)j ∼= Z/mZ,

and

ker
m−1∑

j=0

mod(γ)j = Im(id− mod(γ)).

Proof. Let (Y, ψ) be the skew product extension of a Cantor minimal system (X,φ)
associated with a Z/mZ-valued cocycle and η̃(γ) be as above. We use the same notation
as in Section 2. Let λv ∈ {0, 1, · · · ,m − 1} be the natural number such that d(v) = aλv .
For every n, we set

sn =
∑

v∈Vn

v ⊗ (e+ a+ · · · + aλv)

in K0(Y, ψ;G). It is not hard to check that the quotient image of sn in K0(Y, ψ) drops
into ker(id−mod(γ)), and its value by η̃(γ) is one in Z/mZ. Therefore, η̃(γ) is surjective.
We would like to show the injectivity. Let s =

∑
v∈Vn

v ⊗ sv be an arbitrary element of
ZVn ⊗ Z[Z/mZ], and assume

∑

v∈Vn

v ⊗ (e− a)sv =
∑

v∈Vn

v ⊗ (e− d(v))r

for some r ∈ Z[Z/mZ]. Then, sv equals (e + a + · · · + aλv)r modulo a scalar multiple of
P . If ρ(r) is zero modulo m, there exists r′ ∈ Z[Z/mZ] such that r is equal to (e − a)r′

modulo a scalar multiple of P . Because v ⊗ P is in Im
∑m−1

j=0 mod(γ)j, we can see that s
equals ∑

v∈Vn

v ⊗ (e− d(v))r′

modulo Im
∑m−1

j=0 mod(γ)j, which is zero in K0(Y, ψ).
The other equation is proved in a similar fashion. �

Remark. The above lemma gives a quite strong restriction for the existence of finite
order automorphisms. For example, we have the following.

(i) If K0(Y, ψ) is isomorphic to Z[1/r] ⊕ Z for an odd number r as an abelian group,
there does not exist an order two element in C(ψ).

(ii) If K0(Y, ψ) is isomorphic to Zs+1 as an abelian group and s is not divisible by a
prime p, then there does not exist an element of order p in C(ψ).

We would like to consider when there exists a finite order element in the kernel of
the mod map. We say a triple (G,G+, u) is a dimension group in an abstract sense, if
(G,G+) is an unperforated ordered group satisfying the Riesz interpolation property and
u is a distinguished element of G+ \ {0} called the order unit ([GPS, Section 1]). For a
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Cantor minimal system (X,φ), of course, (K0(X,φ), K0(X,φ)+, [1]) becomes a dimension
group in this meaning. Two dimension groups are said to be isomorphic, when there is
an isomorphism preserving the positive cones and the order units.

Theorem 3.7 When (G,G+, u) is a simple dimension group except Z, and m is a natural
number, the following are equivalent.

(i) There exists a Cantor minimal system (Y, ψ) such that (K0(Y, ψ), K0(Y, ψ)+, [1]) is
isomorphic to (G,G+, u) and T (ψ) has an element of order m.

(ii) G/mG is isomorphic to Z/mZ as an abelian group and the order unit u of G is
divisible by m.

Proof. The implication (i) ⇒ (ii) follows from Lemma 3.6.
Let us prove the other implication (ii) ⇒ (i). Take an element u0 ∈ G+ such as

u = mu0. For the simple dimension group (G,G+, u0), there exists a Bratteli diagram
(V,E) and G is order isomorphic to the inductive limit

limAn : ZVn → ZVn+1 ,

where An denotes the incidence matrix determined by En. Since G/mG is isomor-
phic to Z/mZ, by telescoping the diagram (V,E), we can choose a representative sn =∑

v∈Vn
λvv ∈ ZVn of a generator of G/mG satisfying

1 ≤ λv ≤ m, snAn ≡ sn+1 (mod m)

for every n ∈ N. We may further assume that there is cv ∈ {0, 1, 2, · · · ,m− 1} such as

vAn ≡ cvsn+1 (mod m)

for every v ∈ Vn and n ∈ N, and it follows that

∑

v∈Vn

λvcv ≡ 1 (mod m).

Let X be the infinite path space of (V,E). Although a partial order on E has not yet been
defined, we can find a cocycle c : X → Z/mZ which determines the label d : Vn → Z/mZ
such that d(v) = aλv .

We would like to define a partial order on the edge set E and construct a Cantor
minimal system (X,φ) so that the canonical commutant of the skew product extension
(Y, ψ) of (X,φ) associated with c is included in T (ψ). In this case, we must note that the
dimension group of (Y, ψ) is automatically isomorphic to (G,G+, u). By telescoping, we
may assume that each entry of An is not less than m2 +m. Fix a natural number n and
an arbitrary vertex v0 ∈ Vn. We will define a linear order on each r−1(w) for w ∈ Vn+1,
so that v0 is the source vertex of the minimum and maximum edges of r−1(w) for all w
and the incidence matrix Bn from Z[Z/mZ]Vn to Z[Z/mZ]Vn+1 satisfies

(v ⊗ (e− a))Bn ∈ Zn+1

for every v ∈ Vn.
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We construct a finite set Γw of directed edges on the vertex set Z/mZ for each w ∈
Vn+1. Because

∑
v∈Vn

λvcv equals one modulo m, we can define a finite set Γv of directed
edges over Z/mZ for every v ∈ Vn, as follows;

#Γv = cv, s(x)r(x)−1 = aλv for all x ∈ Γv,

and for each b ∈ Z/mZ

#(r−1(b) ∩
⋃

v∈Vn

Γv) − #(s−1(b) ∩
⋃

v∈Vn

Γv) =





1 b = e
−1 b = a
0 otherwise

.

Moreover, we can associate an element rv ∈ Z[Z/mZ] with v ∈ Vn by

rv =
∑

x∈Γv

r(x).

For each v ∈ Vn and w ∈ Vn+1, we set

Γv,w = Γv × {1, 2, · · · , λw}

and
r(x, k) = r(x)ak−1, s(x, k) = s(x)ak−1

for all (x, k) ∈ Γv,w. Let Γ′
v be the set of directed edges over the vertex set Z/mZ such as

Γ′
v = {x0, x1, · · · , xm−1},

r(xk) = ak, s(xk) = ak+λv .

Since An(v, w) is equal to #Γv,w modulo m, by adding some disjoint copies of Γ′
v to Γv,w,

we get the set Γ′
v,w consisting of An(v, w) directed edges. The element rv,w ∈ Z[Z/mZ]

associated with Γv,w is defined by

rv,w =
∑

y∈Γ′
v,w

r(y)

and it equals to
(e+ a+ · · · + aλw−1)rv

modulo a scalar multiple of P and satisfies ρ(rv,w) = An(v, w). Let Γw be the disjoint
union of Γ′

v,w for all v ∈ Vn. For b ∈ Z/mZ, we have

#{x ∈ Γw ; r(x) = b} − #{x ∈ Γw ; s(x) = b}

=
λw∑

k=1

∑

v∈Vn

#(r−1(ba−k+1) ∩ Γv) − #(s−1(ba−k+1) ∩ Γv)

=





1 b = e, b 6= d(w)
−1 b = d(w), b 6= e
0 otherwise

.
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Since the directed graph Γw includes at least two copies of Γ′
v for every v ∈ Vn, thanks to

the unicursal theorem, we can find a directed path ~y = (y1, y2, · · · , yl) which starts from
d(w) and ends at e and in which each element of Γw appears exactly once. Moreover,
we can choose the path so that y1 and yl is contained in Γ′

v0,w
. We can obtain from the

directed path ~y the ordered list (e1, e2, · · · , el) of edges in r−1(w) such that the source
vertex of ek in the Bratteli diagram (V,E) is v ∈ Vn when yk is in Γ′

v,w. In this way, the
partial order on En is well defined and it gives a simple order on the Bratteli diagram
(V,E). It is clear that Bn(v, w) is equal to rv,w, and so we get

(v ⊗ (e− a))Bn =
∑

w∈Vn+1

w ⊗ (e− d(w))rv ∈ Zn,

thereby completing the proof. �
Let us consider the invariant η defined in [M]. The homomorphism η was defined

on T (ψ) and takes its value in Ext(K0(Y, ψ),Z). The Ext group is the cokernel of the
natural map from Hom(K0(Y, ψ),R) to Hom(K0(Y, ψ),R/Z). In Section 5 of [M], we
constructed a representative Φ(γ) of η(γ) in Hom(K0(Y, ψ),R/Z) for γ ∈ T (φ), by fixing
an invariant measure µ on Y .

Let (Y, ψ) be the Cantor minimal system obtained as the extension of (X,φ) associated
with a cocycle c : X → Z/mZ. Assume the canonical commutant γ is in T (ψ). Then, the
map η̃(γ) is identified with the quotient map from K0(Y, ψ) to K0(Y, ψ)/mK0(Y, ψ) ∼=
Z/mZ.

Lemma 3.8 In the above setting, η̃(γ) is a representative of η(γ).

Proof. Fix a ψ-invariant measure µ on Y . By taking the average of {µ ◦ γj}mj=0, we may
assume that µ is also invariant under the action of the canonical commutant. We denote
Z/mZ by G. Let Φ(γ) be the element of Hom(K0(Y, ψ),R/Z) determined by µ (Section
5 of [M]). It suffices to show that η̃(γ)([f ]) coincides with Φ(γ)([f ]) for the characteristic
function f on the clopen set Y (n, v, h(v), b) for all n ∈ N, v ∈ Vn and b ∈ G.

We can assume that there exists {νk}k ⊂ Z such that (v ⊗ (b − ab))Bn is equal to∑
k∈G νke(n, k). Then, by definition, we have

η̃(γ)([f ]) =
1

m

∑

k∈G

νk + Z.

Let (v ⊗ b)Bn =
∑

w∈Vn+1,k∈G λw,kw ⊗ k. We define the function f̃ ∈ C(Y,Z) by

f̃ =
∑

w∈Vn+1,k∈G

λw,kχY (n+1,w,h(w),k),

where χ means a characteristic function. Since we have [f ] = [f̃ ] in K0(Y, ψ), there exists
a function F0 ∈ C(Y,Z) such that f − f̃ = F0 − F0 ◦ ψ−1, which implies

f − f ◦ γ−1 = F0 − F0 ◦ γ−1 − (F0 − F0 ◦ γ−1) ◦ ψ−1 + f̃ − f̃ ◦ γ−1,

and µ(F0 − F0 ◦ γ−1) = 0 by the definition of µ. Moreover, we have

f̃ − f̃ ◦ γ−1 =
∑

w∈Vn+1,k∈G

(λw,k − λw,a−1k)χY (n+1,w,h(w),k)

=
∑

w∈Vn+1,k∈G

(νk − νkd(w)−1)χY (n+1,w,h(w),k),
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and it is equal to F1 − F1 ◦ ψ−1, where F1 is a function such as

F1 =
∑

w∈Vn+1,k∈G

h(w)∑

j=1

νkχY (n+1,w,h(w),kd(w)) ◦ ψj.

Therefore, we get

Φ(γ)([f ]) = µ(F1) + Z =
∑

w∈Vn+1,k∈G

h(w)νkµ(Y (n+ 1, w, h(w), kd(w))) + Z

=
1

m

∑

w∈Vn+1,k∈G

h(w)νkµ(X(n+ 1, w, h(w)) ×G) + Z

=
1

m

∑

k∈G

νk + Z,

and so η̃(γ) is equal to Φ(γ). �
The following corollary says that η is either zero or injective on finite order elements

of T (ψ).

Corollary 3.9 When (Y, ψ) is a Cantor minimal system and γ ∈ T (ψ) is an element
of finite order, we have η(γ) = 0 if and only if Hom(K0(Y, ψ),Z) 6= 0, and in this case
Hom(K0(Y, ψ),Z) is isomorphic to Z.

Proof. Let γ be an element of order m. If η(γ) = 0, the representative η̃(γ) has a lifting
to Hom(K0(Y, ψ),R). Since η̃(γ) is a surjection to Z/mZ, the lifting gives a non-trivial
element of Hom(K0(Y, ψ),Z).

Conversely, if Hom(K0(Y, ψ),Z) is non-zero, we get a surjection from K0(Y, ψ) to
Z/mZ. Because η̃(γ) coincides with the quotient map to K0(Y, ψ)/mK0(Y, ψ) ∼= Z/mZ,
it should have a lifting to Hom(K0(Y, ψ),Z). Therefore, η(γ) is zero in the Ext group. It
is easy to check Hom(K0(Y, ψ),Z) ∼= Z. �

4 Examples

(1) Let n,m be natural numbers and l = nm. We give a Cantor minimal system (Y, ψ)
such that C(ψ) = Z/lZ ⊕ Zψ and T (ψ) = Z/mZ ⊕ Zψ, by using a bijective substitution
([LM]). For a finite or infinite word x, we denote the i-th letter of x by xi. Let ξ be a
substitution of constant length l +m on the alphabet set L = {0, 1, 2, · · · , l − 1} such as

ξ(0)i =





i− k (k − 1)(n+ 1) + 1 ≤ i ≤ k(n+ 1), k = 1, 2, · · · ,m− 1
i−m (m− 1)(n+ 1) + 1 ≤ i ≤ l +m− 1

0 i = l +m

and ξ(j)i = ξ(0)i + j for j = 0, 1, · · · , l − 1 and i = 1, 2, · · · , l +m, where the addition is
understood modulo l. For example,

ξ(0) = 01233450, ξ(1) = 12344501, ξ(2) = 23455012,

ξ(3) = 34500123, ξ(4) = 45011234, ξ(5) = 50122345,
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when n = 3 and m = 2. Note that Morse substitution is obtained when we put n = 1
and m = 2. Let (Y, ψ) be the substitution subshift determined by ξ. We refer the reader
to [DHS] for basic facts about substitution subshifts and Bratteli diagrams. We define a
homeomorphism γ on LZ such as γ(x)i = xi + 1 for x ∈ LZ and i ∈ Z. It is easy to check
that γ(Y ) = Y and γ ∈ C(ψ). By Theorem 5 of [LM], C(ψ) is isomorphic to Z/lZ ⊕ Z
and γ is a generator of Z/lZ. The substitution rule ξ can be extended to a continuous
map ξ : Y → Y . Let y ∈ Y be the fixed point of ξ such that y−1 = y0 = 0. In the case of
n = 3 and m = 2, the infinite sequence y is

· · · 5012234501233450 | 0123345012344501234550123450012334500123 · · · ,

where the vertical bar separates y(−∞,−1] from y[0,∞).
We define a map π : Y → {0, 1}Z such as

π(x)i =

{
0 xi − xi−1 = 0
1 xi − xi−1 = 1, 1 − l

for x ∈ Y . It can be easily seen that π is a well-defined factor map from (Y, ψ) to the
subshift on {0, 1}Z. We denote by (X,φ) the image of (Y, ψ) by π. We can see that
π(x) = π(x′) if and only if x and x′ have the same γ-orbit in Y , and so the system (X,φ)
is the quotient system of (Y, ψ) by the action of γ. By the definition of π, we get

π(y) = · · · 1| 0
n︷ ︸︸ ︷

11 · · · 1 0

n︷ ︸︸ ︷
11 · · · 1 · · · 0

n︷ ︸︸ ︷
11 · · · 1︸ ︷︷ ︸

(n+1)×m

1

n︷ ︸︸ ︷
11 · · · 1 · · · .

Define the substitution rule ζ of constant length l +m by

ζ(0) = 0

n︷ ︸︸ ︷
11 · · · 1 0

n︷ ︸︸ ︷
11 · · · 1 · · · 0

n︷ ︸︸ ︷
11 · · · 1︸ ︷︷ ︸

(n+1)×(m−1)

0

n︷ ︸︸ ︷
11 · · · 1

ζ(1) = 0

n︷ ︸︸ ︷
11 · · · 1 0

n︷ ︸︸ ︷
11 · · · 1 · · · 0

n︷ ︸︸ ︷
11 · · · 1︸ ︷︷ ︸

(n+1)×(m−1)

1

n︷ ︸︸ ︷
11 · · · 1

on the alphabet set {0, 1}. Let z ∈ {0, 1}Z be the fixed point of ζ such that z−1 = 1 and
z0 = 0, where ζ is extended to a continuous map on {0, 1}Z. Then, we have

z = lim
k→∞

φ1+n+n(l+m)+···+n(l+m)k

(π(y)),

which implies that (X,φ) is the substitution subshift associated with ζ. When we put

c(x) =

{
e x0 = 0
a x0 = 1

for x ∈ X, where a denotes the generator of Z/lZ, the system (Y, ψ) is the extension of
(X,φ) associated with the cocycle c.

We would like to compute the dimension groups of (X,φ) and (Y, ψ). Since the
substitution rule ζ is proper, we can easily write down the ordered Bratteli diagram
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(V,E,≤) of (X,φ) ([DHS, Proposition 16]). Every vertex set Vn consists of two points,
namely vn,0 and vn,1, which correspond to the alphabets 0 and 1. For example, since 0
appears m times in the word ζ(0), the number of edges between vn,0 and vn+1,0 equals to
m. The dimension group K0(X,φ) is the inductive limit of Z2 with the incidence matrix

A =

[
m m− 1
l l + 1

]
.

Therefore, we have

K0(X,φ) ∼= Z[
1

l +m
] ⊕ Z,

(p, q) ∈ K0(X,φ)+ if and only if p = q = 0 or p+
(m− 1)q

l +m− 1
> 0

and the order unit is (1, 0).
Let us consider the skew product extension (Y, ψ). The label of each vertex is deter-

mined by the cocycle c and we get d(vn,0) = e, d(vn,1) = a for all n. In order to compute
the restricted dimension group, we would like to write the connecting matrix B. If n = 3
and m = 2, we have

ζ(0) = 01110111, ζ(1) = 01111111,

and we can make the following tables;

ζ(0) = 0 1 1 1 0 1 1 1
e a5 a4 a3 a3 a2 a e

and
ζ(1) = 0 1 1 1 1 1 1 1

a e a5 a4 a3 a2 a e
.

Hence, the 0 − 0 entry of the matrix B is equal to e + a3, which is the sum of elements
under the letter 0 appearing ζ(0). The 1− 0 entry of B equals a5 +a4 +a3 +a2 +a+ e by
the same reason. The other entries can be obtained in a similar way. In general, we have

B =

[ ∑m
j=1 a

jn
∑m

j=2 a
jn+1

∑l
j=1 a

j e+
∑l

j=1 a
j

]

and the restricted dimension group K0(Y, ψ;Z/lZ) is obtained as the inductive limit of
Z2 ⊗ Z[Z/lZ] with the incidence matrix B. It is easy to check that (e − an, 0)B and
(0, e− an)B are contained in the subspace spanned by {(0, ak − ak+1)}k, and so we have
γn ∈ T (ψ). Let (Z, τ) be the quotient system of (Y, ψ) by the action of γn. The dimension
group K0(Z, τ) is naturally isomorphic to the subgroup mK0(Y, ψ) of K0(Y, ψ), because
γn acts identically on K0(Y, ψ). Since the dimension group is torsion free, it suffices to
compute K0(Z, τ) instead of K0(Y, ψ). We let c′ be the composition of c and the quotient
map from Z/lZ to Z/nZ. The system (Z, τ) is isomorphic to the extension of (X,φ)
associated with the cocycle c′. We denote Z/nZ by G. The restricted dimension group
K0(Z, τ ;G) is obtained by the inductive limit of Z2 ⊗ Z[G] with the incidence matrix

C =

[
me (m− 1)b

m
∑n

j=1 b
j e+m

∑n
j=1 b

j

]
,
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where b is the generator of G. By using Theorem 2.5, we can express the dimension groups
K0(Z, τ) and K0(Y, ψ) within the abelian group Z[1/(l+m)]⊕Z⊕ (Z[1/m]⊗Z[G]) such
as {

(
p

(l +m)k
, q,

1

mk
r(e− b)) ;

p, q ∈ Z, k ∈ N, r ∈ Z[G],
p+ lq = (l +m− 1)ρ(r)

}

with the strict ordering from the first coordinate, where ρ is the canonical ring ho-
momorphism from Z[G] to Z. The order unit of K0(Z, τ) and K0(Y, ψ) are given by
(n(l+m−1), 0, 0) and (l(l+m−1), 0, 0) respectively. The canonical commutant γ ∈ C(ψ)
acts on the dimension group K0(Y, ψ) as the multiplication by b in the last coordinate,
and so T (ψ) is isomorphic to Z/mZ ⊕ Zψ. By Corollary 3.9, we can see that η(γn) is
zero.

When ξ is the Morse substitution, (Y, ψ) and (X,φ) are isomorphic to the systems
described in Example (4) of [M].

(2) Let S3 be the symmetric group of degree three generated by a and b satisfying
a3 = b2 = e and bab = a−1. The element a forms the normal subgroup Z/3Z of S3. We
construct a Cantor minimal system (Y, ψ) such as C(ψ) = S3⊕Zψ and T (ψ) = Z/3Z⊕Zψ.

Define a proper substitution ξ on the alphabet set L = {0, 1, 2} such that

ξ(0) = 010021112112

ξ(1) = 000002101212

ξ(2) = 010210121112,

and let (X,φ) be the associated substitution subshift. Thanks to Proposition 16 of [DHS],
we obtain the stationary ordered Bratteli diagram (V,E,≤) which represents (X,φ). The
vertex set Vn is canonically identified with L, and so we put Vn = {vn,0, vn,1, vn,2} for each
n ∈ N. The incidence matrix from ZVn to ZVn+1 is represented as

A =




3 6 3
6 3 6
3 3 3




for all n ∈ N under the identification of Vn with L. The dimension group K0(X,φ) is
obtained as the inductive limit of Z3 with the incidence matrix A. Hence, we get

K0(X,φ) ∼= {( p

12n
,

q

(−3)n
) ; p, q ∈ Z, p ≡ 2q (mod 5)}

with the strict ordering from the first coordinate and the order unit is (20, 0).
Let Z = {0, 1, · · · , 11}N and τ be the odometer system on Z. Because #r−1(vn,i) = 12

for all n ∈ N \ {1} and i = 0, 1, 2, we can construct a factor map ρ from (X,φ) to (Z, τ)
in the same way of Section 2 of [GJ]. The same construction of factor maps can be found
in Section 7 of [M], too. For every point z ∈ Z, the preimage ρ−1(z) consists of at most
three points. Because the substitution rule ξ satisfies

{ξ(0)i, ξ(1)i, ξ(2)i} = {0, 1, 2} if and only if i = 5, 6, 8,

ρ−1(z) includes three distinct points if and only if the tail of z ∈ Z consists of only 4, 5
and 7. When γ is in C(φ), there is σ ∈ C(τ) satisfying σ ◦ ρ = ρ ◦ γ and the subset

{z ∈ Z ; #ρ−1(z) = 3}
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must be preserved by σ. It follows that σ is a power of τ . On the other hand, if γ ∈
C(φ) satisfies ρ ◦ γ = ρ, γ is the identity because there exists a point z ∈ Z such that
#ρ−1(z) = 1. As a consequence, we obtain C(φ) = Zφ.

We set a S3-valued cocycle c on X as follows;

c(x) =





a x0 = 0
b x0 = 1
a−1 x0 = 2

for all x ∈ X. By a straightforward computation, we have

d(vn,0) = abaaa−1bbba−1bba−1 = a,

d(vn,1) = aaaaaa−1baba−1ba−1 = b,

d(vn,2) = abaa−1baba−1bbba−1 = a−1

for all n ∈ N, and so the extension (Y, ψ) associated with the cocycle c is a Cantor
minimal system by Lemma 2.3. By the same argument in the last paragraph, we see that
the automorphism group C(ψ) is isomorphic to S3 ⊕ Zψ.

The restricted dimension group K0(Y, ψ;S3) is computed as the inductive limit of
Z3 ⊗ Z[S3] by the incidence matrix

B =




e+ ab+ a2b e+ b+ 2ab+ 2a2b e+ a+ ab
2a+ a2 + b+ ab+ a2b a+ a2 + b a+ 2a2 + b+ ab+ a2b

e+ a2 + a2b e+ ab+ a2b e+ ab+ a2b


 .

To get the first column of this matrix B, we need to make the following table;

ξ(0) = 0 1 0 0 2 1 1 1 2 1 1 2
e b a2b ab a2b a a2b a a2 ab a2 e.

The tables for ξ(1) and ξ(2) can be wrote in the same way. By summing up the elements
under the letter 0 in ξ(0), the 0− 0 entry e+ ab+ a2b of B is obtained. The other entries
of B are also obtained in this method. When we put

v(g) = (g − ga, g − gb, g − ga−1) ∈ Z3 ⊗ Z[S3]

for g ∈ S3, we can check the equations

(e− a, 0, 0)B = v(e) + v(ab),

(0, e− a, 0)B = −v(e) + v(a)

and
(0, 0, e− a)B = −v(a) − v(b),

which imply γa ∈ T (ψ). In the same method as the example (1), we have

K0(Y, ψ) ∼= {( p
12l

,
q

(−3)l
,

r

(−2)l
) ; p, q, r ∈ Z, , p ≡ 2q (mod 5)}
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with the strict ordering from the first coordinate and the order unit is (10, 0, 0). The
element b ∈ S3 induces mod(γb) which changes the signal of the last coordinate.

Because there are no non-trivial homomorphisms from K0(Y, ψ) to Z, by Corollary
3.9, η(γa) is not zero in Ext(K0(Y, ψ),Z). Since (Y, ψ) is not strong orbit equivalent to
odometer systems, this example gives a positive answer to the problem (1) raised in [M].

For the dihedral group Dn = 〈a, b ; e = an = b2, bab = a−1〉 of order 2n, we can
construct a Cantor minimal system (Y, ψ) such that C(ψ) = Dn ⊕ Zψ and T (ψ) =
Z/nZ ⊕ Zψ, whenever n is odd. Theorem 3.5 tells us that we can never construct it for
even n.

(3) Let D6 be the dihedral group as above. We will show that there is a Cantor
minimal system (Y, ψ) satisfying C(ψ) = D6 ⊕ Zψ and T (ψ) = Z/3Z ⊕ Zψ.

We define a proper substitution ξ of constant length such as

ξ(0) = 010121122102122

ξ(1) = 001220000122122

ξ(2) = 011001201001212

on the alphabet set {0, 1, 2}. We denote by (X,φ) the substitution minimal subshift
determined by ξ. When the cocycle c is defined by

c(x) =





a x0 = 0
b x0 = 1
a−1 x0 = 2

for all x ∈ X, we can show that the extension (Y, ψ) is minimal and C(ψ) is isomorphic
to D3 ⊕Zψ in the same way as the example (2). Moreover, we have γ2

a ∈ T (ψ) and η(γ2
a)

is not zero. We omit the computation.

(4) We give a Cantor minimal system (Y, ψ) such that ker η is isomorphic to Z⊕Zψ.
Define an ordered Bratteli diagram (V,E,≤) as follows; the vertex set Vn (n 6= 0)

consists of two vertices, namely vn,0, vn,1, and the incidence matrix from n-th step to
n+ 1-th step is given by An+1, where A is

A =

[
2 1
1 2

]
.

The partial order on the edge set E is defined by

θ(vn+1,0) = (

3n

︷ ︸︸ ︷
vn,0, vn,0, · · · , vn,0,

mn+1︷ ︸︸ ︷
vn,0, · · · , vn,0,

mn︷ ︸︸ ︷
vn,1, · · · , vn,1,

3n

︷ ︸︸ ︷
vn,1, vn,1, · · · , vn,1)

and

θ(vn+1,1) = (

3n

︷ ︸︸ ︷
vn,0, vn,0, · · · , vn,0,

mn+1︷ ︸︸ ︷
vn,1, · · · , vn,1,

mn︷ ︸︸ ︷
vn,0, · · · , vn,0,

3n

︷ ︸︸ ︷
vn,1, vn,1, · · · , vn,1),

for n ∈ N, where mn is (3n − 1)/2. When we denote the infinite path space by X and
the Bratteli-Vershik map by φ, we can see that (X,φ) is a Cantor minimal system, since
(V,E,≤) is simple. The dimension group K0(X,φ) is isomorphic to Z[1/3] ⊕ Z, where
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the unique state is given by Z[1/3]⊕Z 3 (p, q) 7→ p+ q/2 and the order unit is (1, 0). We
can construct a factor map from (X,φ) to an odometer system of type 3∞. By the same
reason as the above examples, we have C(φ) ∼= Zφ.

Let G be the projective limit of Z/3nZ and a be (1, 1, · · ·) ∈ G. The addition by a is
the odometer system of type 3∞ on G. We denote by ρn the canonical projection from G
to Z/3nZ. Define a G-valued cocycle c on X such as c(x) = a if the infinite path x goes
through v1,0 and c(x) = a−1 otherwise. The extension (Y, ψ) of (X,φ) associated with the
G-valued cocycle c can be defined in the same way as the case of finite groups and the
canonical commutant {γg}g∈G ∈ C(ψ) is obtained. Let (Yn, ψn) be the extension of (X,φ)
associated with the Z/3nZ-valued cocycle ρn ◦ c. By sending (x, g) ∈ Y to {(x, ρn(g))}n,
we get the isomorphism from (Y, ψ) to the projective limit of (Yn, ψn). By Proposition
3.7 of [M], (Y, ψ) is a Cantor minimal system and the dimension group K0(Y, ψ) is the
inductive limit of K0(Yn, ψn). Moreover, we have C(ψ) = G⊕ Zψ.

We would like to show that the canonical commutant γg is in T (ψ) for every g ∈ G.
Take an element g ∈ G. When we write γn as the generator of the canonical commutant
of (Yn, ψn), the restriction of mod(γg) on K0(Yn, ψn) is a power of mod(γn). Therefore,
it suffices to show that γn acts identically on K0(Yn, ψn) for all n ∈ N. The label of the
vertices vm,0 and vm,1 determined by the cocycle ρn ◦ c are ρn(a) and ρn(a

−1) respectively.
We write Bl ∈M2(Z[Z/3nZ]) as the incidence matrix of the extension (Yn, ψn) from l-th
step to l + 1-th step. When l is larger than n, the matrix Bl is given by

[ ∑mn

j=0 ρn(a)
−j ∑mn−1

j=0 ρn(a)
j

∑mn−1
j=0 ρn(a)

−j ∑mn

j=0 ρn(a)
j

]
,

modulo scalar multiples of
∑3n

j=1 ρn(a)
j. Then,

(e− ρn(a), 0)Bl ∈ Zl+1

and
(0, e− ρn(a))Bl ∈ Zl+1

are easily checked for all l > n, where Zl is a subspace of Z2 ⊗ Z[Z/3nZ] spanned by

(ρn(a
j) − ρn(a

j+1), ρn(a
j) − ρn(a

j−1)) j = 1, · · · , 3n.

As a consequence, γn ∈ T (ψn) is derived, and so T (ψ) = C(ψ) = G⊕ Zψ.
The dimension group K0(Y, ψ) is isomorphic to Z[1/3]⊕Z[1/3] with the unique state

given by (p, q) 7→ p + q/2 and the order unit is (1, 0). The invariant η argued in Lemma
3.8 takes its value in

Ext(Z[
1

3
] ⊕ Z[

1

3
],Z) ∼= Ext(Z[

1

3
],Z) ⊕ Ext(Z[

1

3
],Z).

Let κ be the natural quotient map from G to Ext(Z[1/3],Z) whose kernel is generated by
a ∈ G. For all g ∈ G, we have

η(γg) = (0, κ(g)),

which implies ker η is isomorphic to Z2 generated by γa and ψ. This example shows that
the value of η can be zero for non-trivial infinite order elements, even if Hom(K0(Y, ψ),Z)
is zero.

We remark that all Cantor minimal systems in the above examples are orbit equivalent
to odometer systems by Theorem 2.2 of [GPS].
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