
Classification of outer actions of ZN on O2

Hiroki Matui ∗

Graduate School of Science
Chiba University

1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Abstract

We will show that any two outer actions of ZN on O2 are cocycle conjugate.

1 Introduction

Group actions on C∗-algebras and von Neumann algebras are one of the most fundamen-
tal subjects in the theory of operator algebras. A. Connes introduced a non-commutative
Rohlin property and classified single automorphisms of von Neumann algebras ([C1],[C2]),
and A. Ocneanu generalized it to actions of discrete amenable groups ([O]). In the setting
of C∗-algebras, A. Kishimoto established a non-commutative Rohlin type theorem for sin-
gle automorphisms on UHF algebras and classified them up to outer conjugacy ([K1],[K2]).
H. Nakamura used the same technique for automorphisms on purely infinite simple nuclear
C∗-algebras and classified them up to outer conjugacy ([N2]). Furthermore, he proved a
Rohlin type theorem for Z2-actions on UHF algebras and gave a classification result for
product type actions up to cocycle conjugacy ([N1]). Recently, T. Katsura and the author
generalized this result and gave a complete classification of uniformly outer actions of Z2

on UHF algebras ([KM]). In the case of finite group actions, M. Izumi introduced a notion
of the Rohlin property and classified a large class of actions ([I2],[I3]). The reader may
consult the survey paper [I1] for the Rohlin property of automorphisms on C∗-algebras.

The aim of this paper is to extend these results to ZN -actions on the Cuntz algebra
O2. More precisely, we will show that any outer actions of ZN on O2 have the Rohlin
property and that they are cocycle conjugate to each other. The content of this paper is as
follows. In Section 2, we collect notations and basic facts relevant to this paper. Notions
of the ultraproduct algebra Aω and the central sequence algebra Aω will help our analysis.
When A is isomorphic to O2, it is known that Aω contains a unital copy of O2. This fact
implies strong triviality of the K-theory of O2. For ZN -actions on unital C∗-algebras, we
recall the definition of the Rohlin property from [N1] and give a couple of remarks.

In Section 3, we establish the cohomology vanishing theorem for ZN -actions on the
Cuntz algebra O2 with the Rohlin property. One of the difficulties in the study of ZN -
actions on C∗-algebras is that one has to deal with homotopies of unitaries in order to
obtain the so-called cohomology vanishing theorem. In our situation, however, we do
not need to take care of K∗-classes of (continuous families of) unitaries, because of the
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triviality of K∗(O2). Indeed, any continuous family of unitaries in O2 is homotopic to
the identity by a smooth path of finite length. This enables us to avoid K-theoretical
arguments.

Section 4 is devoted to the Rohlin type theorem for ZN -actions on O2. The main idea
of the proof is similar to that in [N1]. We also make use of several techniques developed in
[N2]. The proof is by induction on N , because we need the cohomology vanishing theorem
for ZN−1-actions in order to prove the Rohlin type theorem for ZN -actions.

In Section 5, the main theorem is shown. D. E. Evans and A. Kishimoto introduced
in [EK] an intertwining argument for automorphisms, which is an equivariant version
of Elliott’s intertwining argument for classification of C∗-algebras. By using the Evans-
Kishimoto intertwining argument, we show that any two outer actions of ZN on O2 are
cocycle conjugate. The cohomology vanishing theorem is necessary in each step of the
intertwining argument.

Acknowledgement. The author is grateful to Toshihiko Masuda for many helpful
discussions.

2 Preliminaries

Let A be a unital C∗-algebra. We denote by U(A) the group of unitaries in A. For
u ∈ U(A), we let Ad u(a) = uau∗ for a ∈ A and call it an inner automorphism on A.
When an automorphism α ∈ Aut(A) on A is not inner, it is said to be outer.

For any a, b ∈ A, we write [a, b] = ab − ba and call it the commutator of a and b.

In this paper, we deal with central sequence algebras, which simplify the arguments a
little. Let A be a separable C∗-algebra and let ω ∈ βN \ N be a free ultrafilter. We set

cω(A) = {(an) ∈ `∞(N, A) | lim
n→ω

‖an‖ = 0},

Aω = `∞(N, A)/cω(A).

We identify A with the C∗-subalgebra of Aω consisting of equivalence classes of constant
sequences. We let

Aω = Aω ∩ A′.

When α is an automorphism on A or an action of a discrete group on A, we can consider
its natural extension on Aω and Aω. We denote it by the same symbol α.

If A is a unital separable purely infinite simple C∗-algebra, then Aω is purely infinite
simple. When A is a unital separable purely infinite simple nuclear C∗-algebra, it is known
that Aω is also purely infinite simple ([KP, Proposition 3.4]).

We would like to collect several facts about the Cuntz algebra O2. The Cuntz algebra
O2 is the universal C∗-algebra generated by two isometries s1 and s2 satisfying s1s

∗
1+s2s

∗
2 =

1. It is a unital separable purely infinite simple nuclear C∗-algebra with trivial K-groups,
i.e. K0(O2) = K1(O2) = 0. By [R1, Theorem 3.6], any automorphisms α and β on
O2 are approximately unitarily equivalent. Thus, there exists a sequence of unitaries
{un}n in O2 such that β(a) = limn→∞ unα(a)u∗

n for all a ∈ A. It is also known that
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O2 is isomorphic to the infinite tensor product
⊗∞

n=1 O2 ([R2] or [KP, Theorem 3.8]).
Consequently, (O2)ω = (O2)ω ∩ O′

2 contains a unital copy of O2. (Actually, its converse
also holds: if A is a unital simple separable nuclear C∗-algebra and Aω contains a unital
copy of O2, then A is isomorphic to O2 ([KP, Lemma 3.7]). But, in this paper, we
do not need this fact.) Let e be a projection of (O2)ω. By the usual argument taking
subsequences, we can find a unital copy of O2 in the relative commutant of e in (O2)ω.
Therefore, [e] = [e] + [e] in K0((O2)ω), and so [e] = 0. Since e is arbitrary and (O2)ω

is purely infinite simple, we have K0((O2)ω) = 0. In a similar fashion, we also have
K1((O2)ω) = 0. Indeed, for any unitary u ∈ (O2)ω, we can find a unital copy of O2 in
the relative commutant of u in (O2)ω. It follows from [HR, Lemma 5.1] that there exists
a smooth path u(t) of unitaries in (O2)ω such that u(0) = u and u(1) = 1. Moreover,
the length of the path is not greater than 8π/3. We will use this argument in Lemma 3.1
again.

Let N be a natural number and let ξ1, ξ2, . . . , ξN be the canonical basis of ZN , that is,

ξi = (0, 0, . . . , 1, . . . , 0, 0),

where 1 is in the i-th component. Let α be an action of ZN on a unital C∗-algebra A. We
say that α is an outer action on A, if αn is not inner on A for any n ∈ ZN \ {0}.

A family of unitaries {un}n∈ZN in A is called an α-cocycle, if

unαn(um) = un+m

for all n,m ∈ ZN . If a family of unitaries u1, u2, . . . , uN ∈ U(A) satisfies

uiαξi
(uj) = ujαξj

(ui)

for all i, j = 1, 2, . . . , N , then it determines uniquely an α-cocycle {un}n∈ZN such that
uξi

= ui. We may also call the family {u1, u2, . . . , uN} an α-cocycle. An α-cocycle {un}n

in A is called a coboundary, if there exists v ∈ U(A) such that

un = vαn(v∗)

for all n ∈ ZN , or equivalently, if
uξi

= vαξi
(v∗)

for all i = 1, 2, . . . , N .
When {un}n∈ZN is an α-cocycle, it turns out that a new action α̃ of ZN on A can be

defined by
α̃n(x) = Ad un ◦ αn(x) = unαn(x)u∗

n

for each x ∈ A. We call α̃ the perturbed action of α by {un}n.
Two actions α and β of ZN on A are said to be cocycle conjugate, if there exists an

α-cocycle {un}n in A such that the perturbed action of α by {un}n is conjugate to β. The
main theorem of this paper states that any two outer actions of ZN on O2 are cocycle
conjugate to each other.

Let N be a natural number. We would like to recall the definition of the Rohlin
property for ZN -actions on unital C∗-algebras (see [N1, Section 2]). Let ξ1, ξ2, . . . , ξN be
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the canonical basis of ZN as above. For m = (m1,m2, . . . ,mN ) and n = (n1, n2, . . . , nN )
in ZN , m ≤ n means mi ≤ ni for all i = 1, 2, . . . , N . For m = (m1,m2, . . . ,mN ) ∈ NN , we
let

mZN = {(m1n1,m2n2, . . . ,mNnN ) ∈ ZN | (n1, n2, . . . , nN ) ∈ ZN}.

For simplicity, we denote ZN/mZN by Zm. Moreover, we may identify Zm = ZN/mZN

with
{(n1, n2, . . . , nN ) ∈ ZN | 0 ≤ ni ≤ mi − 1 for all i = 1, 2, . . . , N}.

Definition 2.1. Let α be an action of ZN on a unital C∗-algebra A. Then α is said to have
the Rohlin property, if for any m ∈ N there exist R ∈ N and m(1),m(2), . . . ,m(R) ∈ NN

with m(1), . . . ,m(R) ≥ (m,m, . . . ,m) satisfying the following: For any finite subset F of
A and ε > 0, there exists a family of projections

e(r)
g (r = 1, 2, . . . , R, g ∈ Zm(r))

in A such that
R∑

r=1

∑
g∈Z

m(r)

e(r)
g = 1, ‖[a, e(r)

g ]‖ < ε, ‖αξi
(e(r)

g ) − e
(r)
g+ξi

‖ < ε

for any a ∈ F , r = 1, 2, . . . , R, i = 1, 2, . . . , N and g ∈ Zm(r) , where g + ξi is understood
modulo m(r)ZN .

Remark 2.2. Clearly, we can restate the definition of the Rohlin property as follows.
For any m ∈ N there exist R ∈ N, m(1), m(2), . . . ,m(R) ∈ NN with m(1), . . . ,m(R) ≥
(m,m, . . . ,m) and a family of projections

e(r)
g (r = 1, 2, . . . , R, g ∈ Zm(r))

in Aω = Aω ∩ A′ such that

R∑
r=1

∑
g∈Z

m(r)

e(r)
g = 1, αξi

(e(r)
g ) = e

(r)
g+ξi

for any r = 1, 2, . . . , R, i = 1, 2, . . . , N and g ∈ Zm(r) , where g + ξi is understood modulo
m(r)ZN .

Furthermore, by the reindexation trick, for a given separable subset S of Aω, we can
make the projections e

(r)
g commute with all elements in S. We refer the reader to [O,

Lemma 5.3] for details.
In particular, the same conclusion also follows for perturbed actions on Aω. Let α be

an action of ZN on A with the Rohlin property and let {un}n ⊂ U(Aω) be an α-cocycle
in Aω. We can consider the perturbed action α̃ of ZN on Aω. Then, for a given separable
subset S of Aω, we can choose the projections e

(r)
g in Aω so that they commute with all

elements in S ∪ {un}n. It follows that we have

α̃ξi
(e(r)

g ) = uξi
αξi

(e(r)
g )u∗

ξi
= uξi

e
(r)
g+ξi

u∗
ξi

= e
(r)
g+ξi

for any r = 1, 2, . . . , R, i = 1, 2, . . . , N and g ∈ Zm(r) , where g + ξi is understood modulo
m(r)ZN .
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Remark 2.3. We can also restate the Rohlin property as follows ([N2, Remark 2]). For
any n, m ∈ N with 1 ≤ n ≤ N , there exist R ∈ N, natural numbers m(1),m(2), . . . ,m(R) ≥
m and a family of projections

e
(r)
j (r = 1, 2, . . . , R, j = 0, 1, . . . ,m(r) − 1)

in Aω = Aω ∩ A′ such that

R∑
r=1

m(r)−1∑
j=0

e
(r)
j = 1, αξn(e(r)

j ) = e
(r)
j+1, αξi

(e(r)
j ) = e

(r)
j

for any r = 1, 2, . . . , R, i = 1, 2, . . . , N with i 6= n and j = 0, 1, . . . ,m(r) − 1, where the
index is understood modulo m(r).

Remark 2.4. It is also obvious that if α is an action of ZN on A with the Rohlin property,
then the action α′ of ZN−1 generated by αξ2 , αξ3 , . . . , αξN

also has the Rohlin property as
a ZN−1-action.

3 Cohomology vanishing

Throughout this section, we let A denote a C∗-algebra which is isomorphic to O2. First
we need a technical lemma about homotopies of unitaries.

Lemma 3.1. Let (X, d) be a compact metric space and let z : X → U(Aω) be a map.
Suppose that there exists C > 0 such that ‖z(x) − z(x′)‖ ≤ Cd(x, x′) for any x, x′ ∈ X.
Then, for any separable subset B of Aω, we can find a map z̃ : X × [0, 1] → U(Aω) such
that the following are satisfied.

(1) For any x ∈ X, z̃(x, 0) = z(x) and z̃(x, 1) = 1.

(2) For any x, x′ ∈ X and t, t′ ∈ [0, 1],

‖z̃(x, t) − z̃(x′, t′)‖ ≤ 4Cd(x, x′) +
8π

3
|t − t′|.

(3) For any a ∈ B and (x, t) ∈ X × [0, 1], ‖[z̃(x, t), a]‖ ≤ 4‖[z(x), a]‖.

Proof. Since O2 is isomorphic to the infinite tensor product
⊗∞

i=1 O2 (see [R2] or [KP,
Theorem 3.8]), there exists a unital C∗-subalgebra D in Aω ∩ (B ∪ {z(x) | x ∈ X})′ such
that D ∼= O2. We regard z as a unitary in C(X)⊗Aω. By [HR, Lemma 5.1] and its proof
(see also [N2, Lemma 6]), we can find a unitary z̃ ∈ C(X) ⊗ C([0, 1]) ⊗ Aω such that the
following hold.

• z̃(x, 0) = z(x) and z̃(x, 1) = 1 for all x ∈ X.

• ‖z̃(x, t) − z̃(x, t′)‖ ≤ 8π

3
|t − t′| for all x ∈ X and t, t′ ∈ [0, 1].

• ‖z̃(x, t) − z̃(x′, t)‖ ≤ 4‖z(x) − z(x′)‖ for all x, x′ ∈ X and t ∈ [0, 1].
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• ‖[z̃(x, t), a]‖ ≤ 4‖[z(x), a]‖ for all (x, t) ∈ X × [0, 1] and a ∈ A.

Then the conclusions follow immediately.

Let N be a natural number. We denote the l∞-norm on RN by ‖·‖. We put

E = {t ∈ RN | ‖t‖ ≤ 1}

and
∂E = {t ∈ RN | ‖t‖ = 1}.

Lemma 3.2. Let C > 0 and let z0 : ∂E → U(Aω) be a map such that ‖z0(t) − z0(t′)‖ ≤
C‖t− t′‖ for every t, t′ ∈ ∂E. Then, for any separable subset B of Aω, there exists a map
z : E → U(Aω) such that the following hold.

(1) For t ∈ ∂E, z(t) = z0(t).

(2) For every t, t′ ∈ E, ‖z(t) − z(t′)‖ ≤ (24C + 16π/3)‖t − t′‖.

(3) For any a ∈ B and t ∈ E, ‖[z(t), a]‖ ≤ 4 sup{‖[z(s), a]‖ | s ∈ ∂E}.

Proof. Lemma 3.1 applies and yields a map z̃0 : ∂E × [0, 1] → U(Aω). We define z : E →
U(Aω) by

z(t) =

{
1 if ‖t‖ ≤ 1/2
z̃0(t/‖t‖, 2(1 − ‖t‖)) if ‖t‖ ≥ 1/2.

Conditions (1) and (3) are immediate from the definition.
In order to verify (2), take t, t′ ∈ E. If ‖t‖, ‖t′‖ ≤ 1/2, we have nothing to do. Let us

consider the case such that ‖t′‖ ≤ 1/2 ≤ ‖t‖. Since

‖t‖ − 1/2 ≤ ‖t‖ − ‖t′‖ ≤ ‖t − t′‖,

we have

‖z(t) − z(t′)‖ = ‖z̃0(t/‖t‖, 2(1 − ‖t‖)) − 1‖
= ‖z̃0(t/‖t‖, 2(1 − ‖t‖)) − z̃0(t/‖t‖, 1)‖

≤ 8π

3
|2(1 − ‖t‖) − 1|

≤ 16π

3
‖t − t′‖.

It remains for us to check the case such that ‖t‖, ‖t′‖ ≥ 1/2. Put s =
‖t′‖
‖t‖

t. Then

‖z(t) − z(s)‖ ≤ 8π

3
|2(1 − ‖t‖) − 2(1 − ‖t′‖)|

≤ 16π

3
|‖t‖ − ‖t′‖|

≤ 16π

3
‖t − t′‖.
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Besides,

‖z(s) − z(t′)‖ ≤ 4C

∥∥∥∥ t

‖t‖
− t′

‖t′‖

∥∥∥∥
≤ 24C‖t − t′‖.

Combining these, we obtain

‖z(t) − z(t′)‖ ≤ (24C + 16π/3)‖t − t′‖.

For each i = 1, 2, . . . , N , we let

E+
i = {(t1, t2, . . . , tN ) ∈ E | ti = 1}

and
E−

i = {(t1, t2, . . . , tN ) ∈ E | ti = −1}.

Thus, E+
i and E−

i are (N − 1)-dimensional faces of E. Let σi : E → E be the map such
that

σi : (t1, t2, . . . , ti, . . . , tN ) 7→ (t1, t2, . . . ,−ti, . . . , tN )

for each i = 1, 2, . . . , N . For k = 1, 2, . . . , N − 1, we define E(k) by

E(k) = {(t1, t2, . . . , tN ) ∈ E | #{i | |ti| = 1} ≥ N − k}.

In other words, E(k) is the union of k-dimensional faces of E. We have ∂E = E(N − 1) =∪N
i=1(E

+
i ∪ E−

i ). For each I ⊂ {1, 2, . . . , N}, we let

E+(I) = {(t1, t2, . . . , tN ) ∈ E | ti = 1 for all i /∈ I}.

Thus, E+(I) is a #I-dimensional face of E and E+(I) ∩ E(#I − 1) is the boundary of
E+(I). We also have E+

i = E+({1, 2, . . . , N} \ {i}).

Lemma 3.3. Let α1, α2, . . . , αN be N commuting automorphisms on Aω. Suppose that
there exists a family of unitaries u1, u2, . . . , uN in Aω satisfying uiαi(uj) = ujαj(ui) for
all i, j = 1, 2, . . . , N . Let 1 ≤ k ≤ N − 2 and C > 0. Suppose that z0 : E(k) → U(Aω)
satisfies the following.

• z0(1, 1, . . . , 1) = 1.

• For every i = 1, 2, . . . , N and t ∈ E(k) ∩ E+
i , z0(σi(t)) = uiαi(z0(t)).

• For every t, t′ ∈ E(k), ‖z0(t) − z0(t′)‖ ≤ C‖t − t′‖.

Then, for any separable subset B of Aω, we can find an extension z : E(k + 1) → U(Aω)
of z0 such that the following hold.

(1) For every i = 1, 2, . . . , N and t ∈ E(k + 1) ∩ E+
i , z(σi(t)) = uiαi(z(t)).

(2) For every t, t′ ∈ E(k + 1), ‖z(t) − z(t′)‖ ≤ (48C + 32π/3)‖t − t′‖.
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(3) Let I be a subset of {1, 2, . . . , N} such that #I = k + 1. For every a ∈ B and
t ∈ E+(I), one has

‖[z(t), a]‖ ≤ 4 sup{‖[z0(s), a]‖, ‖[z0(s), α−1
i (a)]‖ + ‖[ui, a]‖ | s ∈ E+(I \ {i}), i ∈ I}.

Proof. For each I ⊂ {1, 2, . . . , N} with #I = k + 1, by using Lemma 3.2, we can extend
z0 on E+(I) ∩ E(k) to the map zI : E+(I) → U(Aω) satisfying the following.

• For every t, t′ ∈ E+(I), ‖zI(t) − zI(t′)‖ ≤ (24C + 16π/3)‖t − t′‖.

• For any a ∈ B and t ∈ E+(I), ‖[zI(t), a]‖ ≤ 4 sup{‖z0(s), a]‖ | s ∈ E+(I) ∩ E(k)}.

We define z : E(k + 1) → U(Aω) as follows. First, for t ∈ E+(I), we let z(t) = zI(t).
Then, we can uniquely extend z to E(k + 1) so that z(σi(t)) = uiαi(z(t)) holds for any
i = 1, 2, . . . , N and t ∈ E(k + 1) ∩ E+

i , because of the equality uiαi(uj) = ujαj(ui). Note
that if t, t′ ∈ E(k + 1) lie on the same (k + 1)-dimensional face of E, then we still have
‖z(t) − z(t′)‖ ≤ (24C + 16π/3)‖t − t′‖.

Condition (1) is already achieved. Let us verify (2). Take t = (t1, t2, . . . , tN ) and
t′ = (t′1, t

′
2, . . . , t

′
N ) in E(k + 1). Since any unitaries are within distance two of each other,

we may assume that ‖t− t′‖ is less than two. We define s = (s1, s2, . . . , sN ) ∈ E(k +1) by

si =


ti if |ti| 6= 1 and |t′i| 6= 1
ti if |ti| = 1
t′i if |t′i| = 1.

It is easy to see that t and s lie on the same (k + 1)-dimensional face of E and that t′ and
s lie on the same (k + 1)-dimensional face of E. In addition, both ‖t− s‖ and ‖s− t′‖ are
less than ‖t − t′‖. It follows that

‖z(t) − z(t′)‖ ≤ ‖z(t) − z(s)‖ + ‖z(s) − z(t′)‖
≤ (24C + 16π/3)(‖t − s‖ + ‖s − t′‖)
≤ (48C + 32π/3)‖t − t′‖,

which ensures condition (2).
Let us consider (3). Take t ∈ E+(I). We already have

‖[zI(t), a]‖ ≤ 4 sup{‖z0(s), a]‖ | s ∈ E+(I) ∩ E(k)}.

For each s = (s1, s2, . . . , sN ) in E+(I) ∩ E(k), there exists i ∈ I such that |si| = 1. If
si = 1, then s is in E+(I \ {i}). If si = −1, then s′ = σi(s) is in E+(I \ {i}) and

‖[z0(s), a]‖ = ‖[z0(σi(s′)), a]‖
= ‖[uiαi(z0(s′)), a]‖
≤ ‖[z0(s′), α−1

i (a)]‖ + ‖[ui, a]‖,

thereby completing the proof.

The following proposition is a crucial tool for cohomology vanishing.
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Proposition 3.4. Let α1, α2, . . . , αN ∈ Aut(Aω) be N commuting automorphisms on Aω.
Suppose that there exists a family of unitaries u1, u2, . . . , uN in Aω satisfying uiαi(uj) =
ujαj(ui) for all i, j = 1, 2, . . . , N . Then, for any separable subset B of Aω, we can find a
continuous map z : E → U(Aω) such that the following hold.

(1) z(1, 1, . . . , 1) = 1.

(2) For every i = 1, 2, . . . , N and t ∈ E+
i , z(σi(t)) = uiαi(z(t)).

(3) For every t, t′ ∈ E, ‖z(t) − z(t′)‖ ≤ 50N‖t − t′‖.

(4) For any a ∈ B and t ∈ E,

‖[z(t), a]‖ ≤ 4N sup
K∑

k=1

‖[uik , (αi1αi2 . . . αik−1
)−1(a)]‖,

where the supremum is taken over all permutations i1, i2, . . . , iK of elements in
{1, 2, . . . , N}.

Proof. Clearly we may assume that B is αi-invariant for every i = 1, 2, . . . , N . By applying
Lemma 3.1 to the case such that X is a singleton, for each i = 1, 2, . . . , N , we obtain a
map z1,i from E+({i}) ∼= [0, 1] to U(Aω) satisfying the following.

• z1,i(σi(1, 1, . . . , 1)) = ui and z1,i(1, 1, . . . , 1) = 1.

• For any t, t′ ∈ E+({i}), ‖z1,i(t) − z1,i(t′)‖ ≤ 8π

3
‖t − t′‖.

• For any a ∈ B and t ∈ E+({i}), ‖[z1,i(t), a]‖ ≤ 4‖[ui, a]‖.

From these maps z1,i’s, by the same argument as in the previous lemma, we can construct
a map z1 : E(1) → U(Aω) such that the following are satisfied.

• For every i = 1, 2, . . . , N and t ∈ E+({i}), z1(t) = z1,i(t).

• For every i = 1, 2, . . . , N and t ∈ E(1) ∩ E+
i , z1(σi(t)) = uiαi(z1(t)).

• For every t, t′ ∈ E(1), ‖z1(t) − z1(t′)‖ ≤ 16π

3
‖t − t′‖.

Note that we have used the equality uiαi(uj) = ujαj(ui).
We apply Lemma 3.3 to z1 : E(1) → U(Aω) and obtain an extension z2 : E(2) → U(Aω)

of z1 which satisfies the following.

• For every i = 1, 2, . . . , N and t ∈ E(2) ∩ E+
i , z2(σi(t)) = uiαi(z2(t)).

• For every t, t′ ∈ E(2), ‖z2(t) − z2(t′)‖ ≤ 502‖t − t′‖.

• Let I be a subset of {1, 2, . . . , N} such that #I = 2. For every a ∈ B and t ∈ E+(I),
one has

‖[z2(t), a]‖ ≤ 4 sup{‖[z1(s), a]‖, ‖[z1(s), α−1
i (a)]‖ + ‖[ui, a]‖ | s ∈ E+(I \ {i}), i ∈ I}.
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Repeating this argument, we get a map zN−1 from E(N − 1) = ∂E to U(Aω) satisfying
the following.

• For every i = 1, 2, . . . , N and t ∈ E+
i , zN−1(σi(t)) = uiαi(zN−1(t)).

• For every t, t′ ∈ E(N − 1), ‖zN−1(t) − zN−1(t′)‖ ≤ 50N−1‖t − t′‖.

• Let I be a subset of {1, 2, . . . , N} such that #I = N − 1. For every a ∈ B and
t ∈ E+(I), one has

‖[zN−1(t), a]‖
≤ 4 sup{‖[zN−2(s), a]‖, ‖[zN−2(s), α−1

i (a)]‖ + ‖[ui, a]‖ | s ∈ E+(I \ {i}), i ∈ I}.

By using Lemma 3.2, we can extend zN−1 to z : E → U(Aω). Then, clearly conditions (2)
and (3) are satisfied. As for condition (4), we have

‖[z(t), a]‖ ≤ 4 sup{‖[zN−1(s), a]‖ | s ∈ E(N − 1)}
≤ 4 sup{‖[zN−1(s), a]‖, ‖[zN−1(s), α−1

i (a)]‖ + ‖[ui, a]‖ | s ∈ E+
i , 1 ≤ i ≤ N}

for any t ∈ E and a ∈ B. By estimating norms of commutators of zk(s) with elements in
B inductively, we obtain the desired inequality.

Now we would like to show the cohomology vanishing theorem.

Theorem 3.5. Let α be an action of ZN on A with the Rohlin property and let α̃ be
a perturbed action of α on Aω by an α-cocycle in Aω. Let B ⊂ Aω be an α̃-invariant
separable subset. Suppose that a family of unitaries {un}n∈ZN in Aω ∩B′ is an α̃-cocycle.
Then, there exists a unitary v ∈ U(Aω ∩ B′) such that

un = vα̃n(v∗)

for each n ∈ ZN , that is, {un}n∈ZN is a coboundary.

Proof. Evidently it suffices to show the following: For any ε > 0, there exists a unitary
v ∈ U(Aω ∩ B′) such that

‖uξi
− vα̃ξi

(v∗)‖ < ε

for every i = 1, 2, . . . , N . Choose a natural number M so that ε(M − 1) > 2 · 50N .
Since α has the Rohlin property, there exist R ∈ N and m(1),m(2), . . . ,m(R) ∈ ZN with
m(1), . . . ,m(R) ≥ (M,M, . . . ,M) and which satisfies the requirement in Definition 2.1.

For each r = 1, 2, . . . , R and i = 1, 2, . . . , N , let m
(r)
i be the i-th summand of m(r).

We put ηr,i = m
(r)
i ξi ∈ ZN . By applying Lemma 3.4 to α̃ηr,1 , α̃ηr,2 , . . . , α̃ηr,N and unitaries

uηr,1 , uηr,2 , . . . , uηr,N in U(Aω ∩B′), we obtain a map z(r) : E → U(Aω ∩B′) satisfying the
following.

• z(r)(1, 1, . . . , 1) = 1.

• For every i = 1, 2, . . . , N and t ∈ E+
i , z(r)(σi(t)) = uηr,iα̃ηr,i(z

(r)(t)).
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• For every t, t′ ∈ E, ‖z(r)(t) − z(r)(t′)‖ ≤ 50N‖t − t′‖.

For each r = 1, 2, . . . , R and g = (g1, g2, . . . , gN ) ∈ Zm(r) , we define w
(r)
g in U(Aω ∩ B′) by

w(r)
g = z(r)

(
2g1

m
(r)
1 − 1

− 1,
2g2

m
(r)
2 − 1

− 1, . . . ,
2gN

m
(r)
N − 1

− 1

)
.

It is easily seen that one has the following for any r = 1, 2, . . . , R, i = 1, 2, . . . , N and
g = (g1, g2, . . . , gN ) ∈ Zm(r) .

• If gi 6= 0, then ‖w(r)
g − w

(r)
g−ξi

‖ is less than ε.

• If gi = 0, then w
(r)
g is equal to uηr,iα̃ηr,i(w

(r)
g+ηr,i−ξi

).

By Remark 2.2, we can take a family of projections {e(r)
g | r = 1, 2, . . . , R, g ∈ Zm(r)} in

Aω ∩ B′ such that
R∑

r=1

∑
g∈Z

m(r)

e(r)
g = 1, α̃ξi

(e(r)
g ) = e

(r)
g+ξi

for any r = 1, 2, . . . , R, i = 1, 2, . . . , N and g ∈ Zm(r) , where g + ξi is understood modulo
m(r)ZN . Moreover, we may also assume that e

(r)
g commutes with ug and α̃g(w

(r)
g ). Define

v ∈ U(Aω ∩ B′) by

v =
R∑

r=1

∑
g∈Z

m(r)

ugα̃g(w(r)
g )e(r)

g .

It is now routinely checked that ‖uξi
−vα̃ξi

(v∗)‖ is less than ε for each i = 1, 2, . . . , N .

The following corollary is an immediate consequence of the theorem above and we omit
the proof.

Corollary 3.6. Let α be an action of ZN on A with the Rohlin property. For any ε > 0
and a finite subset F of A, there exist δ > 0 and a finite subset G of A such that the
following holds: If a family of unitaries {un}n∈ZN in A is an α-cocycle satisfying

‖[uξi
, a]‖ < δ

for every i = 1, 2, . . . , N and a ∈ G, then we can find a unitary v ∈ U(A) satisfying

‖uξi
− vαξi

(v∗)‖ < ε

and
‖[v, a]‖ < ε

for each i = 1, 2, . . . , N and a ∈ F . Furthermore, if F is an empty set, then we can take
an empty set for G.
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4 Rohlin type theorem

Throughout this section, we let A denote a unital C∗-algebra which is isomorphic to O2.
In this section, we would like to show the Rohlin type theorem for ZN -actions on A by
combining techniques developed in [N1] and [N2].

Lemma 4.1. Let α be an outer action of ZN on A. Then, for any m ∈ NN and a non-
zero projection p ∈ Aω = Aω ∩ A′, there exists a non-zero projection e in pAωp such that
eαg(e) = 0 for all g ∈ Zm \ {0}.

Proof. We can prove this lemma exactly in the same way as [N2, Lemma 3]. See also [N2,
Lemma 2].

The following lemma is a generalization of [K2, Lemma 3.5].

Lemma 4.2. Let α be an action of ZN on A with the Rohlin property. Suppose that
one has two non-zero projections e, f ∈ Aω satisfying αn(e) = e and αn(f) = f for any
n ∈ ZN . Then, there exists w ∈ Aω such that w∗w = e, ww∗ = f and αn(w) = w for all
n ∈ ZN .

Proof. To simplify notation, we denote αξi
by αi. Since Aω is purely infinite simple

and K0(Aω) = 0, there exists a partial isometry u ∈ Aω such that u∗u = e, uu∗ = f .
Put ui = u∗αi(u) + 1 − e. It is straightforward to verify uiαi(uj) = ujαj(ui) for all
i, j = 1, 2, . . . , N . Thus, the family {ui} is an α-cocycle in Aω. Clearly ui commutes with
e. By Theorem 3.5, we can find a unitary v ∈ Aω such that [v, e] = 0 and ui = vαi(v∗).
Then w = uv satisfies the requirements.

We also have an approximate version of the lemma above.

Lemma 4.3. Let α be an action of ZN on A with the Rohlin property. For any ε > 0 and
a finite subset F of A, there exist δ > 0 and a finite subset G of A such that the following
holds: Suppose that e and f are two non-zero projections in A satisfying

‖[e, a]‖ < δ, ‖[f, a]‖ < δ for all a ∈ G

and
‖αξi

(e) − e‖ < δ, ‖αξi
(f) − f‖ < δ for each i = 1, 2, . . . , N.

Then, we can find a partial isometry v ∈ A such that v∗v = e, vv∗ = f and

‖[v, a]‖ < ε for all a ∈ F

and
‖αξi

(v) − v‖ < ε for each i = 1, 2, . . . , N.

Proof. This immediately follows from the lemma above.

Next, we have to recall a technical result about almost cyclic projections.
Suppose that we are given ε > 0 and n ∈ N. Choose a natural number k ∈ N so that

2/
√

k < ε. Let α be an automorphism on A and let p be a projection of A which satisfies
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pαi(p) = 0 for all i = 1, 2, . . . , nk. Furthermore, let v ∈ A be a partial isometry such that
v∗v = p and vv∗ = α(p). Define

Ei,j =


αi−1(v)αi−1(v) . . . αj(v) if i > j

αi(p) if i = j

αi(v∗)αi+1(v∗) . . . αj−1(v∗) if i < j

for each i, j = 0, 1, . . . , nk. Then we can easily see that {Ei,j} is a system of matrix units
and α(Ei,j) = Ei+1,j+1 for any i, j = 0, 1, . . . , nk − 1. We let

f =
1
k

k−1∑
i,j=0

Eni,nj

and
ei = αi(f)

for all i = 0, 1, . . . , n− 1. Then {ei} is an orthogonal family of projections in A satisfying

e0 + e1 + · · · + en−1 ≤
nk−1∑
i=0

Ei,i

and
‖e0 − α(en−1)‖ <

2√
k

< ε.

Moreover, this argument applies to the case that p is almost orthogonal to αi(p). Thus,
for any ε > 0, there exists a small positive constant c(ε, n, k) such that the following holds:
if ‖pαi(p)‖ < c(ε, n, k) for all i = 1, 2, . . . , nk, then we can find a projection e0 such that∥∥∥∥∥(e0 + α(e0) + · · · + αn−1(e0))

(
1 −

nk−1∑
i=0

Ei,i

)∥∥∥∥∥ < ε

and
‖e0 − αn(e0)‖ <

2√
k

< ε.

Using these estimates, we can prove the next lemma.

Lemma 4.4. Let α be an outer action of ZN on A. Suppose that the action α′ of ZN−1

generated by αξ2 , αξ3 , . . . , αξN
has the Rohlin property. Then, for any n ∈ N, ε > 0 and a

finite subset F of A, there exist m ∈ NN , δ > 0 and a finite subset G of A satisfying the
following: If a non-zero projection p in A satisfies

‖pαg(p)‖ < δ for each g ∈ Zm \ {0}

and
‖[αg(p), a]‖ < δ for all g ∈ Zm and a ∈ G,

then there exists a non-zero projection e in A such that
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(1)
∥∥∥(e + αξ1(e) + · · · + αn−1

ξ1
(e))

(
1 −

∑
g∈Zm

αg(p)
)∥∥∥ < ε.

(2) ‖[αj
ξ1

(e), a]‖ < ε for all j = 0, 1, . . . , n − 1 and a ∈ F .

(3) ‖αξi
(e) − e‖ < ε for each i = 2, 3, . . . , N .

(4) ‖αn
ξ1

(e) − e‖ < ε.

Proof. We prove the lemma by induction on N . When N = 1, the assertion follows
immediately from [N2, Lemma 4] and its proof. Suppose that the case of N − 1 has been
shown. We would like to consider the case of ZN -actions. To simplify notation, we denote
αξi

by αi.
We are given n ∈ N, ε > 0 and a finite subset F of A. We choose k ∈ N so that

2/
√

k < ε. We will eventually find a projection q and a partial isometry v ∈ A such that
v∗v = q, vv∗ = α1(q) and ‖qαj

1(q)‖ < c(ε/2, n, k) for all j = 0, 1, . . . , nk. Then, by the
above mentioned technique, we will construct a projection e satisfying∥∥∥∥∥∥(e + α1(e) + · · · + αn−1

1 (e))

1 −
nk−1∑
j=0

αj
1(q)

∥∥∥∥∥∥ < ε/2

and
‖e − αn

1 (e)‖ <
2√
k

< ε.

In this construction, we can find ε′ > 0 and a finite subset F ′ of A such that the following
hold: If the projection q and the partial isometry v satisfy

‖[q, a]‖ < ε′, ‖[v, a]‖ < ε′ for all a ∈ F ′

and
‖αi(q) − q‖ < ε′, ‖αi(v) − v‖ < ε′ for each i = 2, 3, . . . , N,

then the obtained projection e satisfies conditions (2) and (3).
By applying Lemma 4.3 to the action α′ of ZN−1, ε′ > 0 and F ′, we get ε′′ > 0 and a

finite subset F ′′ of A. We may assume that ε′′ is smaller than

min
{

ε′,
c(ε/2, n, k)

3
,

ε

4nk

}
and that F ′′ contains F ′. By using the induction hypothesis for the action α′ of ZN−1,
n = 1, ε′′ > 0 and F ′′ ∪α−1

1 (F ′′) (see Remark 2.4), we have m′ ∈ NN−1, δ > 0 and a finite
subset G. We define m ∈ NN by m = (nk,m′).

In order to show that these items meet the requirements, let p be a projection in A
such that

‖pαg(p)‖ < δ for each g ∈ Zm \ {0}

and
‖[αg(p), a]‖ < δ for all g ∈ Zm and a ∈ G.

Then there exists a projection q in A which satisfies the following.
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•
∥∥∥q(1 −

∑
g αg(p))

∥∥∥ < ε′′, where the summation runs over all g = (g1, g2, . . . , gN ) ∈
Zm with g1 = 0.

• ‖[p, a]‖ < ε′′ and ‖[α1(p), a]‖ < ε′′ for all a ∈ F ′′.

• ‖αi(p) − p‖ < ε′′ for each i = 2, 3, . . . , N .

In addition, by taking δ sufficiently small, we may assume that the first condition above
implies ‖qαj

1(q)‖ < c(ε/2, n, k) for all j = 1, 2, . . . , nk. From Lemma 4.3, there exists a
partial isometry v such that v∗v = q, vv∗ = α1(q) and

‖[v, a]‖ < ε′ for all a ∈ F ′

and
‖αi(v) − v‖ < ε′ for each i = 2, 3, . . . , N.

Then, by the choice of ε′ > 0 and F ′, the desired projection e is obtained.

By using the lemma above, we can show the following.

Lemma 4.5. Let α be an outer action of ZN on A. Suppose that the action α′ of ZN−1

generated by αξ2 , αξ3 , . . . , αξN
has the Rohlin property. Then, for any n ∈ N, there exist

non-zero mutually orthogonal projections e0, e1, . . . , en−1 in Aω = Aω ∩ A′ such that

αξi
(ej) = ej

for each i = 2, 3, . . . , N and j = 0, 1, . . . , n − 1, and

αξ1(ej) = ej+1

for each j = 0, 1, . . . , n − 1, where the addition is understood modulo n.

Proof. It suffices to show the following. For any n ∈ N, ε > 0 and a finite subset F of
A, there exist non-zero almost mutually orthogonal projections e0, e1, . . . , en−1 in A such
that the following are satisfied.

• ‖[ej , a]‖ < ε for any j = 0, 1, . . . , n − 1 and a ∈ F .

• ‖αξi
(ej) − ej‖ < ε for each i = 2, 3, . . . , N and j = 0, 1, . . . , n − 1.

• ‖αξ1(ej) − ej+1‖ < ε for each j = 0, 1, . . . , n − 1, where the addition is understood
modulo n.

Lemma 4.4 applies to n ∈ N, ε > 0 and F ⊂ A and yields m ∈ NN , δ > 0 and a finite
subset G of A. From Lemma 4.1, there exists a non-zero projection p in A such that
‖pαg(p)‖ < δ for all g ∈ Zm \ {0} and ‖[αg(p), a]‖ < δ for all g ∈ Zm and a ∈ G. Then, by
Lemma 4.4, we can find desired projections.

The following lemma is an easy exercise and we omit the proof.
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Lemma 4.6. For any M ∈ N and ε > 0, there exists a natural number L ∈ N such that
the following holds. If u, u′ are two unitaries in the matrix algebra MLM+1(C) satisfying

Sp(u) = {1} ∪
{

exp
2π

√
−1j

LM
| j = 0, 1, . . . , LM − 1

}
and

Sp(u′) =
{

exp
2π

√
−1j

(L − 1)M
| j = 0, 1, . . . , (L − 1)M − 1

}
∪

{
exp

2π
√
−1j

M + 1
| j = 0, 1, . . . ,M

}
with multiplicity, then there exists a unitary w in MLM+1(C) such that

‖wuw∗ − u′‖ < ε.

Now we can prove the Rohlin type theorem for ZN -actions on the Cuntz algebra O2.

Theorem 4.7. Let A be a unital C∗-algebra which is isomorphic to O2 and let α be an
action of ZN on A. Then the following are equivalent.

(1) α is an outer action.

(2) α has the Rohlin property.

Proof. It is obvious that (2) implies (1). The implication from (1) to (2) is shown by
induction on N . When N = 1, the conclusion follows from [K2, Theorem 3.1]. We assume
that the assertion has been shown for N − 1. Let us consider the case of ZN -actions. To
simplify notation, we denote αξi

by αi.
It suffices to show the following (see Remark 2.3): For any M ∈ N and ε > 0, there

exist projections p0, p1, . . . , pM−1 and q0, q1, . . . , qM in Aω such that the following hold.

•
∑M−1

j=0 pj +
∑M

j=0 qj = 1.

• αi(pj) = pj and αi(qj) = qj for each i = 2, 3, . . . , N and j = 0, 1, . . . ,M − 1.

• ‖α1(pj) − pj+1‖ < ε for each j = 0, 1, . . . ,M − 1, where pM is understood as p0.

• ‖α1(qj) − qj+1‖ < ε for each j = 0, 1, . . . ,M , where qM+1 is understood as q0.

Let α′ be the action of ZN−1 generated by α2, α3, . . . , αN . By the induction hypothesis,
α′ has the Rohlin property. We are given M ∈ N and ε > 0. By applying Lemma 4.6, we
obtain a natural number L ∈ N. Let K be a very large natural number. By Lemma 4.5,
we can find non-zero projections e0, e1, . . . , eLM−1 in Aω such that

αi(ej) = ej

for each i = 2, 3, . . . , N and j = 0, 1, . . . , LM − 1, and

α1(ej) = ej+1
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for each j = 0, 1, . . . , LM − 1, where the addition is understood modulo LM . Set e =∑LM−1
j=0 ej . If e = 1, we have nothing to do, so we assume e 6= 1.
Take ε0 > 0 and a finite subset F0 of A arbitrarily. By using Lemma 4.4 for α′,

n = 1, ε0 and F0, we get m′ ∈ NN−1, δ > 0 and a finite subset G. Define m ∈ NN by
m = (KLM,m′). By Lemma 4.1, we can find a non-zero projection p in e0Aωe0 such that
pαg(p) = 0 for all g ∈ Zm \ {0}. Then, by applying Lemma 4.4 to each coordinate of a
representing sequence of p in `∞(N, A), we can construct a non-zero projection f in Aω

satisfying the following.

• ‖f(1−
∑

g αg(p))‖ < ε0, where the summation runs over all g = (g1, g2, . . . , gN ) ∈ Zm

with g1 = 0.

• ‖[f, a]‖ < ε0 for all a ∈ F0.

• ‖αi(f) − f‖ < ε0 for each i = 2, 3, . . . , N .

Notice that, from the first condition, one has ‖f(1− e0)‖ < ε0 and ‖fαj
1(f)‖ < 2ε0 for all

j = 1, 2, . . . ,KLM − 1. Since ε0 > 0 and F0 were arbitrary, by the reindexation trick, we
may assume that there exists a non-zero projection f ∈ Aω such that f ≤ e0,

αi(f) = f for each i = 2, 3, . . . , N

and
fαj

1(f) = 0 for each j = 1, 2, . . . ,KLM − 1.

By applying Lemma 4.2 to α′, 1 − e and f (note that α′ has the Rohlin property), we
obtain a partial isometry v ∈ Aω such that v∗v = 1 − e, vv∗ = f and αi(v) = v for all
i = 2, 3, . . . , N . We let

w =
1√
K

K−1∑
k=0

αkLM
1 (v).

Then, w is a partial isometry in Aω satisfying w∗w = 1 − e and ww∗ ≤ e0. In addition,
αi(w) = w for all i = 2, 3, . . . , N and ‖αLM

1 (w) − w‖ < 2/
√

K.
We consider a C∗-subalgebra D of Aω, defined by

D = C∗(w,α1(w), . . . , αLM−1
1 (w)).

It is easy to see that D is isomorphic to the matrix algebra MLM+1(C) and its unit is

1D = 1 − e + ww∗ + α1(ww∗) + · · · + αLM−1
1 (ww∗).

By choosing K so large, we may assume that there exists a unitary

u =



1
0 · . . . · 0 1
1 0 . . . · 0
0 1 · ·
...

. . . . . .
...

· 0 1 0 0
0 0 1 0


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in D such that
‖α1(x) − uxu∗‖ ≤ ε‖x‖

for all x ∈ D. By the choice of L, we can find a unitary u′ in D such that

Sp(u′) =
{

exp
2π

√
−1j

(L − 1)M
| j = 0, 1, . . . , (L − 1)M − 1

}
∪

{
exp

2π
√
−1j

M + 1
| j = 0, 1, . . . ,M

}
and ‖u − u′‖ < ε. It follows that there exist non-zero mutually orthogonal projections
p0, p1, . . . , pM−1, q0, q1, . . . , qM in D satisfying the following.

•
∑M−1

j=0 pj +
∑M

j=0 qj = 1D.

• αi(pj) = pj and αi(qj) = qj for each i = 2, 3, . . . , N and j = 0, 1, . . . ,M − 1.

• ‖α1(pj) − pj+1‖ < 3ε for each j = 0, 1, . . . ,M − 1, where pM is understood as p0.

• ‖α1(qj) − qj+1‖ < 3ε for each j = 0, 1, . . . ,M , where qM+1 is understood as q0.

Finally, we define projections p′j in Aω by

p′j = pj +
L−1∑
l=0

(
elM+j − αlM+j

1 (ww∗)
)

.

Then, we can check
M−1∑
j=0

p′j +
M∑

j=0

qj = 1,

αi(p′j) = pj

for all i = 2, 3, . . . , N and j = 0, 1, . . . ,M − 1 and

‖α1(p′j) − p′j+1‖ < 3ε +
4√
K

for each j = 0, 1, . . . ,M − 1, where p′M is understood as p′0. This completes the proof.

5 Classification

In this section, we would like to prove our main result Theorem 5.2 by using the Evans-
Kishimoto intertwining argument ([EK]).

Lemma 5.1. Let A be a unital C∗-algebra which is isomorphic to O2 and let α and β be
actions of ZN on O2. When α has the Rohlin property, we have the following.

(1) There exists an α-cocycle {un}n in Aω such that βn(a) = Ad un◦αn(a) for all n ∈ ZN

and a ∈ A.
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(2) For any ε > 0 and a finite subset F of A, there exists an α-cocycle {un}n in A such
that

‖βξi
(a) − Aduξi

◦ αξi
(a)‖ < ε

for each i = 1, 2, . . . , N and a ∈ F .

Proof. To simplify notation, we denote αξi
, βξi

by αi, βi.
(1). We prove this by induction on N . When N = 1, the assertion is clearly true,

because α1, β1 ∈ Aut(A) are approximately unitarily equivalent ([R1, Theorem 3.6]).
Suppose that the assertion for N − 1 has been shown. Let us consider the case of ZN -
actions. Let α′ be the action of ZN−1 on A generated by α2, α3, . . . , αN . By using the
induction hypothesis to α′, we can find unitaries u2, u3, . . . , uN in Aω such that

βi(a) = Ad ui ◦ αi(a)

and
uiαi(uj) = ujαj(ui)

for all i, j = 2, 3, . . . , N and a ∈ A. Since two automorphisms α1 and β1 on A are
approximately unitarily equivalent, there exists a unitary u ∈ Aω such that

β1(a) = Ad u ◦ α1(a)

for all a ∈ A. For i = 2, 3, . . . , N , we define xi ∈ Aω by

xi = uα1(ui)(uiαi(u))∗.

It is easy to see that xi belongs to U(Aω). Let α̃ be the perturbed action of α′ by the
α′-cocycle {u2, u3, . . . , uN}. Then, we can verify, for every i, j = 2, 3, . . . , N ,

xiα̃i(xj) = uα1(ui)αi(u)∗u∗
i α̃i(uα1(uj)αj(u)∗u∗

j )

= uα1(ui)αi(α1(uj)αj(u)∗u∗
j )u

∗
i

= uα1(uiαi(uj))αi(αj(u)∗)(uiαi(uj))∗

= uα1(ujαj(ui))αj(αi(u)∗)(ujαj(ui))∗

= xjα̃j(xi),

and so the family of unitaries {x2, x3, . . . , xN} is a α̃-cocycle on Aω. It follows from
Theorem 3.5 that there exists a unitary v ∈ Aω such that

xi = vα̃i(v∗)

for all i = 2, 3, . . . , N . Put u1 = v∗u. It can be easily checked that

β1(a) = Ad u1 ◦ α1(a)

for all a ∈ A and
u1α1(ui) = uiαi(u1)

for each i = 2, 3, . . . , N . Therefore, the family of unitaries {u1, u2, . . . , uN} induces the
desired α-cocycle in Aω.
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(2). From (1), there exists an α-cocycle {un}n in Aω such that

βn(a) = Ad un ◦ αn(a)

for all n ∈ ZN and a ∈ A. It follows from Theorem 3.5 that there exists a unitary v ∈ Aω

such that
un = vαn(v∗)

for every n ∈ ZN . Hence, for any ε > 0 and a finite subset F of A, we can find a unitary
w in A such that

‖βi(a) − Ad(vαi(v∗)) ◦ αi(a)‖ < ε

for every i = 1, 2, . . . , N and a ∈ F . Therefore, {vαn(v∗)}n is the desired α-cocycle.

Now we are ready to give a proof for our main theorem. We make use of the Evans-
Kishimoto intertwining argument ([EK, Theorem 4.1]). See also [N2, Theorem 5] or [I2,
Theorem 3.5].

Theorem 5.2. Let α and β be two outer actions on the Cuntz algebra O2. Then, they
are cocycle conjugate to each other.

Proof. We denote the Cuntz algebra O2 by A. Set S = {ξ1, ξ2, . . . , ξN} ⊂ ZN . Note that,
by Theorem 4.7, both α and β have the Rohlin property. We choose an increasing family
of finite subsets F1,F2, . . . of A whose union is dense in A. Put α0 = α and β1 = β. We
will construct ZN -actions α2k and β2k+1 on A, cocycles {uk

n}n∈ZN in A and unitaries vk

in A inductively.
Applying Corollary 3.6 to β1, 2−1 > 0 and F1, we obtain δ1 > 0 and a finite subset G1

of A. We let
G′

1 =
∪
g∈S

β1
−g(G1) ∪ F1.

By Lemma 5.1 (2), there exists an α0-cocycle {u0
n}n in A such that

‖β1
g (a) − Adu0

g ◦ α0
g(a)‖ <

δ1

2
(5.1)

for every g ∈ S and a ∈ G′
1. Let α2 be the perturbed action of α0 by the α0-cocycle {u0

n}n.
By using Corollary 3.6 for α0 and u0, we can find a unitary v0 in A such that

‖u0
g − v0α

0
g(v0)∗‖ < 1

for each g ∈ S.
Applying Corollary 3.6 to α2, 2−2 and

F ′
2 = F2 ∪ Ad v0(F2),

we obtain δ2 > 0 and a finite subset G2 of A. We may assume that δ2 is less than δ1 and
2−2. We let

G′
2 =

∪
g∈S

α2
−g(G2) ∪

∪
g∈S

β1
−g(G1) ∪ F2.
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By Lemma 5.1 (2), there exists an β1-cocycle {u1
n}n in A such that

‖Adu1
g ◦ β1

g (a) − α2
g(a)‖ <

δ2

2
(5.2)

for every g ∈ S and a ∈ G′
2. Let β3 be the perturbed action of β1 by the β1-cocycle {u1

n}n.
From (5.1) and (5.2), one has

‖[u1
g, a]‖ < δ1

for every g ∈ S and a ∈ G1. By using Corollary 3.6 for β1 and u1, we can find a unitary
v1 in A such that

‖u1
g − v1β

1
g (v1)∗‖ < 2−1

and
‖[v1, a]‖ < 2−1

for each g ∈ S and a ∈ F1.
Applying Corollary 3.6 to β3, 2−3 > 0 and

F ′
3 = F3 ∪ Ad v1(F3),

we obtain δ3 > 0 and a finite subset G3 of A. We may assume that δ3 is less than δ2 and
2−3. We let

G′
3 =

∪
g∈S

β3
−g(G3) ∪

∪
g∈S

α2
−g(G2) ∪ F3.

By Lemma 5.1 (2), there exists an α2-cocycle {u2
n}n in A such that

‖β3
g (a) − Adu2

g ◦ α2
g(a)‖ <

δ3

2
(5.3)

for every g ∈ S and a ∈ G′
3. Let α4 be the perturbed action of α2 by the α2-cocycle {u2

n}n.
From (5.2) and (5.3), one has

‖[u2
g, a]‖ < δ2

for every g ∈ S and a ∈ G2. By using Corollary 3.6 for α2 and u2, we can find a unitary
v2 in A such that

‖u2
g − v2α

2
g(v2)∗‖ < 2−2

and
‖[v2, a]‖ < 2−2

for each g ∈ S and a ∈ F ′
2.

Applying Corollary 3.6 to α4, 2−4 and

F ′
4 = F4 ∪ Ad(v2v0)(F4),

we obtain δ4 > 0 and a finite subset G4 of A. We may assume that δ4 is less than δ3 and
2−4. We let

G′
4 =

∪
g∈S

α4
−g(G4) ∪

∪
g∈S

β3
−g(G3) ∪ F4.
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By Lemma 5.1 (2), there exists an β3-cocycle {u3
n}n in A such that

‖Adu3
g ◦ β3

g (a) − α4
g(a)‖ <

δ4

2
(5.4)

for every g ∈ S and a ∈ G′
4. Let β5 be the perturbed action of β3 by the β3-cocycle {u3

n}n.
From (5.3) and (5.4), one has

‖[u3
g, a]‖ < δ3

for every g ∈ S and a ∈ G3. By using Corollary 3.6 for β3 and u3, we can find a unitary
v3 in A such that

‖u3
g − v3β

3
g (v3)∗‖ < 2−3

and
‖[v3, a]‖ < 2−3

for each g ∈ S and a ∈ F ′
3.

Repeating this argument, we obtain a sequence of ZN -actions α0, β1, α2, β3, . . . , cocy-
cles {u0

n}n, {u1
n}n, . . . and unitaries v0, v1, . . . . Define σ2k and σ2k+1 by

σ2k = Ad(v2kv2k−2 . . . v0)

and
σ2k+1 = Ad(v2k+1v2k−1 . . . v1).

Since we have
‖[vk, a]‖ < 2−k

and
‖[vk, σk−2(a)]‖ < 2−k

for any a ∈ Fk , we can conclude that there exist automorphisms γ0 and γ1 such that

γ0 = lim
k→∞

σ2k

and
γ1 = lim

k→∞
σ2k+1

in the point-norm topology (see [I2, Lemma 3.4]).
Define w2k

g , w2k+1
g ∈ U(A) by

w2k
g = u2k

g α2k
g (v2k)v∗2k

and
w2k+1

g = u2k+1
g β2k+1

g (v2k+1)v∗2k+1

for every k = 0, 1, 2, . . . and g ∈ S. Then ‖wk
g − 1‖ is less than 2−k. Furthermore, we

define w̃k
g ∈ U(A) by

w̃0
g = w0

g , w̃1
g = w1

g

and
w̃k

g = wk
gvkw̃

k−2
g v∗k

22



inductively. We would like to see that {w̃2k
g }k converges to a unitary for each g ∈ S. From

w̃2k
g = w2k

g · Ad(v2k)(w2k−2
g ) · Ad(v2kv2k−2)(w2k−4

g ) · · · · · Ad(v2kv2k−2 . . . v2)(w0
g),

we get
σ−1

2k (w̃2k
g ) = σ−1

2k−2(w
2k−2
g ) · σ−1

2k−4(w
2k−4
g ) · · · · · σ−1

0 (w0
g).

It follows from ‖w2k
g − 1‖ < 4−k that the right hand side converges. Hence w̃2k

g converges
to a unitary W 0

g in A, because σ2k converges to γ0. Likewise, w̃2k+1
g also converges to

a unitary W 1
g in A. We can also check that the unitaries {w̃2k

g }g are a cocycle for the
ZN -action σ2k ◦ α ◦ σ−1

2k and that the unitaries {w̃2k+1
g }g are a cocycle for the ZN -action

σ2k+1 ◦ β ◦ σ−1
2k+1. In addition, we can verify

Ad(w̃2k
g ) ◦ σ2k ◦ αg ◦ σ−1

2k = α2k+2
g

and
Ad(w̃2k+1

g ) ◦ σ2k+1 ◦ βg ◦ σ−1
2k+1 = β2k+3

g .

Since
‖β2k+3

g (a) − α2k+2
g (a)‖ < 2−2k−3

for all a ∈ F2k+2, we obtain

AdW 1
g ◦ γ1 ◦ βg ◦ γ−1

1 = AdW 0
g ◦ γ0 ◦ αg ◦ γ−1

0

for every g ∈ S. Furthermore, {W 0
g }g is a cocycle for the ZN -action γ0◦α◦γ−1

0 and {W 1
g }g

is a cocycle for the ZN -action γ1 ◦ β ◦ γ−1
1 . Therefore, we can conclude that α and β are

cocycle conjugate to each other.

Remark 5.3. From Theorem 5.2 and Theorem 3.5, one can actually show the following:
Let α and β be outer actions of ZN on O2. For any ε > 0, there exist γ ∈ Aut(O2) and
an α-cocycle {un}n∈ZN such that

Adun ◦ αn(a) = γ ◦ βn ◦ γ−1(a),

‖uξi
− 1‖ < ε

for any n ∈ ZN , a ∈ A and i = 1, 2, . . . , N .

References

[C1] A. Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École
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