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Abstract

We will show that the crossed products of unital simple real rank zero AT algebras by the
integers are AF embeddable. This is a generalization of N. Brown’s AF embedding theorem.
As an application, we will prove the AF embeddability of crossed product algebras arising
from certain minimal dynamical systems induced by two commuting homeomorphisms.

1 Introduction

In [V2], Voiculescu raised the following question: for which Z2-actions, on a metrizable compact
set X, is the crossed product C(X)oαZ2 embeddable into an AF algebra? In the Z-action case,
Pimsner solved this AF embeddability problem in [Pi]. He showed that the crossed product
C∗-algebra arising from (X,T ), where T is a homeomorphism on X, is AF embeddable if and
only if T is pseudo-non-wandering, which means that there is no open subset U ⊂ X such
that T (U) ⊂ U and U \ T (U) 6= ∅. For general discrete group actions including Z2, however,
no general result has been known. In this paper we would like to give a partial answer for
Voiculescu’s question.

Our setting is as follows. Let X be a compact metric space and T, S ∈ Homeo(X) be two
commuting homeomorphisms. We denote the crossed product C∗-algebra arising from (X,T, S)
by C∗(X,T, S). We say that (X,T, S) is a Z2-minimal system, if {TnSm(x) ; n,m ∈ Z} is
dense in X for every x ∈ X. This is evidently equivalent to non-existence of a non-trivial closed
subset which is T -invariant and S-invariant. (A subset E is said to be T -invariant if T (E) = E.)
When (X,T, S) is a Z2-minimal system, there exists a probability measure supported on whole
of X which is invariant under T and S. Hence, for every (n,m) ∈ Z2, TnSm is pseudo-non-
wandering. This fact seems to suggest the AF embeddability of the crossed product algebra
C∗(X,T, S). Actually we will prove that C∗(X,T, S) is really AF embeddable if (X,T, S) is a
Z2-minimal system and satisfies a certain condition which will be introduced in Section 4. This
condition is necessary for reducing the problem to the special case that T itself is a minimal
homeomorphism. IfX is the Cantor set and (X,T ) is a minimal system, then the crossed product
C∗-algebra C∗(X,T ) is a simple unital AT algebra with real rank zero ([Pu]). Therefore the AF
embeddability of C∗(X,T, S) will be obtained as a corollary of the AF embeddability of crossed
products of AT algebras by the integers, which is a generalization of [B, Corollary 4.10]. It
should be also pointed out that quasidiagonality and stably finiteness follow immediately from
AF embeddability.

Now we give an overview of each section below. In Section 2 we will generalize [KK, Theorem
3.1] to homomorphisms between simple unital AT algebras with real rank zero. It was proved
in [E] that two homomorphisms between these algebras are approximately unitarily equivalent
if and only if the induced homomorphisms on K-groups coincide. In the next section, however,
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we need a slight stronger equivalence relation, called asymptotically unitarily equivalence. By
exactly the same way as in [KK], we will show that Ext and OrderExt groups can distinguish
whether or not two homomorphisms are asymptotically unitarily equivalent. In Section 3 the
generalization of [B, Corollary 4.10] will be proven. The strategy we will use is the same as in
[B]. The only difference from the AF algebra case is that we have to take care of Bott elements
in order to deduce the stability from the Rohlin property. The homotopy lemma of [BEEK] will
play a very important role. As a corollary, we will also show that the crossed products of unital
separable simple nuclear TAF algebras which satisfy UCT by the integers are AF embeddable. In
Section 4 crossed product algebras arising from Z2-minimal systems are examined. As mentioned
before, we will prove that these algebras are AF embeddable under a certain assumption. We
will construct a Cantor minimal system by using ordered Bratteli diagram ([HPS]) and consider
a skew product extension. In Section 5 examples of Z2-minimal systems will be given. It can be
checked that our main theorem can be applied to many Z2-minimal systems. In fact the author
does not know a Z2-minimal system for which our method does not work.
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2 OrderExt and asymptotically unitarily equivalence

Let A and B be two unital C∗-algebras. We denote the set of all unital homomorphisms from
A to B by Hom(A,B). The unitary groups of A and B are denoted by U(A) and U(B). Two
unital homomorphisms α, β ∈ Hom(A,B) are said to be approximately unitarily equivalent if
there exists a sequence of unitaries {un}n∈N in U(B) such that Adunα(a) converges to β(a) for
all a ∈ A. If there exists a continuous map u : [0,∞) → U(B) such that

lim
t→∞

Adutα(a) = β(a)

for every a, we say that α and β are asymptotically unitarily equivalent. In this section we will
show that α and β are asymptotically unitarily equivalent if and only if an invariant η(α, β)
defined later is zero in the OrderExt group. The reader may refer to [KK, Section 2] for the
definition of OrderExt groups.

Suppose A is simple and two homomorphisms α, β ∈ Hom(A,B) are approximately unitarily
equivalent. Define the mapping torus of α and β by

Mα,β = {x ∈ C([0, 1], B) ; x(0) = α(a) and x(1) = β(a) for some a ∈ A}.

From the exact sequence
0 → SB →Mα,β → A→ 0,

we get two exact sequences of abelian groups:

0 → K1(B) → K0(Mα,β) → K0(A) → 0

and
0 → K0(B) → K1(Mα,β) → K1(A) → 0.

We write the set of all tracial states of B by T (B). For a unitary u ∈ Mα,β such that t 7→ u(t)
is piecewise C1,

T (B) 3 τ 7→
∫ 1

0
τ(u̇(t)u(t)∗) dt
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gives an affine map from T (B) to R. By exactly the same way as in [KK, Section 2], the map

Rα,β : K1(Mα,β) → Aff(T (B)),

called the rotation map, is well defined. Therefore we obtain an element η(α, β) in

Ext(K0(A),K1(B)) ⊕ OrderExt(K1(A),K0(B)).

Remark that η(α, β) is zero if and only if the following three conditions are satisfied:

(i) The extensions of Ki(A) by K1−i(B) described above are trivial.

(ii) The range of the rotation map Rα,β coincides with the range of the canonical mapK0(B) →
Aff(T (B)).

(iii) The exact sequence 0 → Inf(K0(B)) → kerRα,β → K1(A) → 0 is trivial,

where Inf(K0(B)) denotes the infinitesimal subgroup

{x ∈ K0(B) ; τ(x) = 0 for all τ ∈ T (B)}.

It is easy to see that η(α, β) + η(β, γ) equals η(α, γ) for approximately unitarily equivalent
homomorphisms α, β and γ in Hom(A,B).

We would like to prove the following theorem.

Theorem 1. Let A and B be unital simple AT algebras with real rank zero. When α, β ∈
Hom(A,B) are approximately unitarily equivalent homomorphisms, the following are equivalent.

(i) α and β are asymptotically unitarily equivalent.

(ii) η(α, β) defined above is zero in Ext(K0(A),K1(B)) ⊕ OrderExt(K1(A),K0(B)).

Because the proof is the same as that of [KK, Theorem 3.1], we give only a rough sketch of
the proof. In the next section we actually need the above theorem only for the case that B is
an AF algebra and Inf(K0(B)) = 0, and so the reader may consider that special case.

When u and v are almost commuting unitaries in a C∗-algebra A, we denote the Bott element
associated with u and v by B(u, v) ∈ K0(A). We refer the reader to [BEEK] or [KK] for the
Bott element.

At first we need to modify [KK, Lemma 3.4]. We say that the spectrum of a unitary
u ∈ U(Mn) is ε-dense with multiplicity m in T, if for every t ∈ T the unitary u has m eigenvalues
including multiplicity in the ε-neighborhood of t.

Lemma 1. Let u be a unitary of C(T,Mn). Suppose u(t) has n distinct eigenvalues and the spec-
trum is ε-dense with multiplicity m for all t ∈ T. Then, for every k with |k| ≤ m, there exists a
unitary w ∈ C(T,Mn) such that ||[u,w]|| < 2ε and the Bott element B(u,w) ∈ K0(C(T,Mn)) ∼=
Z is equal to k.

Proof. We identify C(T,Mn) with a C∗-subalgebra of C([0, 1],Mn). The unitary matrix u(0) has
n distinct eigenvalues in T. We may assume u(0) is a diagonal matrix. Let w be a permutation
unitary of Mn such that each eigenvalues of u(0) is permuted to the next eigenvalues in the
counterclockwise order. Then, ||[u(0), wk]|| < 2ε and B(u(0), wk) = k for |k| < m. We can find
a unitary v ∈ C([0, 1],Mn) such that v(t)∗u(t)v(t) is a diagonal unitary, v(0) is one and v(1)
equals wl for some l. If we put w′(t) = v(t)wkv(t)∗, the unitary w′ is really in C(T,Mn). It is
easy to see that ||[u,w′]|| < 2ε and B(u,w′) = k.
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Lemma 2. Let A be a unital simple AT algebra with real rank zero and z be a unitary in A with
full spectrum. Then, for any ε > 0 there exists δ > 0 such that the following holds: If x ∈ K0(A)
satisfies |τ(x)| < δ for every τ ∈ T (A), then there exists w ∈ U(A) such that ||[z, w]|| < ε and
B(z, w) = x.

Proof. Let (V,E) be the Bratteli diagram associated with K0(A). We may assume that A is an
inductive limit of Cn⊗C(T) with injective connecting homomorphisms and the finite dimensional
C∗-algebra Cn is isomorphic to

⊕
v∈Vn

Mh(v), where h(v) is the number of paths from V0 to v.
By perturbing z a little bit, we may suppose that z is contained in Cn⊗C(T) for some n and

the spectrum of z is ε-dense in T with multiplicity one. Because A is simple, we may further
assume that the spectrum of z(t) is ε-dense for every t ∈ Vn×T ([DNNP, Proposition 2.1]). Let
pv be a minimal projection of Mh(v) ⊂ Cn ⊗ C(T) and put p =

∑
v∈Vn

pv. Define

δ = inf{τ(p) ; τ ∈ T (B)}.

For m > n we denote the number of paths from Vn to v ∈ Vm by ev. The K0 class of p is exactly
(ev)v ∈ ZVm .

Suppose x ∈ K0(A) satisfies |τ(x)| < δ for all τ ∈ T (A). For sufficiently large m > n.
there exists a representative (xv)v ∈ ZVm of x such that |xv| is less than ev for every v ∈ Vm.
Obviously the spectrum of z(t) for t ∈ Vm × T is ε-dense with multiplicity ev. By perturbing z
a little bit in Cm⊗C(T) again, we may assume that z(t) has h(v) distinct eigenvalues for every
t ∈ {v}×T and v ∈ Vm (see [E, Theorem 4.1 (i)] for example). By virtue of Lemma 1, we get a
unitary w ∈ Cm ⊗ C(T) such that

||[z, w]|| < 2ε, B(z, w) = (xv)v ∈ K0(Cm ⊗ C(T)),

which completes the proof.

Lemma 3. Let A be a unital simple AT algebra with real rank zero. For every z ∈ U(A),
x ∈ K1(A) and ε > 0, there exists a unitary w ∈ A such that ||[z, w]|| < ε, B(z, w) = 0 and
[w] = x.

Proof. We use the same notation as in the proof of Lemma 2. We may assume that z is
contained in a basic building block Cn ⊗ C(T) and all eigenvalues of z(t) are distinct for every
t ∈ Vn × T. Suppose (xv)v ∈ ZVn is a representative of x. For every v ∈ Vn we can find
continuous maps λ : [0, 1] → T and p : [0, 1] → Mh(v) such that p(t) is a rank one projection
and z(t)p(t) = p(t)z(t) = λ(t)p(t). Define wv(t) = e2πixvtp(t) + (1− p(t)). Then, wv is a unitary
of Mh(v) ⊗ C(T) and commutes with z. It is clear that the K1-class of the direct sum of wv’s
equals x.

We can prove Theorem 1 by using the above lemmas.
Proof of Theorem 1. The implication (i)⇒(ii) is obvious (see [KK]). Let us prove the other
implication. As in Lemma 2, let (V,E) be the Bratteli diagram associated with K0(A) and
suppose that A is the inductive limit of Cn ⊗ C(T) with injective connecting homomorphisms,
where Cn is isomorphic to

⊕
v∈Vn

Mh(v). We denote the generating unitary of the center of
Cn ⊗ C(T) by zn. Let pv be a minimal rank one projection of Mh(v) ⊂ Cn for each v ∈ Vn and
define zv = znpv + (1 − pv). We may further assume that zn equals zn+1a+ z∗n+1b+ c for some
partial isometries a, b, c ∈ Cn+1 for every n.

Suppose {εn}n is a decreasing sequence of positive real numbers. By applying Lemma 2 to
β(pv)Bβ(pv), β(zvpv) for v ∈ Vn and εn/2, we get a small number δv. Let δn be the minimum of
εn(4π)−1 and these δv’s for v ∈ Vn. Because α is approximately unitarily equivalent to β, there
exists un ∈ U(B) such that Adunα|Cn = β|Cn and

||Adunα(zn) − β(zn)|| < sin 2πδ.
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For v ∈ Vn we define

hv =
1

2πi
log β(zv)unα(zv)u∗n,

then hv is in β(pv)Bβ(pv) and ||hv|| < δ. In the same way as in [KK], we can see that the
affine function T (B) 3 τ 7→ τ(hv) is in the range of the rotation map Rα,β . From the as-
sumption η(α, β) = 0, there exists xv ∈ K0(β(pv)Bβ(pv)) such that τ(hv) = τ(xv) for every
τ ∈ T (β(pv)Bβ(pv)). Therefore, by Lemma 2, we obtain a unitary wv ∈ β(pv)Bβ(pv) such that
||[β(zvpv), wv)]|| < εn/2 and B(β(zvpv), wv) = xv. By taking a direct sum of h(v) copies of wv,
we get a partial unitary of B commuting with β(Mh(v)). Let wn be the direct sum of these
partial unitaries. Then, wn is a unitary of B ∩ β(Cn)′. When we replace un by wnun, we can
get the following:

Adunα|Cn = β|Cn,
||Adunα(zn) − β(zn)|| < εn

and τ(hv) = 0 for all τ ∈ T (B), where hv is equal to

1
2πi

log β(zv)unα(zv)u∗n.

Thus we have shown [KK, Lemma 3.3] in our situation.
Lemma 3.5, 3.6 and 3.7 of [KK] are valid with no modification. If one uses Lemma 3 above,

it is not so hard to see that [KK, Lemma 3.9] is also valid. Therefore we have chosen the above
un’s so that the Bott element B(u∗n+1un, α(zv)) is zero for all v ∈ Vn and [u∗n+1unα(pv)] is also
zero in K1(α(pv)Bα(pv)). Note that the argument in this paragraph is not necessary, when B
is an AF algebra and Inf(K0(B)) = 0.

Now we can apply the homotopy lemma [BEEK, Theorem 8.1] in a similar fashion to [KK]
and conclude that α and β are asymptotically unitarily equivalent. �

3 Crossed products of AT algebras by the integers

The aim of this section is to generalize N. Brown’s AF embedding theorem [B, Corollary
4.10]. Let us begin with the definition of the universal UHF algebra U and an automorphism
σ ∈ Aut(U) with the Rohlin property ([B, Example 2.2]). The universal UHF algebra is the
infinite tensor product C∗-algebra

⊗
n∈NMn. Let un ∈ Mn be the unitary matrix satisfying

Adun(ei,j) = ei+1,j+1, where {ei,j}i,j is a system of matrix units in Mn and the addition is
understood modulo n. The infinite product automorphism σ = ⊗n Adun has a special property,
so called the Rohlin property.

In order to explain this property, we have to recall the idea of central sequence C∗-algebras.
Let A be a C∗-algebra. Define a C∗-algebra and its ideal by

`∞(N, A) =
{

(an)n∈N ; an ∈ A and sup
n

||an|| <∞
}

and
c0(N, A) = {(an)n ∈ `∞(N, A) ; lim an = 0} .

Let A∞ = `∞(N, A)/c0(N, A) be the quotient C∗-algebra. The central sequence C∗-algebra A∞
is defined by A∞ = A∞ ∩A′, where the original C∗-algebra A is embedded into A∞ as constant
sequences.
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As explained in Section 2 of [B], the automorphism σ ∈ Aut(U) has the Rohlin property in the
following sense: for every natural number N there exists a family of projections E0, E1, . . . , EN ∈
U∞ such that

∑
iEi = 1 and σ(Ei) = Ei+1 (with addition modulo N). This family of projections

is sometimes called the Rohlin tower. Moreover, for any unital C∗-algebra B and automorphism
β ∈ Aut(B), it is easy to see that the automorphism β ⊗ σ on B ⊗ U also satisfies the same
property. In general the Rohlin property does not require that the number of the Rohlin tower
is one, and the height of the tower may not be exactly equal to the given natural number N (see
[B, Definition 2.1]). In this paper, however, we will adopt the stronger version described above
as definition of the Rohlin property for convenience.

At first we need a technical lemma.

Lemma 4. Let A be a unital simple AT algebra with real rank zero. For every finite subset
F of A and ε > 0, there exist a finite subset G of the unit ball of A and δ > 0 such that the
following holds: If ϕ : A → B is a unital embedding to an AF algebra B and u : [0, 1] → U(B)
is a continuous path with u(0) = 1 satisfying

||[u(t), ϕ(a)|| < δ

for all t ∈ [0, 1] and a ∈ G, then there exists a continuous path w : [0, 1] → U(B) with length
less than 6π such that w(0) = 1, w(1) = u(1) and

||[w(t), ϕ(a)]|| < ε

for all t ∈ [0, 1] and a ∈ F .

Proof. Use Lemma 7.1 or Theorem 8.1 of [BEEK]. See also [K, Lemma 4.4].

The following proposition is the key to Theorem 2.

Proposition 1. Let A be a unital simple AT algebra with real rank zero and α be an automor-
phism of A. Let B be a unital simple AF algebra and ϕ : A → B be an embedding. Suppose
there exists an automorphism β ∈ Aut(B) such that ϕα and βϕ are asymptotically unitarily
equivalent. Then, the crossed product C∗-algebra Aoα Z is AF embeddable.

Proof. Since we can replace (B, β) with (B ⊗ U , β ⊗ σ), we may assume that β has the Rohlin
property.

Let F1 ⊂ F2 ⊂ F3 ⊂ . . . be an increasing sequence of finite subsets of the unit ball of A,
and suppose the union

⋃
Fn is dense in the unit ball of A. Let k1 < k2 < k3 < . . . be a

sequence of natural numbers which increase sufficiently rapidly and ε1 > ε2 > ε3 > . . . be a
sequence of positive real numbers which decrease sufficiently rapidly. By applying Lemma 4 to⋃kn−1
i=0 α−i(Fn) and εn, we get a finite subset Gn of the unit ball of A and δ′n > 0. We may

assume Fn ⊂ Gn. Let δ1 > δ2 > δ3 > . . . be a decreasing sequence of positive real numbers such
that k2

nδn < δ′n and (k2
n + kn)δn < εn.

Since ϕα and βϕ are asymptotically unitarily equivalent, by perturbing β with an inner
automorphism, we may assume the following: There exists a continuous map u : [0,∞) → U(B)
with u(0) = 1 such that

ϕα(a) = lim
t→∞

Adu(t)βϕ(a)

holds for all a ∈ A and
||ϕα(a) − Adu(t)βϕ(a)|| < δ1

2

for a ∈
⋃k1−1
i=0 α−i(G1) and t ∈ [0,∞).
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For sufficiently large s > 0 we have

||ϕα(a) − Adu(t)βϕ(a)|| < δ2
2

for all t ∈ [s,∞) and a ∈
⋃k2−1
i=0 α−i(G2). For t ∈ [0, s] we define

v0(t) = 1, v1(t) = u(t), v2(t) = u(t)β(u(t)),

v3(t) = u(t)β(u(t))β2(u(t)), . . . .

Then, for a ∈ G1 we get

ϕα(a) ∼δ1/2 βϕ(a) = βϕαα−1(a) ∼δ1/2 β
2ϕα−1(a) = . . . ,

and so
||ϕα(a) − βkϕα−k+1(a)|| < kδ1

2
is obtained for all a ∈ G1 and k ≤ k1. Hence we have

||[vk(t), ϕα(a)]|| ≤
k−1∑

j=0

||[βj(u(t)), ϕα(a)]||

<

k−1∑

j=0

(
||[βj(u(t)), βjϕα−j+1(a)]|| + jδ1

)

< k1(δ1 + (k1 − 1)δ1) = k2
1δ1 < δ′1,

for all t ∈ [0, s], a ∈ G1 and k ≤ k1. Especially, we can apply Lemma 4 to the case k = k1, and
get a continuous map w : [0, 1] → U(B) satisfying w(0) = vk1(s), w(1) = 1 and

||w(l) − w(l′)|| < 6π|l − l′|
||[w(l), ϕα(a)]|| < ε1

for l ∈ [0, 1] and a ∈
⋃k1−1
i=0 α−i(F1). Take a Rohlin tower E1, E2, . . . , Ek1 ∈ B∞ and define

V =
k1∑

j=1

vj−1(s)βj−1

(
w

(
j − 1
k1 − 1

))
Ej ∈ B∞.

Obviously V is a unitary. Moreover we obtain

||V β(V )∗ − u(s)|| < 6π
k1 − 1

and
||[V, ϕα(a)]|| < (k2

1 + k1)δ1 + ε1 < 2ε1

for all a ∈ F1. Therefore there exists a unitary v1 in B such that the above two inequalities
hold for v1 instead of V . We define w1 = v∗1u(s)β(v1), ϕ1 = Ad v∗1ϕ, β1 = Adw1β and u1(t) =
v∗1u(t+ s)u(s)∗v1. Then we can check that

ϕ1α(a) = lim
t→∞

Adu1(t)β1ϕ1(a)

holds for all a ∈ A and
||ϕ1α(a) − Adu1(t)β1ϕ1(a)|| <

δ2
2
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for all t ∈ [0,∞) and a ∈
⋃k2−1
i=0 α−i(G2).

By repeating this procedure, we get

ϕn = Ad vnvn−1 . . . v2v1ϕ

and
βn = Adwnwn−1 . . . w2w1β

for each n. Since we have
||[vn, ϕα(a)]|| < 2εn

for a ∈ Fn, there exists ϕ′ ∈ Hom(A,B) such that ϕ′(a) = limn ϕn(a) for every a ∈ A. Because
||wn − 1|| is less than 6π(kn − 1)−1,

w = lim
n→∞

wnwn−1 . . . w2w1

exists. Moreover, for all a ∈ Fn, we have

||ϕnα(a) − βnϕn(a)|| <
δn
2
,

which implies ϕ′α = Adwβϕ′. Since we have embedded (A,α) to (B,Adwβ) covariantly, the
conclusion follows from [B, Corollary 4.10] (or from [V1, Theorem 3.6], when the original β is
approximately inner.)

Theorem 2. When A is a unital simple AT algebra with real rank zero and α is an automorphism
of A, the crossed product C∗-algebra Aoα Z is AF embeddable.

Proof. Let τ ∈ T (A) be an α-invariant tracial state. When we define D = τ(K0(A)) and
D+ = D ∩ R+, the triple (D,D+, 1) is a simple dimension group. We can find a unital simple
AF algebra B and ϕ ∈ Hom(A,B) such that K0-group of B is isomorphic to (D,D+, 1) and ϕ∗
is equal to τ on K0(A). From Elliott’s theorem [E, Theorem 7.4] two homomorphisms ϕ and
ϕα are approximately unitarily equivalent.

Since T (B) consists of one point, the range of the rotation map Rϕα,ϕ can be identified
with a countable subgroup of R containing D ∼= K0(B). Let D′ be this countable group and
D′+ be D′ ∩ R+. There exists a unital simple AF algebra B′ whose K0-group is isomorphic to
(D′, D′+, 1). We can find ψ ∈ Hom(B,B′) which induces the canonical inclusion from D to D′.
Evidently the range of the rotation map Rψϕα,ψϕ is equal to D′, which also implies that the
extension of K1(A) by K0(B′) is trivial because Inf(K0(B)) = 0. Hence we get η(ψϕα, ψϕ) = 0.
Then, Theorem 1 tells us that two homomorphisms ψϕα and ψϕ are asymptotically unitarily
equivalent. From Proposition 1, we get the desired AF embedding.

By using the recent classification result, we obtain the following corollary.

Corollary 1. Let A be a unital separable simple nuclear TAF algebra which satisfies UCT.
When α is an automorphism of A, the crossed product C∗-algebra Aoα Z is AF embeddable.

Proof. Notice that A is a unital simple real rank zero AH algebra with slow dimension growth
(see [L] and [EG]). Since A⊗ U is also such a kind of C∗-algebra and its K-groups are torsion
free, the classification theorems in the above papers imply that A ⊗ U is a unital simple AT
algebra with real rank zero. Because we can apply Theorem 2 to (A ⊗ U , α ⊗ id), the crossed
product Aoα Z is embedded into an AF algebra.
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4 C∗-algebras arising from Z2-minimal systems

We will discuss the AF embeddability of the crossed product C∗-algebra C∗(X,T, S) arising
from a Z2-minimal system (X,T, S) in this section. The next proposition is our starting point.

Proposition 2. Let T be a minimal homeomorphism on the Cantor set X and S be a home-
omorphism which commutes with T . Then the crossed product C∗-algebra C∗(X,T, S) is AF
embeddable.

Proof. The homeomorphism S induces the automorphism α of C∗(X,T ) and C∗(X,T, S) is
isomorphic to C∗(X,T ) oα Z. Thanks to [Pu, Theorem 2.1] the crossed product C∗-algebra
C∗(X,T ) is a unital simple AT algebra with real rank zero (see also [HPS, Section 8]). We get
the conclusion from Theorem 2.

Let T be a homeomorphism on a compact Hausdorff space X. We introduce the following
condition called (#) for T :

(#) For every T -invariant non-empty open subset U there exists a T -invariant non-empty open
subset V with V ⊂ U .

The following lemma is an easy observation.

Lemma 5. (i) If (X,T ) is a minimal system and Y is a compact Hausdorff space, then
T × id ∈ Homeo(X × Y ) satisfies condition (#).

(ii) If (X,T ) is a dynamical system and there exists a T -invariant metric on X, then T satisfies
condition (#).

(iii) If (Ts)s∈R is a minimal flow on X, then Ts satisfies condition (#) for every s ∈ R.

Proof. (i) Every T × id-invariant open set takes the form of X×U for an open set U of Y . Since
there exists a non-empty open set V with V ⊂ U , we can check condition (#).

(ii) Let d(·, ·) be a T -invariant metric and U be a T -invariant open set. Take x ∈ U and
let W be an open ball with the center x and the radius d(x,U c)/2. When we define V =⋃
n∈Z T

n(W ∩ U), we can see that d(U c, V ) = d(U c,W ∩ U) is not less than d(x,U c)/2. Hence
V is contained in U .

(iii) It suffices to show that T1 satisfies condition (#). Let F be a minimal T1-invariant
closed subset. If Ts(F ) ∩ F is not empty, from the minimality of F , we have Ts(F ) = F . When
we define G = {s ∈ R ; Ts(F ) = F}, it is easily seen that G is a closed subgroup of R containing
one. When G equals R, one has F = X and condition (#) is obviously satisfied. Suppose
G = n−1Z for n ∈ N. Then,

⋃
s∈[0,n−1) Ts(F ) gives a disjoint partition of X. We can prove that

T1 satisfies condition (#) in a similar fashion to (i).

Let (X,T, S) and (Y, T ′, S′) be two Z2-minimal systems. A continuous map π : Y → X is
called a factor map, when it satisfies Tπ = πT ′ and Sπ = πS′. The factor map π induces a
canonical embedding of C∗(X,T, S) to C∗(Y, T ′, S′).

Lemma 6. Let π : Y → X be a factor map between Z2-minimal systems (X,T, S) and (Y, T ′, S′).
Suppose T satisfies condition (#). If either of the following holds, then T ′ also satisfies condition
(#).

(i) The factor map π is almost one-to-one, that is, there exists y ∈ Y with π−1(π(y)) = {y}.

(ii) The factor map π is a local homeomorphism, that is, each point y ∈ Y has a neighborhood
U such that π(U) is open and π|U is a homeomorphism.

9



Proof. (i) Suppose U ⊂ Y is a T ′-invariant non-empty open subset. Since (Y, T ′, S′) is a Z2-
minimal system, there exists y ∈ U with π−1(π(y)) = {y}. We can find a neighborhood W0 of
π(y) such that π−1(W0) is contained in U . Define W =

⋃
n∈Z T

n(W0). By the assumption, there
exists a T -invariant non-empty open set V with V ⊂W . Then, we have π−1(V ) ⊂ π−1(W ) ⊂ U ,
which implies condition (#).

(ii) Notice that π−1(x) is a finite set and its cardinality does not depend on x. Let U be a
T ′-invariant open set and define

k = max
{
#
(
U ∩ π−1(x)

)
; x ∈ X

}
.

Then, W = {y ∈ U ;#(U ∩ π−1π(y)) = k} is a T ′-invariant open subset of U . There exists a
T -invariant open set V ⊂ X with V ⊂ π(W ), because T satisfies condition (#). We would like
to show that the T ′-invariant open set V ′ = W ∩ π−1(V ) satisfies V ′ ⊂ W . Suppose that a
sequence {yn}n ⊂ V ′ converges to y /∈W . Since y is contained in π−1(V ), there exist k distinct
preimages of π(y) in W . Then, one can see that there exist k + 1 preimages of π(yn) in W for
sufficiently large n. This contradicts the assumption.

Let us prove the main theorem. In order to do that, we need a series of lemmas.

Lemma 7. When (X,T ) is a dynamical system, the following are equivalent.

(i) T satisfies condition (#).

(ii) Tn satisfies condition (#) for all n ∈ N.

(iii) Tn satisfies condition (#) for some n ∈ N.

Proof. (i)⇒(ii). The proof goes by induction. Assume that the assertion has been shown for all
natural numbers less than n. Let U ⊂ X be a Tn-invariant open subset. Take the minimum
natural number k such that T k(U)∩U is not empty. If k = n, W = U∪T (U)∪· · ·∪Tn(U) is a T -
invariant open set and we get a T -invariant open set V with V ⊂W . Then U∩V is a Tn-invariant
open set and U ∩ V ⊂ (W \U)c∩V ⊂ U . Suppose k < n. When U ′ = U∩T k(U)∩· · ·∩T (n−1)k(U)
is not empty, by the induction step, we can find a T l-invariant open set V with V ⊂ U ′, where l is
the greatest common divisor of k and n. Since V is also Tn-invariant, we have the conclusion. We
may assume U ′ is empty. Let m be the natural number such that U ′′ = U ∩T k(U)∩· · ·∩Tmk(U)
is not empty and U ∩ T k(U) ∩ · · · ∩ T (m+1)k(U) is empty. Clearly U ′′ is a Tn-invariant open
subset of U and U ′′ ∩ T i(U ′′) = ∅ for i = 1, 2, . . . , k − 1, k. By repeating this argument for U ′′,
we will complete the proof.

(ii)⇒(iii) is obvious.
(iii)⇒(i). Suppose U is a T -invariant non-empty open subset. From the assumption there

exists a Tn-invariant open subset V with V ⊂ U . Then V ′ = V ∪ T (V ) ∪ · · · ∪ Tn−1(V ) is a
T -invariant open subset with V ′ ⊂ U .

Lemma 8. Let (X,T, S) be a Z2-minimal system and suppose T satisfies condition (#). Let
a, b and c be three natural numbers and U be an open subset of X. If a and b are relatively
prime, there exists a sequence of homeomorphisms φ0, φ1, . . . , φl ∈ Homeo(X) with φ0 = id such
that φ−1

i φi+1 equals either of T a, T b, and T cS for all i = 0, 1, . . . , l − 1 and X =
⋃l
i=0 φi(U).

Proof. Since
⋃
k∈Z T

ka(U) is T a-invariant and open, with the aid of Lemma 7 we obtain a T a-
invariant open subset V with V ⊂

⋃
T ka(U). Because V is compact, there exists n such that

U ∪ T a(U) ∪ · · · ∪ Tna(U) ⊃ V.
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Hence we have
a−1⋃

k=0

T kb+kna(U ∪ T a(U) ∪ · · · ∪ Tna(U)) ⊃
a−1⋃

k=0

T kb(V ).

Since V ′ =
⋃a−1
k=0 T

kb(V ) is a T -invariant open subset, by the minimality, we can find a natural
number m such that V ′ ∪ S(V ′) ∪ · · · ∪ Sm(V ′) = X. Therefore we get

m⋃

j=0

T cjSj

(
a−1⋃

k=0

T kb+kna(U ∪ T a(U) ∪ · · · ∪ Tna(U))

)
= X,

which completes the proof.

The following lemma will be used to reduce the problem to Proposition 2. We refer the
reader to [HPS] or [M, Section 2] for ordered Bratteli diagrams.

Lemma 9. Let (X,T, S) be a Z2-minimal system and suppose T satisfies condition (#). Then
there exist a Cantor minimal system (Y, ψ) and a continuous function f : Y → Z such that
γ(x, y) = (TSf(y)(x), ψ(y)) is a minimal homeomorphism on X × Y .

Proof. We will construct a properly ordered simple Bratteli diagram B = (V,E). We denote
the Bratteli-Vershik system of B by (Y, ψ) and the unique minimal infinite path by y0 ∈ Y .
Define V0 = {v0} and Vn = {an, bn, cn, dn} for every n ∈ N. We connect the vertex v0 to
each vertex of V1 by a single edge. These four edges in E1 give a partition of Y , namely
Y = Ua ∪Ub ∪Uc ∪Ud. We put a Z-valued continuous function f by f |Ua = f |Ub = 0, f |Uc = 1
and f |Ud = −1. Inductively we will define the partially ordered edge set En for n ≥ 2 so that the
homeomorphism γ determined by f becomes minimal on X ×Y . We write the projections from
X × Y to X and Y by πX and πY . Let {Un}n∈N be an open basis of X. We write the number
of paths from v to v′ by E(v, v′). Suppose that the partially ordered edge sets E1, E2, . . . , En
have been already defined so that the following properties are satisfied.

(i) Two natural numbers E(v0, an) and E(v0, bn) are relatively prime.

(ii) E(c1, an) = E(d1, an).

(iii) E(c1, bn) = E(d1, bn).

(iv) E(c1, cn) − E(d1, cn) = 1.

(v) E(c1, dn) − E(d1, dn) = −1.

(vi) Every maximal edges and minimal edges in En goes through an−1 and every pair of vertices
in Vn−1 and Vn is connected.

(vii) For x ∈ X there exists a non-negative integer k less than E(v0, an) such that πXγk(x, y0)
is contained in Un−1 and the initial n− 2 edges of πY γk(x, y0) = ψk(y0) coincide with y0.

We would like to define the partially ordered edge setEn+1. By applying Lemma 8 to (X,T−1, S−1),
Un and three natural numbers E(v0, an), E(v0, bn) and E(v0, cn), we obtain a sequence of home-
omorphisms φ0, φ1, . . . , φl with φ0 = id. At first, let us consider r−1(an+1). For i = 1, 2, . . . , l
we determine the source vertex of i-th edge ei in r−1(an+1) by the homeomorphism φi−1φ

−1
i ,

that is, we define

s(ei) =





an φi−1φ
−1
i = TE(v0,an)

bn φi−1φ
−1
i = TE(v0,bn)

cn φi−1φ
−1
i = STE(v0,cn).
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This definition for n = 1 has ambiguity because E(v0.a1) = E(v0, b1) = 1. But we may choose
a1 or b1 freely when n = 1. Lemma 8 and the definition above tell us that the property (vii) in
the n+1-st step is satisfied. By adding more edges greater than el to r−1(an+1), we can achieve
the property (ii) and (vi) in the n + 1-st step. For the other edge sets r−1(bn+1), r−1(cn+1)
and r−1(cn+1) we have much flexibility. It is easy to achieve the other properties and make the
Bratteli diagram simple. By repeating this procedure, we get a properly ordered simple Bratteli
diagram B = (V,E).

From the construction we can show that the closure of the γ-orbit {γn(x, y0);n ∈ Z} contains
X × {y0} for every x ∈ X. Let x, x′ ∈ X be two points. When U is an open neighborhood of
x′, there exists a sufficiently large number n such that x′ ∈ Un ⊂ U . From the property (vii),
we can find a natural number k so that πXγk(x, y0) is contained in Un and ψk(y0) is very close
to y0. Hence the closure of {γn(x, y0);n ∈ Z} contains (x′, y0).

Let us check that the minimality of γ. Take (x, y) ∈ X × Y arbitrarily. We would like
to show that the closure of the γ-orbit of (x, y) is X × Y . Since (Y, ψ) is minimal and X is
compact, we can find a sequence of integers {mn}n such that γmn(x, y) converges to a point in
X × {y0}. Hence the closure of the γ-orbit of (x, y) contains the whole of X × {y0}. By using
the minimality of (Y, ψ) again, we get the conclusion.

Although the following lemma may be well-known, the author would like to present the proof
for the reader’s convenience.

Lemma 10. Let (X,T, S) be a Z2-minimal system and suppose X is not a finite set. Then
there exist a Z2-minimal system (Y, T ′, S′) and an almost one-to-one factor map π : Y → X
such that Y is the Cantor set.

Proof. Let {Un}n∈N be an open basis of X. Define U0,n = Un and U1,n = U cn. It is clear that

X ′ =



y ∈ {0, 1}N×Z×Z ;

⋂

n,k,l

T kSl(Uy(n,k,l),n) is not empty





is a closed subset of {0, 1}N×Z×Z. Obviously there exists a continuous surjection π : X ′ → X.
The map π is one-to-one at least on the points of

⋂

n,k,l

T kSl(Un ∪ Un
c),

which is not empty by the Baire category theorem. We denote the subshifts on the second
and third coordinates of {0, 1}N×Z×Z by T ′ and S′. By Zorn’s lemma we can find a minimal
T ′-invariant and S′-invariant non-empty closed subset Y in X ′. Then (Y, T ′, S′) is a Z2-minimal
system and π : Y → X gives an almost one-to-one factor map. Since Y is totally disconnected
and X is not a finite set, we can see that Y is the Cantor set.

Now we are ready to prove the main theorem.

Theorem 3. Let (X,T, S) be a Z2-minimal system. If TnSm satisfies condition (#) for some
(n,m) ∈ Z2 \ 0, then the crossed product C∗-algebra C∗(X,T, S) is AF embeddable.

Proof. We may assume that n and m are relatively prime because of Lemma 7. By replacing
generators of the Z2-action, we may further assume that T satisfies condition (#). From Lemma
6 (i) and 10, it suffices to consider the case that X is the Cantor set.

By Lemma 9 we can find a Cantor minimal system (Y, ψ), a continuous function f : Y → Z
and a minimal homeomorphism γ on X × Y determined by f . Since we can apply Proposition
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2 to the Cantor minimal system (X × Y, γ) and the homeomorphism τ = S × id, the crossed
product C∗-algebra C∗(X × Y, γ, τ) is AF embeddable. We denote the implementing unitaries
corresponding to γ and τ by u and v. Then, for any g ∈ C(X × Y ) we have ugu∗ = gγ−1 and
vgv∗ = gτ−1. Define a unitary w ∈ C(X × Y, γ, τ) by

w =
∑

n∈Z
uv−n1X×f−1(n),

where 1E denotes the characteristic function on E and the sum is actually a finite sum. It is
easily seen that

w(g ⊗ 1Y )w∗ = gT−1 ⊗ 1Y , v(g ⊗ 1Y )v∗ = gS−1 ⊗ 1Y

for every g ∈ C(X), and so a unital homomorphism π : C∗(X,T, S) → C∗(X × Y, γ, τ) is
obtained. Because there are faithful conditional expectations E : C∗(X,T, S) → C(X) and
F : C∗(X × Y, γ, τ) → C(X × Y ) such that πE = Fπ, we can show that π is an embedding.

5 Examples

At the final section we would like to give examples of Z2-minimal systems to which Theorem 3
can be applied.

(1) Many examples of minimal R-flows on compact connected manifolds are known ([FH]).
Let α : R×X → X be such a minimal flow. If s and t are rationally independent real numbers,
then T = αt and S = αs induce a Z2-minimal system on X. From Lemma 5 (iii) we can see
that C∗(X,T, S) is AF embeddable.

(2) We would like to consider Toeplitz sequences over Z2. The reader may refer to [W] for
the usual Z case. Define

RF (Z2) = {H ⊂ Z2 ; H is a subgroup of Z2 with Z2/H finite }.

Let A be a finite set. For ξ : Z2 → A and H ∈ RF (Z2) we denote by Per(ξ,H) the set of all
p ∈ Z2 such that ξ(p) = ξ(p+ q) for all q ∈ H. We call ξ a Toeplitz sequence over Z2, when

Z2 =
⋃

H∈RF (Z2)

Per(ξ,H).

Note that this definition of Toeplitz sequences is valid not only for Z2 or Z but also for all
residually finite groups.

Let T and S be the subshift over Z2, that is, for η ∈ AZ
2

we define T (η)(n,m) = η(n+1,m)
and S(η)(n,m) = η(n,m + 1). Let X be the closure of {TnSm(ξ);n,m ∈ Z} for a Toeplitz
sequence ξ. Then, by the same way as the Z case, one can prove that (X,T, S) is a Z2-
minimal system. We call H ∈ RF (Z2) a essential period of ξ, if Per(ξ,H) is not empty and
Per(ξ,H ′) ( Per(ξ,H) holds for all H ′ ∈ RF (Z2) with H ( H ′. For H ∈ RF (Z2), let TH and
SH be the translations on Z2/H by (1, 0) and (0, 1) of Z2. Let H be an essential period of ξ.
For p ∈ Z2, we can see that the closure of

{TnSm(ξ) ∈ X ; (n,m) ∈ H + p}

is contained in the closed set

UH,p = {η ∈ X ; η(q − p) = ξ(q) for all q ∈ Per(ξ,H)}.
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When p runs over representatives of all cosets in Z2/H, it can be checked that UH,p’s give a
disjoint partition of X. Therefore UH,p is a clopen subset of X and there exists a factor map
πH : (X,T, S) → (Z2/H, TH , SH). By considering all essential periods, we obtain a factor map
π from (X,T, S) to a Z2-minimal system induced by two rotations over a compact abelian group
and π is one-to-one at ξ. From Lemma 5 (ii) and Lemma 6 (i), it follows that T ∈ Homeo(X)
satisfies condition (#). Hence C∗(X,T, S) is AF embeddable.
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