On the homology groups of totally disconnected étale groupoids

Hiroki Matui

Chiba University

October 10, 2019
Measurable, Borel, and Topological Dynamics CIRM, Luminy

Overview

dynamical systems on X

étale groupoid \mathcal{G} with unit space $\mathcal{G}^{(0)}=X$
groupoid C^{*}-algebra $C_{r}^{*}(\mathcal{G})$

> (when X is 0 -dim.) homology groups of \mathcal{G} $H_{n}(\mathcal{G}), n=0,1,2, \ldots$

$$
\begin{aligned}
& K \text {-groups } \\
& K_{i}\left(C_{r}^{*}(\mathcal{G})\right), i=0,1
\end{aligned}
$$

Étale groupoid

A groupoid \mathcal{G} is a 'group-like' algebraic object, in which the product may not be defined for all pairs in \mathcal{G}.

- $g \in \mathcal{G}$ is thought of as an arrow $\bullet{ }^{g} \bullet$
- $r: g \mapsto g g^{-1}$ is called the range map.
- $s: g \mapsto g^{-1} g$ is called the source map.
- $\mathcal{G}^{(0)}=r(\mathcal{G})=s(\mathcal{G}) \subset \mathcal{G}$ is called the unit space.
\mathcal{G} is an étale groupoid if \mathcal{G} is equipped with a locally compact Hausdorff topology compatible with the groupoid structure and the range (or source) map is a local homeomorphism.
An arrow $\bullet \stackrel{g}{\leftarrow} \bullet$ is thought of as a germ at $s(g)=g^{-1} g$.

Example of étale groupoid

Let $\varphi: \Gamma \curvearrowright X$ be an action of a discrete group Γ on a locally compact Hausdorff space X.
$\mathcal{G}_{\varphi}=\Gamma \times X$ is an étale groupoid with

$$
\left(\gamma^{\prime}, \varphi_{\gamma}(x)\right) \cdot(\gamma, x)=\left(\gamma^{\prime} \gamma, x\right), \quad(\gamma, x)^{-1}=\left(\gamma^{-1}, \varphi_{\gamma}(x)\right)
$$

\mathcal{G}_{φ} is called the transformation groupoid.
Thus, (γ, x) is $\varphi_{\gamma}(x) \bullet \longleftarrow \cdot x$
The unit space $\mathcal{G}_{\varphi}^{(0)}=\{1\} \times X$ is identified with X.
The groupoid C^{*}-algebra $C_{r}^{*}\left(\mathcal{G}_{\varphi}\right)$ is canonically isomorphic to the crossed product $C_{0}(X) \rtimes_{r, \varphi} \Gamma$.

When X is totally disconnected, the homology groups $H_{n}\left(\mathcal{G}_{\varphi}\right)$ are canonically isomorphic to the group homology $H_{n}\left(\Gamma, C_{c}(X, \mathbb{Z})\right)$.

Groupoid C^{*}-algebra

For an étale groupoid \mathcal{G}, the space $C_{c}(\mathcal{G}, \mathbb{C})$ of compactly supported continuous functions becomes a *-algebra by

$$
\begin{gathered}
\left(f_{1} \cdot f_{2}\right)(g)=\sum_{h \in \mathcal{G}} f_{1}(g h) f_{2}\left(h^{-1}\right), \\
f^{*}(g)=\overline{f\left(g^{-1}\right)} .
\end{gathered}
$$

As a completion by a suitable norm, we get a (reduced) groupoid C^{*}-algebra $C_{r}^{*}(\mathcal{G})$.
$C_{r}^{*}(\mathcal{G})$ contains the abelian subalgebra $C_{0}\left(\mathcal{G}^{(0)}\right)$. It is maximal, and its unitary normalizers generate $C_{r}^{*}(\mathcal{G})$. Such a subalgebra $C_{0}\left(\mathcal{G}^{(0)}\right)$ is called a Cartan subalgebra.

Homology group

Suppose that $\mathcal{G}^{(0)}$ is totally disconnected.
$H_{n}(\mathcal{G})$ are the homology groups of the chain complex

$$
0 \longleftarrow C_{c}\left(\mathcal{G}^{(0)}, \mathbb{Z}\right) \stackrel{\delta_{1}}{\longleftarrow} C_{c}\left(\mathcal{G}^{(1)}, \mathbb{Z}\right) \stackrel{\delta_{2}}{\longleftarrow} C_{c}\left(\mathcal{G}^{(2)}, \mathbb{Z}\right) \stackrel{\delta_{3}}{\longleftarrow} \ldots,
$$

where $\mathcal{G}^{(n)}$ is the space of composable strings of n elements:

$$
\mathcal{G}^{(n)}=\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \mathcal{G}^{n} \mid s\left(g_{i}\right)=r\left(g_{i+1}\right) \quad \forall i\right\} .
$$

We denote by $\mathcal{C}(\mathcal{G})$ the chain complex above.
For a transformation groupoid \mathcal{G}_{φ} arising from $\varphi: \Gamma \curvearrowright X$, we have $H_{n}\left(\mathcal{G}_{\varphi}\right)=H_{n}\left(\Gamma, C_{c}(X, \mathbb{Z})\right)$.

References

- I. F. Putnam, An excision theorem for the K-theory of C^{*}-algebras. J. Operator Theory 38 (1997), 151-171.
- I. F. Putnam, On the K-theory of C^{*}-algebras of principal groupoids. Rocky Mountain J. Math. 28 (1998), 1483-1518.
- H. Matui, in preparation.

Putnam's Thm for factor groupoid (1/2)

Let \mathcal{G} and \mathcal{H} be étale groupoids, and let $i_{0}, i_{1}: \mathcal{H} \rightarrow \mathcal{G}$ be two continuous injective homomorphisms with disjoint images.
We assume:

- $i_{j}\left(\mathcal{H}^{(0)}\right) \subset \mathcal{G}^{(0)}$ is \mathcal{G}-invariant and $\mathcal{G} \mid i_{j}\left(\mathcal{H}^{(0)}\right)=i_{j}(\mathcal{H})$.
- For any $f \in C_{0}(\mathcal{G}, \mathbb{R})$, the function $\iota(f): \mathcal{H} \rightarrow \mathbb{R}$ defined by

$$
\iota(f)(g)=f\left(i_{0}(g)\right)-f\left(i_{1}(g)\right) \quad g \in \mathcal{H}
$$

belongs to $C_{0}(\mathcal{H}, \mathbb{R})$.

- $\mathcal{G}^{\prime}:=\mathcal{G} /\left\langle i_{0}(g) \sim i_{1}(g) \mid g \in \mathcal{H}\right\rangle$ is a locally compact and Hausdorff groupoid.
- The quotient map $\pi: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$ is proper.

One can prove that \mathcal{G}^{\prime} is an étale groupoid.

Putnam's Thm for factor groupoid (2/2)

Theorem (Putnam 1998)
There exists a six-term exact sequence:

$$
\begin{array}{ccc}
\begin{array}{l}
K_{1}\left(C_{r}^{*}(\mathcal{H})\right) \\
\uparrow
\end{array} K_{0}\left(C_{r}^{*}\left(\mathcal{G}^{\prime}\right)\right) \xrightarrow{K_{0}\left(\pi^{*}\right)} & K_{0}\left(C_{r}^{*}(\mathcal{G})\right) \\
K_{1}\left(C_{r}^{*}(\mathcal{G})\right) \stackrel{K_{1}\left(\pi^{*}\right)}{\rightleftarrows} K_{1}\left(C_{r}^{*}\left(\mathcal{G}^{\prime}\right)\right) \longleftrightarrow & \downarrow \\
& K_{0}\left(C_{r}^{*}(\mathcal{H})\right),
\end{array}
$$

where $\pi^{*}: C_{r}^{*}\left(\mathcal{G}^{\prime}\right) \rightarrow C_{r}^{*}(\mathcal{G})$ is the inclusion map.
The vertical arrows are induced by an element in $K K\left(C_{r}^{*}(\mathcal{G}), C_{r}^{*}(\mathcal{H})\right.$). (Hint: $C_{r}^{*}(\mathcal{G})$ acts on the Hilbert module $C_{r}^{*}(\mathcal{H}) \oplus C_{r}^{*}(\mathcal{H})$ by left multiplication.)

Homology group version (1/2)

Assume that $\mathcal{H}, \mathcal{G}, \mathcal{G}^{\prime}$ are totally disconnected.
Theorem (M)
There exists a long exact sequence of homology groups

$$
\begin{array}{rcccc}
\ldots & H_{n}\left(\mathcal{G}^{\prime}\right) & \xrightarrow{H_{n}^{*}(\pi)} & H_{n}(\mathcal{G}) & \iota
\end{array} H_{n}(\mathcal{H}) .
$$

The theorem above is a direct consequence of the following exact sequence of chain complexes:

$$
0 \longrightarrow \mathcal{C}\left(\mathcal{G}^{\prime}\right) \xrightarrow{\pi^{*}} \mathcal{C}(\mathcal{G}) \xrightarrow{\iota^{*}} \mathcal{C}(\mathcal{H}) \longrightarrow 0
$$

Homology group version (2/2)

$$
0 \longrightarrow \mathcal{C}\left(\mathcal{G}^{\prime}\right) \xrightarrow{\pi^{*}} \mathcal{C}(\mathcal{G}) \xrightarrow{\iota^{*}} \mathcal{C}(\mathcal{H}) \longrightarrow 0
$$

We assumed $\pi: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$ is proper, and so $\pi^{(n)}: \mathcal{G}^{(n)} \rightarrow \mathcal{G}^{(n)}$ is also proper. It follows that

$$
\left(\pi^{(n)}\right)^{*}: C_{c}\left(\mathcal{G}^{\prime(n)}, \mathbb{Z}\right) \rightarrow C_{c}\left(\mathcal{G}^{(n)}, \mathbb{Z}\right)
$$

is well-defined, and we get the chain map π^{*}.
The homomorphisms $i_{j}: \mathcal{H} \rightarrow \mathcal{G}(j=0,1)$ naturally induce $i_{j}^{(n)}: \mathcal{H}^{(n)} \rightarrow \mathcal{G}^{(n)}$. We can prove that

$$
\iota^{(n)}(f)(\xi):=f\left(i_{0}^{(n)}(\xi)\right)-f\left(i_{1}^{(n)}(\xi)\right) \quad \forall \xi \in \mathcal{H}^{(n)} .
$$

gives rise to a well-defined homomorphism

$$
\iota^{(n)}: C_{c}\left(\mathcal{G}^{(n)}, \mathbb{Z}\right) \rightarrow C_{c}\left(\mathcal{H}^{(n)}, \mathbb{Z}\right) .
$$

Clearly $\iota^{*}=\left(\iota^{(n)}\right)_{n}$ is a chain map.

Putnam's Thm for subgroupoid (1/2)

Let \mathcal{G} be an étale groupoid and let $\mathcal{G}^{\prime} \subset \mathcal{G}$ be an open subgroupoid with $\mathcal{G}^{\prime(0)}=\mathcal{G}^{(0)}$. Assume that a closed subset $L \subset \mathcal{G}$ satisfies the following.

- \mathcal{G} is the disjoint union of \mathcal{G}^{\prime}, L and L^{-1}.
- $r(L)$ and $s(L)$ are disjoint.
- $L \mathcal{G}^{\prime} \subset L$ and $\mathcal{G}^{\prime} L \subset L$.

Define a groupoid \mathcal{H} by

$$
\mathcal{H}:=\mathcal{G} \mid(r(L) \cup s(L))=(\mathcal{G} \mid r(L)) \cup(\mathcal{G} \mid s(L)) \cup L \cup L^{-1}
$$

With a suitable new topology, \mathcal{H} becomes an étale groupoid.

Putnam's Thm for subgroupoid (2/2)

Theorem (Putnam 1998)
There exists a six-term exact sequence:

$$
\begin{array}{ccc}
K_{0}\left(C_{r}^{*}(\mathcal{H})\right) & \longrightarrow & K_{0}\left(C_{r}^{*}\left(\mathcal{G}^{\prime}\right)\right) \xrightarrow{K_{0}(\alpha)} \\
\uparrow & K_{0}\left(C_{r}^{*}(\mathcal{G})\right) \\
& \downarrow \\
K_{1}\left(C_{r}^{*}(\mathcal{G})\right) \stackrel{K_{1}(\alpha)}{\rightleftarrows} K_{1}\left(C_{r}^{*}\left(\mathcal{G}^{\prime}\right)\right) \longleftarrow & K_{1}\left(C_{r}^{*}(\mathcal{H})\right),
\end{array}
$$

where $\alpha: C_{r}^{*}\left(\mathcal{G}^{\prime}\right) \rightarrow C_{r}^{*}(\mathcal{G})$ is the inclusion map.
The vertical arrows are induced by an element in $K K^{1}\left(C_{r}^{*}(\mathcal{G}), C_{r}^{*}(\mathcal{H})\right)$. (Hint: $C_{r}^{*}(\mathcal{G})$ acts on the Hilbert module $C_{r}^{*}(\mathcal{H})$ by left multiplication, and there exists a suitable self-adjoint unitary $z \in \mathcal{L}\left(C_{r}^{*}(\mathcal{H})\right)$.)

Homology group version (1/2)

Assume that $\mathcal{H}, \mathcal{G}, \mathcal{G}^{\prime}$ are totally disconnected.
Theorem (M)
There exists a long exact sequence of homology groups

$$
\begin{aligned}
\ldots & H_{n}(\mathcal{H}) \\
\longrightarrow & \longrightarrow H_{n}\left(\mathcal{G}^{\prime}\right)
\end{aligned} \longrightarrow H_{n}(\mathcal{G}) .
$$

In order to prove the theorem above, we set

$$
\mathcal{H}^{\prime}:=\mathcal{H} \cap \mathcal{G}^{\prime}=\mathcal{H} \backslash\left(L \cup L^{-1}\right)=(\mathcal{G} \mid r(L)) \cup(\mathcal{G} \mid s(L)),
$$

which is an open subgroupoid of

$$
\mathcal{H}=\mathcal{G} \mid(r(L) \cup s(L))=(\mathcal{G} \mid r(L)) \cup(\mathcal{G} \mid s(L)) \cup L \cup L^{-1} .
$$

Homology group version (2/2)

As sets,

$$
\begin{aligned}
& \mathcal{G}^{(n)} \backslash \mathcal{G}^{\prime(n)}=\left\{\left(g_{1}, \ldots, g_{n}\right) \in \mathcal{G}^{(n)} \mid \exists k, g_{k} \in L \cup L^{-1}\right\} \\
& \quad=\left\{\left(g_{1}, \ldots, g_{n}\right) \in \mathcal{H}^{(n)} \mid \exists k, g_{k} \in L \cup L^{-1}\right\}=\mathcal{H}^{(n)} \backslash \mathcal{H}^{\prime(n)} .
\end{aligned}
$$

Lemma

$\mathcal{G}^{(n)} \backslash \mathcal{G}^{\prime(n)}$ is homeomorphic to $\mathcal{H}^{(n)} \backslash \mathcal{H}^{\prime(n)}$. In particular,

$$
C_{c}\left(\mathcal{G}^{(n)}, \mathbb{Z}\right) / C_{c}\left(\mathcal{G}^{\prime(n)}, \mathbb{Z}\right) \cong C_{c}\left(\mathcal{H}^{(n)}, \mathbb{Z}\right) / C_{c}\left(\mathcal{H}^{\prime(n)}, \mathbb{Z}\right)
$$

Since \mathcal{H}^{\prime} is similar to $\mathcal{H} \oplus \mathcal{H}$, we get the conclusion.

Example I (factor groupoid)

Let X be a Cantor set and let $\varphi: \Gamma \curvearrowright X$ be a free action. Suppose that two points $x_{0}, x_{1} \in X$ satisfy

$$
\lim _{\gamma \rightarrow \infty} \operatorname{dist}\left(\varphi_{\gamma}\left(x_{0}\right), \varphi_{\gamma}\left(x_{1}\right)\right)=0
$$

Let $\mathcal{H}=\Gamma \times \Gamma$ be the groupoid of the left translation $\Gamma \curvearrowright \Gamma$.
One has $C_{r}^{*}(\mathcal{H}) \cong \mathcal{K}\left(\ell^{2}(\Gamma)\right)$.
Define two homomorphisms $i_{j}: \mathcal{H} \rightarrow \mathcal{G}_{\varphi}(j=0,1)$ by

$$
i_{j}\left(\gamma, \gamma^{\prime}\right):=\left(\gamma, \varphi_{\gamma^{\prime}}\left(x_{j}\right)\right)
$$

Then $\mathcal{G}^{\prime}:=\mathcal{G}_{\varphi} /\left\langle i_{0}(g) \sim i_{1}(g) \mid g \in \mathcal{H}\right\rangle$ is an étale groupoid.
By the theorem, we get

$$
H_{n}\left(\mathcal{G}_{\varphi}\right)=H_{n}\left(\mathcal{G}^{\prime}\right) \quad n \geq 1, \quad H_{0}\left(\mathcal{G}_{\varphi}\right)=H_{0}\left(\mathcal{G}^{\prime}\right) \oplus \mathbb{Z}
$$

Example II (factor groupoid) (1/3)

Consider the above graph whose adjacency matrix is

$$
A:=\left[\begin{array}{cc}
m-1 & 1 \\
1 & m-1
\end{array}\right]
$$

Let X be the one-sided infinite path space.

$$
\mathcal{G}:=\left\{\left(\left(x_{k}\right)_{k \in \mathbb{N}},\left(y_{k}\right)_{k \in \mathbb{N}}\right) \in X \times X \mid x_{k}=y_{k} \text { eventually }\right\}
$$

becomes an AF groupoid. We have $H_{n}(\mathcal{G})=0$ for $n \geq 1$ and

$$
H_{0}(\mathcal{G})=\underset{\longrightarrow}{\lim }\left(A: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}\right)
$$

Example II (factor groupoid) (2/3)

Define $Y, Y^{\prime} \subset X$ by

$$
\begin{gathered}
Y:=\left\{\left(x_{k}\right)_{k} \in X \mid x_{k} \in\{2,3, m-1\} \text { eventually }\right\} \\
Y^{\prime}:=\left\{\left(x_{k}\right)_{k} \in X \mid x_{k} \in\left\{2^{\prime}, 3^{\prime},(m-1)^{\prime}\right\} \text { eventually }\right\} .
\end{gathered}
$$

There exist an AF groupoid \mathcal{H} with $H_{0}(\mathcal{H}) \cong \mathbb{Z}[1 /(m-2)]$ and injective homomorphisms $i_{0}: \mathcal{H} \rightarrow \mathcal{G} \mid Y$ and $i_{1}: \mathcal{H} \rightarrow \mathcal{G} \mid Y^{\prime}$. Then

$$
\mathcal{G}^{\prime}:=\mathcal{G} /\left\langle i_{0}(g) \sim i_{1}(g) \mid g \in \mathcal{H}\right\rangle
$$

becomes an AF groupoid such that $H_{0}\left(\mathcal{G}^{\prime}\right) \cong \mathbb{Z}[1 / m]$.

Example II (factor groupoid) (3/3)

The long exact sequence

$$
\ldots \longrightarrow H_{n}\left(\mathcal{G}^{\prime}\right) \xrightarrow{H_{n}^{*}(\pi)} H_{n}(\mathcal{G}) \xrightarrow{\iota} H_{n}(\mathcal{H})
$$

implies

$$
0 \longrightarrow \mathbb{Z}\left[\frac{1}{m}\right] \longrightarrow H_{0}(\mathcal{G}) \longrightarrow \mathbb{Z}\left[\frac{1}{m-2}\right] \longrightarrow 0
$$

is exact.

Example III (factor groupoid) (1/3)

Modifying the previous example, we consider the graph:

whose adjacency matrix is $A=\left[\begin{array}{cc}B+I & I \\ I & B+I\end{array}\right]$.
As before, let X be the one-sided infinite path space.

$$
\mathcal{G}:=\left\{\left(\left(x_{k}\right)_{k}, l,\left(y_{k}\right)_{k}\right) \in X \times \mathbb{Z} \times X \mid x_{k+l}=y_{k} \text { eventually }\right\}
$$

becomes an étale groupoid, called SFT groupoid. Its homology groups are
$H_{0}(\mathcal{G}) \cong \operatorname{Coker}(\operatorname{id}-A), H_{1}(\mathcal{G}) \cong \operatorname{Ker}(\mathrm{id}-A), H_{n}(\mathcal{G})=0(n \geq 2)$.

Example III (factor groupoid) (2/3)

As before, we define $Y, Y^{\prime} \subset X$ by

$$
\begin{aligned}
Y & :=\left\{\left(x_{k}\right)_{k} \in X \mid x_{k} \text { is in } B \text { eventually }\right\} \\
Y^{\prime} & :=\left\{\left(x_{k}\right)_{k} \in X \mid x_{k} \text { is in } B \text { eventually }\right\}
\end{aligned}
$$

We can introduce injective homomorphisms $i_{0}: \mathcal{H} \rightarrow \mathcal{G} \mid Y$ and $i_{1}: \mathcal{H} \rightarrow \mathcal{G} \mid Y^{\prime}$, and define

$$
\mathcal{G}^{\prime}:=\mathcal{G} /\left\langle i_{0}(g) \sim i_{1}(g) \mid g \in \mathcal{H}\right\rangle
$$

which is the SFT groupoid of the graph corresponding to $B+2 I$.

Example III (factor groupoid) (3/3)

The long exact sequence gives us

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ker}(B+I) \rightarrow \operatorname{Ker}\left[\begin{array}{cc}
B & I \\
I & B
\end{array}\right] \rightarrow \operatorname{Ker}(B-I) \\
\rightarrow & \operatorname{Coker}(B+I) \rightarrow \operatorname{Coker}\left[\begin{array}{ll}
B & I \\
I & B
\end{array}\right] \rightarrow \operatorname{Coker}(B-I) \rightarrow 0 .
\end{aligned}
$$

For example, when $B=\left[\begin{array}{lll}2 & 1 & 3 \\ 1 & 2 & 1 \\ 4 & 4 & 3\end{array}\right]$, we have

Example IV (subgroupoid) (1/2)

Let $\varphi: \mathbb{Z} \curvearrowright X$ be a minimal action on a Cantor set X and let $\mathcal{G}_{\varphi}=\mathbb{Z} \times X$ be the transformation groupoid. Let $Y \subset X$ be a closed subset such that $Y \cap \varphi^{n}(Y)=\emptyset$ for all $n \in \mathbb{N}$. Define

$$
L:=\left\{\left(m, \varphi^{n}(y)\right) \in \mathcal{G}_{\varphi} \mid y \in Y, n \leq 0<m+n\right\}
$$

and set $\mathcal{G}^{\prime}:=\mathcal{G}_{\varphi} \backslash\left(L \cup L^{-1}\right)$, which is an open subgroupoid of \mathcal{G}.
It is known that \mathcal{G}^{\prime} is an AF groupoid.
Then,

$$
\mathcal{H}:=\mathcal{G} \mid(r(L) \cup s(L))
$$

is isomorphic to $Y \times \mathbb{Z} \times \mathbb{Z}$, because $Y \cap \varphi^{n}(Y)=\emptyset$.

Example IV (subgroupoid) (2/2)

In this setting, the long exact sequence

becomes

Example V (subgroupoid) (1/2)

Let $X:=\{a, b\} \times\{1,2, \ldots, m\}^{\mathbb{N}}$ and consider the AF groupoid

$$
\mathcal{G}:=\left\{\left(\left(x_{k}\right)_{k},\left(y_{k}\right)_{k}\right) \in X \times X \mid x_{k}=y_{k} \text { eventually }\right\} .
$$

We have $H_{0}(\mathcal{G}) \cong \mathbb{Z}[1 / m]$.

Let \mathcal{G}^{\prime} be the AF groupoid associated with the graph above, which was discussed in Example II.
By "forgetting the prime symbol", we can obtain a homomorphism from \mathcal{G}^{\prime} to \mathcal{G} and identify \mathcal{G}^{\prime} as an open subgroupoid of \mathcal{G}.

Example V (subgroupoid) (2/2)

In this setting, the long exact sequence

implies

$$
0 \longrightarrow \mathbb{Z}\left[\frac{1}{m-2}\right] \longrightarrow H_{0}\left(\mathcal{G}^{\prime}\right) \longrightarrow \mathbb{Z}\left[\frac{1}{m}\right] \longrightarrow 0
$$

is exact.

Example VI (subgroupoid) (1/2)

In the same way as in the factor groupoid example, one can generalize the graph of Example V to the graph

and consider the SFT groupoids instead of AF groupoids.
Thus,

$$
\begin{aligned}
\mathcal{G} & =" \text { SFT groupoid of } B+2 I \\
\mathcal{G}^{\prime} & =\text { SFT groupoid of }\left[\begin{array}{cc}
B+I & I \\
I & B+I
\end{array}\right] \\
\mathcal{H} " & =" \text { SFT groupoid of } B .
\end{aligned}
$$

Example VI (subgroupoid) (2/2)

The long exact sequence gives us

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ker}(B-I) \rightarrow \operatorname{Ker}\left[\begin{array}{cc}
B & I \\
I & B
\end{array}\right] \rightarrow \operatorname{Ker}(B+I) \\
\rightarrow & \operatorname{Coker}(B-I) \rightarrow \operatorname{Coker}\left[\begin{array}{cc}
B & I \\
I & B
\end{array}\right] \rightarrow \operatorname{Coker}(B+I) \rightarrow 0 .
\end{aligned}
$$

For example, when $B=\left[\begin{array}{lll}2 & 1 & 3 \\ 1 & 2 & 1 \\ 4 & 4 & 3\end{array}\right]$, we have

