On the homology groups of totally disconnected étale groupoids

Hiroki Matui

Chiba University

October 10, 2019 Measurable, Borel, and Topological Dynamics CIRM, Luminy

Overview

dynamical systems on X

 \downarrow

 $\begin{array}{l} \text{étale groupoid } \mathcal{G} \\ \text{with unit space } \mathcal{G}^{(0)} = X \end{array}$

(when X is 0-dim.) homology groups of \mathcal{G} $H_n(\mathcal{G}), n = 0, 1, 2, ...$

groupoid $C^*\text{-}\mathsf{algebra}$ $C^*_r(\mathcal{G})$

 $K ext{-groups} K_i(C^*_r(\mathcal{G})), \ i=0,1$

Étale groupoid

A groupoid \mathcal{G} is a 'group-like' algebraic object, in which the product may not be defined for all pairs in \mathcal{G} .

- $g \in \mathcal{G}$ is thought of as an arrow \xleftarrow{g} .
- $r: g \mapsto gg^{-1}$ is called the range map.
- $s: g \mapsto g^{-1}g$ is called the source map.
- $\mathcal{G}^{(0)} = r(\mathcal{G}) = s(\mathcal{G}) \subset \mathcal{G}$ is called the unit space.

 \mathcal{G} is an étale groupoid if \mathcal{G} is equipped with a locally compact Hausdorff topology compatible with the groupoid structure and the range (or source) map is a local homeomorphism.

An arrow $\bullet \xleftarrow{g} \bullet$ is thought of as a germ at $s(g) = g^{-1}g$.

Example of étale groupoid

Let $\varphi : \Gamma \curvearrowright X$ be an action of a discrete group Γ on a locally compact Hausdorff space X.

 $\mathcal{G}_{arphi} = \Gamma imes X$ is an étale groupoid with

$$(\gamma', \varphi_{\gamma}(x)) \cdot (\gamma, x) = (\gamma'\gamma, x), \quad (\gamma, x)^{-1} = (\gamma^{-1}, \varphi_{\gamma}(x)).$$

 \mathcal{G}_{φ} is called the transformation groupoid. Thus, (γ, x) is $\varphi_{\gamma}(x) \bullet \longleftarrow \bullet x$ The unit space $\mathcal{G}_{\varphi}^{(0)} = \{1\} \times X$ is identified with X.

The groupoid C^* -algebra $C^*_r(\mathcal{G}_{\varphi})$ is canonically isomorphic to the crossed product $C_0(X) \rtimes_{r,\varphi} \Gamma$.

When X is totally disconnected, the homology groups $H_n(\mathcal{G}_{\varphi})$ are canonically isomorphic to the group homology $H_n(\Gamma, C_c(X, \mathbb{Z}))$.

Groupoid C^* -algebra

For an étale groupoid \mathcal{G} , the space $C_c(\mathcal{G}, \mathbb{C})$ of compactly supported continuous functions becomes a *-algebra by

$$(f_1 \cdot f_2)(g) = \sum_{h \in \mathcal{G}} f_1(gh) f_2(h^{-1}),$$

$$f^*(g) = \overline{f(g^{-1})}.$$

As a completion by a suitable norm, we get a (reduced) groupoid C^* -algebra $C^*_r(\mathcal{G})$.

 $C_r^*(\mathcal{G})$ contains the abelian subalgebra $C_0(\mathcal{G}^{(0)})$. It is maximal, and its unitary normalizers generate $C_r^*(\mathcal{G})$. Such a subalgebra $C_0(\mathcal{G}^{(0)})$ is called a Cartan subalgebra.

Homology group

Suppose that $\mathcal{G}^{(0)}$ is totally disconnected. $H_n(\mathcal{G})$ are the homology groups of the chain complex

$$0 \longleftarrow C_c(\mathcal{G}^{(0)}, \mathbb{Z}) \stackrel{\delta_1}{\longleftarrow} C_c(\mathcal{G}^{(1)}, \mathbb{Z}) \stackrel{\delta_2}{\longleftarrow} C_c(\mathcal{G}^{(2)}, \mathbb{Z}) \stackrel{\delta_3}{\longleftarrow} \dots,$$

where $\mathcal{G}^{(n)}$ is the space of composable strings of n elements:

$$\mathcal{G}^{(n)} = \{ (g_1, g_2, \dots, g_n) \in \mathcal{G}^n \mid s(g_i) = r(g_{i+1}) \quad \forall i \}.$$

We denote by C(G) the chain complex above.

For a transformation groupoid \mathcal{G}_{φ} arising from $\varphi : \Gamma \curvearrowright X$, we have $H_n(\mathcal{G}_{\varphi}) = H_n(\Gamma, C_c(X, \mathbb{Z})).$

References

- I. F. Putnam, An excision theorem for the *K*-theory of *C**-algebras. J. Operator Theory 38 (1997), 151–171.
- I. F. Putnam, On the *K*-theory of *C**-algebras of principal groupoids. Rocky Mountain J. Math. 28 (1998), 1483–1518.
- H. Matui, in preparation.

Putnam's Thm for factor groupoid (1/2)

Let \mathcal{G} and \mathcal{H} be étale groupoids, and let $i_0, i_1 : \mathcal{H} \to \mathcal{G}$ be two continuous injective homomorphisms with disjoint images. We assume:

- $i_j(\mathcal{H}^{(0)}) \subset \mathcal{G}^{(0)}$ is \mathcal{G} -invariant and $\mathcal{G}|i_j(\mathcal{H}^{(0)}) = i_j(\mathcal{H})$.
- For any $f \in C_0(\mathcal{G},\mathbb{R})$, the function $\iota(f):\mathcal{H} \to \mathbb{R}$ defined by

$$\iota(f)(g) = f(i_0(g)) - f(i_1(g)) \quad g \in \mathcal{H}$$

belongs to $C_0(\mathcal{H}, \mathbb{R})$.

- $\mathcal{G}' := \mathcal{G}/\langle i_0(g) \sim i_1(g) \mid g \in \mathcal{H} \rangle$ is a locally compact and Hausdorff groupoid.
- The quotient map $\pi:\mathcal{G}\to\mathcal{G}'$ is proper.

One can prove that \mathcal{G}' is an étale groupoid.

Putnam's Thm for factor groupoid (2/2)

Theorem (Putnam 1998)

There exists a six-term exact sequence:

The vertical arrows are induced by an element in $KK(C_r^*(\mathcal{G}), C_r^*(\mathcal{H}))$. (Hint: $C_r^*(\mathcal{G})$ acts on the Hilbert module $C_r^*(\mathcal{H}) \oplus C_r^*(\mathcal{H})$ by left multiplication.)

Homology group version (1/2)

Assume that $\mathcal{H}, \mathcal{G}, \mathcal{G}'$ are totally disconnected.

Theorem (M)

There exists a long exact sequence of homology groups

$$\dots \longrightarrow H_n(\mathcal{G}') \xrightarrow{H_n^*(\pi)} H_n(\mathcal{G}) \xrightarrow{\iota} H_n(\mathcal{H}) \longrightarrow H_{n-1}(\mathcal{G}') \xrightarrow{H_{n-1}^*(\pi)} H_{n-1}(\mathcal{G}) \xrightarrow{\iota} H_{n-1}(\mathcal{H}) \dots$$

The theorem above is a direct consequence of the following exact sequence of chain complexes:

$$0 \longrightarrow \mathcal{C}(\mathcal{G}') \xrightarrow{\pi^*} \mathcal{C}(\mathcal{G}) \xrightarrow{\iota^*} \mathcal{C}(\mathcal{H}) \longrightarrow 0.$$

Homology group version (2/2)

$$0 \longrightarrow \mathcal{C}(\mathcal{G}') \xrightarrow{\pi^*} \mathcal{C}(\mathcal{G}) \xrightarrow{\iota^*} \mathcal{C}(\mathcal{H}) \longrightarrow 0$$

We assumed $\pi : \mathcal{G} \to \mathcal{G}'$ is proper, and so $\pi^{(n)} : \mathcal{G}^{(n)} \to \mathcal{G}'^{(n)}$ is also proper. It follows that

$$(\pi^{(n)})^* : C_c(\mathcal{G}'^{(n)}, \mathbb{Z}) \to C_c(\mathcal{G}^{(n)}, \mathbb{Z})$$

is well-defined, and we get the chain map π^* .

The homomorphisms $i_j: \mathcal{H} \to \mathcal{G} \ (j = 0, 1)$ naturally induce $i_j^{(n)}: \mathcal{H}^{(n)} \to \mathcal{G}^{(n)}$. We can prove that

$$\iota^{(n)}(f)(\xi) := f(i_0^{(n)}(\xi)) - f(i_1^{(n)}(\xi)) \quad \forall \xi \in \mathcal{H}^{(n)}.$$

gives rise to a well-defined homomorphism

$$\iota^{(n)}: C_c(\mathcal{G}^{(n)}, \mathbb{Z}) \to C_c(\mathcal{H}^{(n)}, \mathbb{Z}).$$

Clearly $\iota^* = (\iota^{(n)})_n$ is a chain map.

Putnam's Thm for subgroupoid (1/2)

Let \mathcal{G} be an étale groupoid and let $\mathcal{G}' \subset \mathcal{G}$ be an open subgroupoid with $\mathcal{G}'^{(0)} = \mathcal{G}^{(0)}$. Assume that a closed subset $L \subset \mathcal{G}$ satisfies the following.

- \mathcal{G} is the disjoint union of \mathcal{G}' , L and L^{-1} .
- r(L) and s(L) are disjoint.
- $L\mathcal{G}' \subset L$ and $\mathcal{G}'L \subset L$.

Define a groupoid ${\mathcal H}$ by

 $\mathcal{H} := \mathcal{G}|(r(L) \cup s(L)) = (\mathcal{G}|r(L)) \cup (\mathcal{G}|s(L)) \cup L \cup L^{-1}.$

With a suitable new topology, $\mathcal H$ becomes an étale groupoid.

Putnam's Thm for subgroupoid (2/2)

Theorem (Putnam 1998)

There exists a six-term exact sequence:

where $\alpha: C_r^*(\mathcal{G}') \to C_r^*(\mathcal{G})$ is the inclusion map.

The vertical arrows are induced by an element in $KK^1(C^*_r(\mathcal{G}), C^*_r(\mathcal{H}))$. (Hint: $C^*_r(\mathcal{G})$ acts on the Hilbert module $C^*_r(\mathcal{H})$ by left multiplication, and there exists a suitable self-adjoint unitary $z \in \mathcal{L}(C^*_r(\mathcal{H}))$.)

Homology group version (1/2)

Assume that $\mathcal{H}, \mathcal{G}, \mathcal{G}'$ are totally disconnected.

Theorem (M)

There exists a long exact sequence of homology groups

$$\dots \longrightarrow H_n(\mathcal{H}) \longrightarrow H_n(\mathcal{G}') \longrightarrow H_n(\mathcal{G})$$
$$\longrightarrow H_{n-1}(\mathcal{H}) \longrightarrow H_{n-1}(\mathcal{G}') \longrightarrow H_{n-1}(\mathcal{G}) \dots$$

In order to prove the theorem above, we set

$$\mathcal{H}' := \mathcal{H} \cap \mathcal{G}' = \mathcal{H} \setminus (L \cup L^{-1}) = (\mathcal{G}|r(L)) \cup (\mathcal{G}|s(L)),$$

which is an open subgroupoid of

$$\mathcal{H} = \mathcal{G}|(r(L) \cup s(L)) = (\mathcal{G}|r(L)) \cup (\mathcal{G}|s(L)) \cup L \cup L^{-1}.$$

Homology group version (2/2) As sets, $\mathcal{G}^{(n)} \setminus \mathcal{G}'^{(n)} = \{(g_1, \dots, g_n) \in \mathcal{G}^{(n)} \mid \exists k, \ g_k \in L \cup L^{-1}\} \\ = \{(g_1, \dots, g_n) \in \mathcal{H}^{(n)} \mid \exists k, \ g_k \in L \cup L^{-1}\} = \mathcal{H}^{(n)} \setminus \mathcal{H}'^{(n)}.$

Lemma

$$\mathcal{G}^{(n)} \setminus \mathcal{G}^{\prime(n)}$$
 is homeomorphic to $\mathcal{H}^{(n)} \setminus \mathcal{H}^{\prime(n)}$. In particular,
 $C_c(\mathcal{G}^{(n)}, \mathbb{Z})/C_c(\mathcal{G}^{\prime(n)}, \mathbb{Z}) \cong C_c(\mathcal{H}^{(n)}, \mathbb{Z})/C_c(\mathcal{H}^{\prime(n)}, \mathbb{Z}).$

Example I (factor groupoid)

Let X be a Cantor set and let $\varphi:\Gamma \curvearrowright X$ be a free action. Suppose that two points $x_0,x_1 \in X$ satisfy

$$\lim_{\gamma \to \infty} \operatorname{dist}(\varphi_{\gamma}(x_0), \varphi_{\gamma}(x_1)) = 0.$$

Let $\mathcal{H} = \Gamma \times \Gamma$ be the groupoid of the left translation $\Gamma \curvearrowright \Gamma$. One has $C_r^*(\mathcal{H}) \cong \mathcal{K}(\ell^2(\Gamma))$. Define two homomorphisms $i_j : \mathcal{H} \to \mathcal{G}_{\varphi}$ (j = 0, 1) by

$$i_j(\gamma, \gamma') := (\gamma, \varphi_{\gamma'}(x_j)).$$

Then $\mathcal{G}' := \mathcal{G}_{\varphi} / \langle i_0(g) \sim i_1(g) \mid g \in \mathcal{H} \rangle$ is an étale groupoid.

By the theorem, we get

$$H_n(\mathcal{G}_{\varphi}) = H_n(\mathcal{G}') \quad n \ge 1, \quad H_0(\mathcal{G}_{\varphi}) = H_0(\mathcal{G}') \oplus \mathbb{Z}.$$

Example II (factor groupoid) (1/3) 1,2,...,m-1(m)(1/3)

Consider the above graph whose adjacency matrix is

$$A := \begin{bmatrix} m-1 & 1\\ 1 & m-1 \end{bmatrix}$$

Let X be the one-sided infinite path space.

 $\mathcal{G} := \{ ((x_k)_{k \in \mathbb{N}}, (y_k)_{k \in \mathbb{N}}) \in X \times X \mid x_k = y_k \text{ eventually} \}$ becomes an AF groupoid. We have $H_n(\mathcal{G}) = 0$ for $n \ge 1$ and $H_0(\mathcal{G}) = \lim_{\longrightarrow} \left(A : \mathbb{Z}^2 \to \mathbb{Z}^2 \right).$

Example II (factor groupoid) (2/3)

Define $Y, Y' \subset X$ by

$$Y := \{ (x_k)_k \in X \mid x_k \in \{2, 3, m-1\} \text{ eventually} \},\$$

$$Y' := \{(x_k)_k \in X \mid x_k \in \{2', 3', (m-1)'\} \text{ eventually} \}.$$

There exist an AF groupoid \mathcal{H} with $H_0(\mathcal{H}) \cong \mathbb{Z}[1/(m-2)]$ and injective homomorphisms $i_0 : \mathcal{H} \to \mathcal{G}|Y$ and $i_1 : \mathcal{H} \to \mathcal{G}|Y'$. Then

$$\mathcal{G}' := \mathcal{G}/\langle i_0(g) \sim i_1(g) \mid g \in \mathcal{H} \rangle$$

becomes an AF groupoid such that $H_0(\mathcal{G}') \cong \mathbb{Z}[1/m]$.

Example II (factor groupoid) (3/3)

The long exact sequence

$$\dots \longrightarrow H_n(\mathcal{G}') \xrightarrow{H_n^*(\pi)} H_n(\mathcal{G}) \xrightarrow{\iota} H_n(\mathcal{H}) \longrightarrow \dots$$

implies

$$0 \longrightarrow \mathbb{Z}\left[\frac{1}{m}\right] \longrightarrow H_0(\mathcal{G}) \longrightarrow \mathbb{Z}\left[\frac{1}{m-2}\right] \longrightarrow 0$$

is exact.

Example III (factor groupoid) (1/3)

Modifying the previous example, we consider the graph:

 $\mathcal{G} := \{ ((x_k)_k, l, (y_k)_k) \in X \times \mathbb{Z} \times X \mid x_{k+l} = y_k \text{ eventually} \}$

becomes an étale groupoid, called SFT groupoid. Its homology groups are

$$H_0(\mathcal{G}) \cong \operatorname{Coker}(\operatorname{id} - A), \ H_1(\mathcal{G}) \cong \operatorname{Ker}(\operatorname{id} - A), \ H_n(\mathcal{G}) = 0 \ (n \ge 2).$$

Example III (factor groupoid) (2/3)

As before, we define $Y, Y' \subset X$ by

$$Y := \{(x_k)_k \in X \mid x_k \text{ is in } B \text{ eventually}\},\$$

 $Y' := \{(x_k)_k \in X \mid x_k \text{ is in } B \text{ eventually}\},\$

We can introduce injective homomorphisms $i_0 : \mathcal{H} \to \mathcal{G}|Y$ and $i_1 : \mathcal{H} \to \mathcal{G}|Y'$, and define

$$\mathcal{G}' := \mathcal{G}/\langle i_0(g) \sim i_1(g) \mid g \in \mathcal{H} \rangle$$

which is the SFT groupoid of the graph corresponding to B + 2I.

Example III (factor groupoid) (3/3)

The long exact sequence gives us

$$0 \to \operatorname{Ker}(B+I) \to \operatorname{Ker} \begin{bmatrix} B & I \\ I & B \end{bmatrix} \to \operatorname{Ker}(B-I)$$
$$\to \operatorname{Coker}(B+I) \to \operatorname{Coker} \begin{bmatrix} B & I \\ I & B \end{bmatrix} \to \operatorname{Coker}(B-I) \to 0.$$

For example, when
$$B = \begin{vmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 4 & 4 & 3 \end{vmatrix}$$
, we have

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}^2 \longrightarrow \mathbb{Z}$$
$$\longrightarrow \mathbb{Z} \oplus \mathbb{Z}_8 \longrightarrow \mathbb{Z}^2 \oplus \mathbb{Z}_8 \longrightarrow \mathbb{Z} \oplus \mathbb{Z}_2 \longrightarrow 0.$$

Example IV (subgroupoid) (1/2)

Let $\varphi : \mathbb{Z} \curvearrowright X$ be a minimal action on a Cantor set X and let $\mathcal{G}_{\varphi} = \mathbb{Z} \times X$ be the transformation groupoid. Let $Y \subset X$ be a closed subset such that $Y \cap \varphi^n(Y) = \emptyset$ for all $n \in \mathbb{N}$. Define

$$L := \{ (m, \varphi^n(y)) \in \mathcal{G}_{\varphi} \mid y \in Y, \ n \le 0 < m+n \},\$$

and set $\mathcal{G}' := \mathcal{G}_{\varphi} \setminus (L \cup L^{-1})$, which is an open subgroupoid of \mathcal{G} .

It is known that \mathcal{G}' is an AF groupoid.

Then,

$$\mathcal{H} := \mathcal{G}|(r(L) \cup s(L))|$$

is isomorphic to $Y \times \mathbb{Z} \times \mathbb{Z}$, because $Y \cap \varphi^n(Y) = \emptyset$.

Example IV (subgroupoid) (2/2)

In this setting, the long exact sequence

$$\dots \longrightarrow H_1(\mathcal{H}) \longrightarrow H_1(\mathcal{G}') \longrightarrow H_1(\mathcal{G}_{\varphi})$$
$$\longrightarrow H_0(\mathcal{H}) \longrightarrow H_0(\mathcal{G}') \longrightarrow H_0(\mathcal{G}_{\varphi}) \longrightarrow 0$$

becomes

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{Z}$$
$$\longrightarrow C(Y,\mathbb{Z}) \longrightarrow H_0(\mathcal{G}') \longrightarrow H_0(\mathcal{G}_{\varphi}) \longrightarrow 0.$$

Example V (subgroupoid) (1/2)

Let $X:=\{a,b\}\times\{1,2,\ldots,m\}^{\mathbb{N}}$ and consider the AF groupoid

 $\mathcal{G} := \{ ((x_k)_k, (y_k)_k) \in X \times X \mid x_k = y_k \text{ eventually} \}.$

We have $H_0(\mathcal{G}) \cong \mathbb{Z}[1/m]$.

Let \mathcal{G}' be the AF groupoid associated with the graph above, which was discussed in Example II.

By "forgetting the prime symbol", we can obtain a homomorphism from \mathcal{G}' to \mathcal{G} and identify \mathcal{G}' as an open subgroupoid of \mathcal{G} .

Example V (subgroupoid) (2/2)

In this setting, the long exact sequence

$$\dots \longrightarrow H_n(\mathcal{H}) \longrightarrow H_n(\mathcal{G}') \longrightarrow H_n(\mathcal{G}) \longrightarrow \dots$$

implies

$$0 \longrightarrow \mathbb{Z}\left[\frac{1}{m-2}\right] \longrightarrow H_0(\mathcal{G}') \longrightarrow \mathbb{Z}\left[\frac{1}{m}\right] \longrightarrow 0$$

is exact.

Example VI (subgroupoid) (1/2)

In the same way as in the factor groupoid example, one can generalize the graph of Example V to the graph

and consider the SFT groupoids instead of AF groupoids.

Thus,

$$\mathcal{G}$$
 "=" SFT groupoid of $B + 2I$
 $\mathcal{G}' =$ SFT groupoid of $\begin{bmatrix} B+I & I \\ I & B+I \end{bmatrix}$
 \mathcal{H} "=" SFT groupoid of B .

Example VI (subgroupoid) (2/2)

The long exact sequence gives us

$$0 \to \operatorname{Ker}(B - I) \to \operatorname{Ker} \begin{bmatrix} B & I \\ I & B \end{bmatrix} \to \operatorname{Ker}(B + I)$$
$$\to \operatorname{Coker}(B - I) \to \operatorname{Coker} \begin{bmatrix} B & I \\ I & B \end{bmatrix} \to \operatorname{Coker}(B + I) \to 0.$$

For example, when
$$B = \begin{vmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 4 & 4 & 3 \end{vmatrix}$$
, we have

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}^2 \longrightarrow \mathbb{Z}$$
$$\longrightarrow \mathbb{Z} \oplus \mathbb{Z}_2 \longrightarrow \mathbb{Z}^2 \oplus \mathbb{Z}_8 \longrightarrow \mathbb{Z} \oplus \mathbb{Z}_8 \longrightarrow 0.$$