$\mathsf{Poly}\text{-}\mathbb{Z}$ group actions on Kirchberg algebras III

Hiroki Matui

Chiba University

August, 2016 Operator Algebras and Mathematical Physics Tohoku University

Goal

Goal

Classify outer actions of poly- \mathbb{Z} groups on Kirchberg algebras up to KK-trivial cocycle conjugacy (as much as possible).

- A C*-algebra A is called a Kirchberg algebra if A is separable, nuclear, simple and purely infinite.
- A poly- \mathbb{Z} group is a group of the form $(((\mathbb{Z} \rtimes \mathbb{Z}) \rtimes ...) \rtimes \mathbb{Z}) \rtimes \mathbb{Z}.$
- $\alpha, \beta : G \curvearrowright A$ are said to be KK-trivially cocycle conjugate if $\exists \alpha$ -cocycle $(u_g)_g$, $\exists \theta \in Aut(A)$ such that $KK(\theta) = 1$ and $\operatorname{Ad} u_g \circ \alpha_g = \theta \circ \beta_g \circ \theta^{-1}$ holds for all $g \in G$.

Overview

- \checkmark Conjecture and partial answers
- 2 Equivariant version of Nakamura's theorem
- ✓ ③ Uniqueness of outer G-actions on \mathcal{O}_∞
- ✓ ④ Absorption of outer G-actions on \mathcal{O}_∞
 - 5 Stability
 - 6 Classification

Stability

Theorem (poly- \mathbb{Z} stability)

Let $\alpha : G \curvearrowright A$ be an action of a poly- \mathbb{Z} group G on a unital separable C^* -algebra A, which accepts $(\mathcal{O}_{\infty}, \beta)$. Let $I \subset A$ be an ideal. Suppose that a family $(x_g)_{g \in G}$ of continuous maps from $[0, 1] \times [0, \infty)$ to U(I) satisfies

$$x_g(0,t) = 1, \quad \lim_{t \to \infty} \max_{s \in [0,1]} \| [x_g(s,t),a] \| = 0 \quad \forall g \in G, \ a \in A,$$

 $\lim_{t\to\infty} \max_{s\in[0,1]} \|x_g(s,t)\alpha_g(x_h(s,t)) - x_{gh}(s,t)\| = 0 \quad \forall g,h\in G.$

Then there exists a continuous map $y:[0,\infty)\to U(I)$ such that

$$\lim_{t \to \infty} \|[y(t), a]\| = 0 \quad \forall a \in A,$$

$$\lim_{t\to\infty} \|x_g(1,t) - y(t)\alpha_g(y(t)^*)\| = 0 \quad \forall g \in G.$$

Cocycle actions (1/2)

Let A be a unital C^* -algebra and let G be a group.

A pair (α, u) of a map $\alpha: G \to \operatorname{Aut}(A)$ and a map $u: G \times G \to U(A)$ is called a cocycle action of G on A if

$$\alpha_g \circ \alpha_h = \operatorname{Ad} u(g,h) \circ \alpha_{gh}$$

and

$$u(g,h)u(gh,k)=\alpha_g(u(h,k))u(g,hk)$$

hold for any $g, h, k \in G$. We write $(\alpha, u) : G \curvearrowright A$.

We always assume $\alpha_1 = id$, u(g, 1) = u(1, g) = 1 for all $g \in G$.

When α_g is not inner for any $g \in G \setminus \{1\}$, (α, u) is said to be outer.

When $u \equiv 1$, $\alpha : G \curvearrowright A$ is a genuine action.

Cocycle actions (2/2)

Two cocycle actions $(\alpha, u) : G \curvearrowright A$ and $(\beta, v) : G \curvearrowright B$ are said to be cocycle conjugate if there exist a family of unitaries $(w_g)_{g \in G}$ in B and an isomorphism $\theta : A \to B$ such that

$$\theta \circ \alpha_g \circ \theta^{-1} = \operatorname{Ad} w_g \circ \beta_g$$

and

$$\theta(u(g,h)) = w_g \beta_g(w_h) v(g,h) w_{gh}^*$$

hold for every $g, h \in G$.

Our eventual goal is

- to classify (lpha,u) up to (KK-trivial) cocycle conjugacy and
- to determine when (α, u) is cocycle conjugate to a genuine action.

Stability

Let G be a poly- \mathbb{Z} group and fix a finite generating set $S \subset G$. Let $\beta : G \curvearrowright \mathcal{O}_{\infty}$ be an outer action.

Theorem (H^2 -stability)

For any $\varepsilon > 0$, there exists $\delta > 0$ such that the following holds: Let $(\sigma, w) : G \curvearrowright A$ be a cocycle action which accepts $(\mathcal{O}_{\infty}, \beta)$. If $||w(g,h) - 1|| < \delta$ for all $g, h \in S$, then there exist unitaries $(v_g)_g$ in A such that $||v_g - 1|| < \varepsilon$ for all $g \in S$ and

$$w(g,h)=\sigma_g(v_h^*)v_g^*v_{gh}\quad \forall g,h\in G,$$

that is, w is a coboundary.

We can prove H^1 -stability and H^2 -stability by induction on the Hirsch length: H^2 -stability for $G \implies H^1$ -stability for G $\implies H^2$ -stability for $G \rtimes \mathbb{Z} \implies H^1$ -stability for $G \rtimes \mathbb{Z} \implies \dots$

Overview

- \checkmark Conjecture and partial answers
- 2 Equivariant version of Nakamura's theorem
- ✓ ③ Uniqueness of outer G-actions on \mathcal{O}_∞
- $\checkmark 4$ Absorption of outer $\mathit{G}\text{-}\mathsf{actions}$ on \mathcal{O}_∞
- ✓₅ Stability
 - 6 Classification

Conjecture

Let us recall our conjecture.

Conjecture (Izumi 2010)

Let A be a unital Kirchberg algebra and let G be a poly- \mathbb{Z} group. Let $\alpha : G \curvearrowright A$ and $\beta : G \curvearrowright A$ be outer actions. The following are equivalent.

- 1 α and β are *KK*-trivially cocycle conjugate.
- **2** There exists a base point preserving isomorphism between \mathcal{P}^s_{α} and \mathcal{P}^s_{β} .

The second condition is equivalent to the following: there exists a continuous map $\Phi: EG \to \operatorname{Aut}(A \otimes \mathbb{K})_0$ such that $\Phi(x_0) = \operatorname{id}$ and $\Phi(g.x) \circ \alpha_q^s = \beta_q^s \circ \Phi(x)$.

Intertwining argument

For a poly- \mathbb{Z} group G, we let $\mu^G : G \curvearrowright \mathcal{O}_{\infty}$ be an outer action.

Theorem (Intertwining argument)

Let G be a poly- \mathbb{Z} group and let A be a unital separable C^* -algebra. Let $(\alpha, u) : G \frown A$ and $(\beta, v) : G \frown A$ be cocycle actions which accept $(\mathcal{O}_{\infty}, \mu^G)$.

Suppose that there exists a family $(x_g)_g$ of unitaries in A^{\flat} such that

$$(\operatorname{Ad} x_g \circ \alpha_g)(a) = \beta_g(a) \quad \forall a \in A,$$

$$x_g \alpha_g(x_h) u(g,h) x_{gh}^* = v(g,h) \quad \forall g,h \in G.$$

Then (α, u) and (β, v) are cocycle conjugate via an asymptotically inner automorphism.

Asymptotically representable actions

As an immediate corollary, we get the following.

Theorem (Izumi-M)

Let A be a unital Kirchberg algebra and let G be a poly- \mathbb{Z} group. All asymptotically representable outer actions of G on A are mutually KK-trivially cocycle conjugate.

Proof.

Let $\alpha: G \curvearrowright A$ be an asymptotically representable outer action. By definition, there exist $x_g: [0,\infty) \to U(A)$ $(g \in G)$ such that

$$x_g(t)x_h(t) - x_{gh}(t) \to 0, \quad x_g(t) \ a \ x_g(t)^* \to \alpha_g(a).$$

Let $\mu^G : G \curvearrowright \mathcal{O}_{\infty}$ be an outer action. Then $(x_g \otimes 1)_{g \in G}$ is thought of as a family of unitaries in $(A \otimes \mathcal{O}_{\infty})^{\flat}$. Thanks to the previous theorem, we can conclude that $\alpha \otimes \mu^G$ is KK-trivially cocycle conjugate to $\mathrm{id} \otimes \mu^G$.

Obstruction (1/4)

Let $\alpha, \beta: G \curvearrowright A$ be outer actions of a poly- \mathbb{Z} group G on a unital Kirchberg algebra A such that $KK(\alpha_g) = KK(\beta_g)$ for all $g \in G$.

For each $g \in G$, there exists $u_g : [0,\infty) \to U(A)$ such that $\operatorname{Ad} u_g(t) \circ \alpha_g \to \beta_g$ as $t \to \infty$. Then the unitaries

$$w(g,h) = u_g \alpha_g(u_h) u_{gh}^*$$

belong to $A_{\flat} = A^{\flat} \cap A'$. Define $\sigma_g \in \operatorname{Aut}(A_{\flat})$ by $\sigma_g = \operatorname{Ad} u_g \circ \alpha_g$ for each $g \in G$. Then it is easy to check that (σ, w) is a cocycle action of G on A_{\flat} .

Lemma

If w is a coboundary, α and β are KK-trivially cocycle conjugate.

Proof.

If $\exists v_g \in U(A_{\flat})$ such that $w(g,h) = v_g \sigma_g(v_h) v_{g,h}^*$, then $(v_g u_g)_g$ is an α -cocycle satisfying $(\operatorname{Ad} v_g u_g \circ \alpha_g)(a) = \beta_g(a)$ for $a \in A$.

Obstruction (2/4)

For outer actions $\alpha, \beta: G \curvearrowright A$ satisfying $KK(\alpha_g) = KK(\beta_g)$, we have chosen $u_g \in A^{\flat}$ so that $(\operatorname{Ad} u_g \circ \alpha_g)|A = \beta_g|A$ and defined a cocycle action $(\sigma, w): G \curvearrowright A_{\flat}$ by

$$\sigma_g = (\operatorname{Ad} u_g \circ \alpha_g) | A_{\flat}, \quad w(g,h) = u_g \alpha_g(u_h) u_{gh}^*.$$

We denote the cohomology class of the 2-cocycle $(g,h)\mapsto K_1(w(g,h))$ by

$$o^2(\alpha,\beta) \in H^2(G,K_1(A_{\flat})) \cong H^2(G,KK^1(A,A)),$$

which does not depend on the choice of $(u_q)_q$.

Obstruction (3/4)

Suppose $o^2(\alpha, \beta) = 0$. By replacing $(u_g)_g$ if necessary, we may assume $K_1(w(g, h)) = 0$ for all $g, h \in G$. Choose a continuous path $\tilde{w}(g, h) : [0, 1] \to U(A_{\flat})$ from 1 to w(g, h). Then

$$\sigma_g(\tilde{w}(h,k))\tilde{w}(g,hk)\,(\tilde{w}(g,h)\tilde{w}(gh,k))^* \quad g,h,k \in G$$

are unitaries in $S(A_{\flat})$, and their K_1 -classes form a 3-cocycle in $K_1(S(A_{\flat})) = K_0(A_{\flat})$. We denote its cohomology class by

$$o^{3}(\alpha, \beta, u) \in H^{3}(G, K_{0}(A_{\flat})) \cong H^{3}(G, KK(A, A)),$$

which does not depend on the choice of the path $(\tilde{w}(g,h))_{g,h}$, but may (a priori) depend on the choice of $(u_g)_g \subset U(A^{\flat})$.

Obstruction (4/4)

For $\alpha, \beta: G \curvearrowright A$,

- if $KK(\alpha_g)=KK(\beta_g),$ then $o^2(\alpha,\beta)\in H^2(G,KK^1(A,A))$ is defined,
- if $o^2(\alpha,\beta)=0$, then $o^3(\alpha,\beta,u)\in H^3(G,KK(A,A))$ is defined.

Lemma

If there exists a base point preserving isomorphism between \mathcal{P}^s_{α} and \mathcal{P}^s_{β} , then $KK(\alpha_g) = KK(\beta_g)$, $o^2(\alpha, \beta) = 0$ and $o^3(\alpha, \beta, u) = 0$ for some $(u_g)_g$.

Hirsch length two (1/2)

Let G be a poly- \mathbb{Z} group with Hirsch length two and let $\alpha, \beta : G \curvearrowright A$ be outer actions on a unital Kirchberg algebra. Assume $KK(\alpha_g) = KK(\beta_g)$ and $o^2(\alpha, \beta) = 0$. We want to show that α and β are KK-trivially cocycle conjugate.

Let $\sigma_g = \operatorname{Ad} u_g \circ \alpha_g \in \operatorname{Aut}(A_{\flat})$ and $w(g,h) \in U(A_{\flat})$ be as before. By replacing $(u_g)_g$, we may assume $K_1(w(g,h)) = 0 \ \forall g, h \in G$. Let $G = N \rtimes \langle \xi \rangle$. By assumption, N is \mathbb{Z} , and so we may assume that $\sigma | N$ is a genuine action. Then, there exists a $\sigma | N$ -cocycle $(v_g)_g$ in A_{\flat} such that

$$\sigma_{\xi} \circ \sigma_{\xi^{-1}g\xi} \circ \sigma_{\xi}^{-1} = \operatorname{Ad} v_g \circ \sigma_g \quad \forall g \in N,$$

and $K_1(v_g) = 0$. Since $N = \mathbb{Z}$, the $\sigma | N$ -cocycle $(v_g)_g$ can be approximated by coboundaries. By the H^2 -stability, we can conclude that the 2-cocycle w is a coboundary. Then, by the lemma mentioned before, α and β are KK-trivially cocycle conjugate.

Hirsch length two (2/2)

Theorem (Izumi-M)

The conjecture is true for any poly- \mathbb{Z} group with Hirsch length two.

Example

Let A be the Cuntz algebra \mathcal{O}_n . Then $KK^1(A, A) \cong \mathbb{Z}_{n-1}$.

- When $G = \mathbb{Z}^2$, $H^2(\mathbb{Z}^2, \mathbb{Z}_{n-1}) \cong \mathbb{Z}_{n-1}$, and so there exist n-1 outer actions $\mathbb{Z}^2 \curvearrowright \mathcal{O}_n$ up to KK-trivial cocycle conjugacy.
- When $G = \langle a, b \mid bab = a^{-1} \rangle$, $H^2(G, \mathbb{Z}_{n-1}) \cong \mathbb{Z}_{n-1} \otimes \mathbb{Z}_2$, and so

$$\#(\{\text{outer actions } G \frown \mathcal{O}_n\}/\sim) = \begin{cases} 1 & n \in 2\mathbb{N} \\ 2 & n \in 2\mathbb{N}+1. \end{cases}$$

Hirsch length three (1/2)

Now, let us consider a poly- \mathbb{Z} group G with Hirsch length three. Let $\alpha, \beta: G \frown A$ be outer actions on a unital Kirchberg algebra. Assume $KK(\alpha_g) = KK(\beta_g)$, $o^2(\alpha, \beta) = 0$ and $o^3(\alpha, \beta, u) = 0$ for some $(u_g)_g$.

We want to show that α and β are KK-trivially cocycle conjugate.

Let $\sigma_g = \operatorname{Ad} u_g \circ \alpha_g \in \operatorname{Aut}(A_{\flat})$ and $w(g,h) \in U(A_{\flat})$ be as before. By replacing $(u_g)_g$, we may assume $K_1(w(g,h)) = 0 \ \forall g, h \in G$. Let $\tilde{w}(g,h) : [0,1] \to U(A_{\flat})$ be a path from 1 to w(g,h). Since $o^3(\alpha, \beta, u) = 0$, we may assume that the loop

$\sigma_g(\tilde{w}(h,k))\tilde{w}(g,hk)\left(\tilde{w}(g,h)\tilde{w}(gh,k)\right)^*$

Hirsch length three (2/2)

Theorem (Izumi-M)

The conjecture is true for any poly- \mathbb{Z} group with Hirsch length three.

Let G be a poly- \mathbb{Z} group with Hirsch length three.

Example

Let A be \mathcal{O}_n . Then $KK^i(A, A) \cong \mathbb{Z}_{n-1}$ for i = 0, 1, and

 $\{ \text{outer actions } G \curvearrowright A \} / \sim \quad \cong \ H^2(G, KK^1(A, A)).$

Example

Let A be the Cuntz standard form of \mathcal{O}_n . Then, there exists a natural bijection between the set of KK-trivial cocycle conjugacy classes of outer actions $\alpha : G \curvearrowright A$ such that $KK(\alpha_q) = 1$ and

 $H^2(G, KK^1(A, A)) \oplus H^3(G, KK(A, A)).$

Overview

- \checkmark Conjecture and partial answers
- 2 Equivariant version of Nakamura's theorem
- ✓ ③ Uniqueness of outer G-actions on \mathcal{O}_∞
- $\checkmark 4$ Absorption of outer $\mathit{G}\text{-}\mathsf{actions}$ on \mathcal{O}_∞
- ✓ 5 Stability
- ?? 6 Classification