$\mathsf{Poly}\text{-}\mathbb{Z}$ group actions on Kirchberg algebras II

Hiroki Matui

Chiba University

August, 2016 Operator Algebras and Mathematical Physics Tohoku University

Goal

Goal

Classify outer actions of poly- \mathbb{Z} groups on Kirchberg algebras up to KK-trivial cocycle conjugacy (as much as possible).

- A C*-algebra A is called a Kirchberg algebra if A is separable, nuclear, simple and purely infinite.
- A poly- \mathbb{Z} group is a group of the form $(((\mathbb{Z} \rtimes \mathbb{Z}) \rtimes ...) \rtimes \mathbb{Z}) \rtimes \mathbb{Z}.$
- $\alpha, \beta : G \curvearrowright A$ are said to be KK-trivially cocycle conjugate if $\exists \alpha$ -cocycle $(u_g)_g$, $\exists \theta \in Aut(A)$ such that $KK(\theta) = 1$ and $\operatorname{Ad} u_g \circ \alpha_g = \theta \circ \beta_g \circ \theta^{-1}$ holds for all $g \in G$.

Overview

- \checkmark Conjecture and partial answers
- 2 Equivariant version of Nakamura's theorem
 - ⁽³⁾ Uniqueness of outer G-actions on \mathcal{O}_{∞}
 - 4 Absorption of outer G-actions on \mathcal{O}_∞
 - 5 Stability
 - 6 Classification

Equivariant Nakamura's theorem

Let us recall what we have done !

- $G \cong N \rtimes \langle \xi \rangle$
- $\alpha, \beta: G \curvearrowright A$ are outer actions on a Kirchberg algebra A.
- $\alpha|N$, $\beta|N$ are asymptotically representable.
- $\beta | N$ is a cocycle perturbation of $\alpha | N$.
- $\alpha_{\xi}, \beta_{\xi} \in Aut(A)$ extend to the crossed products.

Theorem (Equivariant Nakamura's theorem) If $KK(\tilde{\alpha}_{\xi}) = KK(\theta \circ \tilde{\beta}_{\xi} \circ \theta^{-1})$, then $\alpha : G \curvearrowright A$ is KK-trivially cocycle conjugate to $\beta : G \curvearrowright A$.

Uniqueness of actions on \mathcal{O}_∞ (1/4)

By using equivariant Nakamura's theorem repeatedly, we want to prove the following.

Theorem (Uniqueness of $G \curvearrowright \mathcal{O}_{\infty}$)

Let G be a poly- \mathbb{Z} group. Any outer actions $G \curvearrowright \mathcal{O}_{\infty}$ are cocycle conjugate to each other. In particular, they are asymptotically representable.

The proof is by induction on the Hirsch length of G. When $G = \mathbb{Z}$, this is a corollary of Nakamura's theorem. Assume we have known the theorem for poly- \mathbb{Z} groups with Hirsch length less than l.

Let G be a poly- \mathbb{Z} group with Hirsch length l. Then G is of the form $N \rtimes \langle \xi \rangle$, where $N \lhd G$ is a poly- \mathbb{Z} group with Hirsch length l-1 and $\xi \in G$ is of infinite order. Suppose that outer actions $\alpha, \beta : G \curvearrowright \mathcal{O}_{\infty}$ are given. We want to prove that α is cocycle conjugate to β .

Uniqueness of actions on \mathcal{O}_{∞} (2/4)

Let $\alpha, \beta: G \curvearrowright \mathcal{O}_{\infty}$ be outer actions.

By the induction hypothesis, outer actions $N \curvearrowright \mathcal{O}_{\infty}$ are unique up to cocycle conjugacy. Hence $\alpha | N$ and $\beta | N$ are cocycle conjugate, and (in particular) they are asymptotically representable. There exists an isomorphism $\theta : \mathcal{O} \longrightarrow \mathcal{O} \longrightarrow N$ such that

There exists an isomorphism $\theta: \mathcal{O}_{\infty} \rtimes_{\beta} N \to \mathcal{O}_{\infty} \rtimes_{\alpha} N$ such that

$$\theta(\mathcal{O}_{\infty}) = \mathcal{O}_{\infty}, \quad \theta(\lambda_g^{\beta}) = u_g \lambda_g^{\alpha} \quad \forall g \in N,$$

where $(u_g)_g$ is an α -cocycle.

Let $\iota_{\alpha}: C^*(N) \to \mathcal{O}_{\infty} \rtimes_{\alpha} N$ and $\iota_{\beta}: C^*(N) \to \mathcal{O}_{\infty} \rtimes_{\beta} N$ be the canonical inclusions.

By induction, we can prove that $KK(\iota_{\alpha})$ and $KK(\iota_{\beta})$ are invertible. (Note: \mathcal{O}_{∞} is KK-equivalent to \mathbb{C} .)

Uniqueness of actions on \mathcal{O}_{∞} (3/4)

With some extra effort (using asymptotical representability), we can make $KK(\theta) = KK(\iota_{\alpha}) \cdot KK(\iota_{\beta})^{-1}$. Then

$$KK(\theta \circ \tilde{\beta}_{\xi} \circ \theta^{-1})$$

= $KK(\iota_{\alpha}) \cdot KK(\iota_{\beta})^{-1} \cdot KK(\tilde{\beta}_{\xi}) \cdot KK(\iota_{\beta}) \cdot KK(\iota_{\alpha})^{-1}$
= $KK(\tilde{\alpha}_{\xi}).$

Thanks to equivariant Nakamura's theorem, we can conclude that $\alpha: G \curvearrowright \mathcal{O}_{\infty}$ is cocycle conjugate to $\beta: G \curvearrowright \mathcal{O}_{\infty}$. This completes the induction.

Uniqueness of actions on \mathcal{O}_{∞} (4/4)

In the same way as \mathcal{O}_{∞} , we can prove the following.

Theorem (Izumi-M)

Let G be a poly- \mathbb{Z} group. If A is either \mathcal{O}_2 , \mathcal{O}_∞ or $\mathcal{O}_\infty \otimes B$ with B being a UHF algebra of infinite type, there exists a unique cocycle conjugacy class of outer G-actions on A.

Overview

- \checkmark Conjecture and partial answers
- 2 Equivariant version of Nakamura's theorem
- ✓ ③ Uniqueness of outer G-actions on \mathcal{O}_∞
 - 4 Absorption of outer G-actions on \mathcal{O}_∞
 - 5 Stability
 - 6 Classification

McDuff type theorem

Next, we want to prove that any outer action $G \curvearrowright A$ absorbs tensorially the outer action $G \curvearrowright \mathcal{O}_{\infty}$. To this end, we need the following theorem.

Theorem (McDuff type theorem)

Let G be a countable discrete group. Let $\alpha : G \curvearrowright A$ and $\beta : G \curvearrowright B$ be actions on unital separable C^* -algebras. Suppose that the following conditions hold.

- **1** \exists unital homo. $\pi: B \to A_{\omega}$ s.t. $\pi \circ \beta_g = \alpha_g \circ \pi \ \forall g \in G$.
- **2** \exists sequence $(v_n)_n$ of unitaries in $U(B \otimes B)_0$ such that

 $v_n(b\otimes 1)v_n^* \to 1\otimes b, \quad (\beta_g\otimes \beta_g)(v_n) - v_n \to 0.$

Then $\alpha : G \curvearrowright A$ is cocycle conjugate to $\alpha \otimes \beta : G \curvearrowright A \otimes B$ via an isomorphism $\psi : A \to A \otimes B$ which is asymptotically unitarily equivalent to the embedding $A \ni a \mapsto a \otimes 1 \in A \otimes B$.

Absorption of actions on \mathcal{O}_∞ (1/4)

Let G be an infinite countable group. Suppose that \mathcal{O}_{∞} is generated by isometries $(s_g)_{g \in G}$. Define $\beta : G \frown \mathcal{O}_{\infty}$ by $\beta_g(s_h) = s_{gh}$ for all $g, h \in G$.

Lemma

Let $\alpha : G \curvearrowright A$ be an outer action on a unital Kirchberg algebra. Then $(\mathcal{O}_{\infty}, \beta)$ (defined above) is embeddable into (A_{ω}, α) .

Proof.

Since $\alpha: G \curvearrowright A_{\omega}$ is outer and A_{ω} is purely infinite simple, one can find a nonzero projection $e \in A_{\omega}$ such that $(\alpha_g(e))_g$ are mutually orthogonal. By replacing e with a smaller one if necessary, we may assume that e has the same K_0 -class as $1 \in A_{\omega}$. Choose an isometry $t \in A_{\omega}$ such that $tt^* = e$. Define a homomorphism $\pi: \mathcal{O}_{\infty} \to A_{\omega}$ by $\pi(s_g) = \alpha_g(t)$, which meets the requirement. \Box

Absorption of actions on \mathcal{O}_{∞} (2/4)

Let $\beta : G \curvearrowright \mathcal{O}_{\infty}$ be as before.

Lemma

Suppose that $\beta \otimes \beta : G \curvearrowright \mathcal{O}_{\infty} \otimes \mathcal{O}_{\infty}$ is approximately representable. Then there exists a sequence $(v_n)_n$ of unitaries in $U(\mathcal{O}_{\infty} \otimes \mathcal{O}_{\infty})_0$ such that

$$v_n(b\otimes 1)v_n^* \to 1\otimes b, \quad (\beta_g\otimes \beta_g)(v_n) - v_n \to 0.$$

Proof.

Let ρ_l , ρ_r be the two embeddings

$$\mathcal{O}_{\infty} \rtimes_{\beta} G \to (\mathcal{O}_{\infty} \otimes \mathcal{O}_{\infty}) \rtimes_{\beta \otimes \beta} G.$$

Since $KK(\rho_l) = KK(\rho_r)$, $\exists u_n \in (\mathcal{O}_{\infty} \otimes \mathcal{O}_{\infty}) \rtimes_{\beta \otimes \beta} G$ such that $\operatorname{Ad} u_n \circ \rho_l \to \rho_r$. By using approximate representability of $\beta \otimes \beta$, we can replace u_n with $v_n \in \mathcal{O}_{\infty} \otimes \mathcal{O}_{\infty}$.

Absorption of actions on \mathcal{O}_{∞} (3/4)

Let G be a poly- \mathbb{Z} group and let $\beta : G \curvearrowright \mathcal{O}_{\infty}$ be an outer action, which is unique up to cocycle conjugacy. Let $\alpha : G \curvearrowright A$ be an outer action on a unital Kirchberg algebra.

We have verified the following:

- $(\mathcal{O}_{\infty},\beta)$ is embeddable to (A_{ω},α) .
- The flip on $O_\infty\otimes \mathcal{O}_\infty$ is 'eta-equivariantly' approximately inner.

So, the McDuff type theorem applies and yields:

Theorem

Let $\alpha : G \curvearrowright A$ and $\beta : G \curvearrowright \mathcal{O}_{\infty}$ be as above. Then, $\alpha : G \curvearrowright A$ is cocycle conjugate to $\alpha \otimes \beta : G \curvearrowright A \otimes \mathcal{O}_{\infty}$ via an isomorphism $\psi : A \to A \otimes \mathcal{O}_{\infty}$ which is asymptotically unitarily equivalent to the embedding $A \ni a \mapsto a \otimes 1 \in A \otimes \mathcal{O}_{\infty}$.

Absorption of actions on \mathcal{O}_{∞} (4/4)

Why is the \mathcal{O}_{∞} -absorption useful? Because good properties of $\beta: G \frown \mathcal{O}_{\infty}$ are transmitted to $\alpha \otimes \beta: G \frown A \otimes \mathcal{O}_{\infty}$, and hence to $\alpha: G \frown A$.

Assume G is of the form G = N ⋊ ⟨ξ⟩. The automorphism β_ξ has 'Rohlin projections' in (O_∞)^{β|N}_ω, i.e. ∀m ∈ N, ∃ partition of unities consisting of projections e₀, e₁,..., e_{m-1}, f₀, f₁,..., f_m in (O_∞)^{β|N}_ω such that

$$\beta_{\xi}(e_i) = e_{i+1}, \quad \beta_{\xi}(f_j) = f_{j+1}.$$

• $(\mathcal{O}_{\infty})^{\beta}_{\omega}$ and $(\mathcal{O}_{\infty})^{\beta}_{\flat}$ contain unital copies of \mathcal{O}_{∞} . So, one can use Nakamura's homotopy lemma in $(\mathcal{O}_{\infty})^{\beta}_{\omega}$ and $(\mathcal{O}_{\infty})^{\beta}_{\flat}$.

Thanks to the \mathcal{O}_{∞} -absorption theorem, we can conclude that any outer action $\alpha : G \curvearrowright A$ also has these properties.

Overview

- \checkmark Conjecture and partial answers
- 2 Equivariant version of Nakamura's theorem
- ✓ ③ Uniqueness of outer G-actions on \mathcal{O}_∞
- ✓ ④ Absorption of outer G-actions on \mathcal{O}_∞
 - 5 Stability
 - 6 Classification

Nakamura's stability theorem (1/2)

Let $\alpha : \mathbb{Z} \frown A$ be an outer action on a unital Kirchberg algebra A.

Theorem (Nakamura 2000)

For any sequence of unitaries $x_n \in U(C([0,1],A))$ satisfying

$$x_n(0) = 1, \quad \lim_{n \to \infty} \sup_{s \in [0,1]} \| [x_n(s), a] \| = 0 \quad \forall a \in A,$$

there exists a sequence of unitaries $y_n \in U(A)_0$ such that

$$\lim_{n \to \infty} \|[y_n, a]\| = 0 \quad \forall a \in A,$$

and

$$\lim_{n \to \infty} \|x_n(1) - y_n \alpha(y_n^*)\| = 0.$$

Indeed, we have already used this stability theorem (or its variant) in the proof of the equivariant Nakamura's theorem.

Nakamura's stability theorem (2/2)

Let us review a rough sketch of his proof.

The given unitaries $x_n \in C([0,1], A)$ are not necessarily equicontinuous, that is, the Lipschitz constant $\operatorname{Lip}(x_n)$ are not necessarily bounded. First, since \mathcal{O}_{∞} is embedded into A_{ω} , we may replace x_n with $x'_n \in C([0,1], A)$ satisfying

$$x'_{n}(0) = 1, \quad x'_{n}(1) = x_{n}(1), \quad \operatorname{Lip}(x'_{n}) < 6\pi,$$
$$\lim_{n \to \infty} \sup_{s \in [0,1]} \| [x'_{n}(s), a] \| = 0 \quad \forall a \in A.$$

Then, by using the Rohlin property of $\alpha \in Aut(A)$, we can construct unitaries $y_n \in U(A)_0$ such that

$$||[y_n, a]|| \to 0 \quad \forall a \in A, \quad ||x'_n(1) - y_n \alpha(y_n^*)|| \to 0.$$

We want to establish a 'poly- \mathbb{Z} version' of this theorem.

Stability (1/2)

We want to establish a 'poly- $\ensuremath{\mathbb{Z}}$ version' of stability.

Let $\alpha : G \curvearrowright A$ be an action of a poly- \mathbb{Z} group G on a unital (not necessarily separable) C^* -algebra, and let $\beta : G \curvearrowright \mathcal{O}_{\infty}$ be an outer action (which is unique up to cocycle conjugacy).

We say that α accepts $(\mathcal{O}_{\infty}, \beta)$ if for any separable subset $S \subset A^{\omega}$ there exists a unital homomorphism $\varphi : \mathcal{O}_{\infty} \to A^{\omega} \cap S'$ such that $\varphi \circ \beta_g = \alpha_g \circ \varphi$ for all $g \in G$.

- If A is separable, then by the McDuff type theorem,
 α : G ∩ A is cocycle conjugate to α ⊗ β : G ∩ A ⊗ O_∞.
- If A is a unital Kirchberg algebra and α is outer, then α accepts (O_∞, β) (by the absorption theorem).

Stability (2/2)

Theorem (poly- \mathbb{Z} stability)

Let $\alpha : G \curvearrowright A$ be an action of a poly- \mathbb{Z} group G on a unital separable C^* -algebra A, which accepts $(\mathcal{O}_{\infty}, \beta)$. Let $I \subset A$ be an ideal. Suppose that a family $(x_g)_{g \in G}$ of continuous maps from $[0, 1] \times [0, \infty)$ to U(I) satisfies

$$x_g(0,t) = 1, \quad \lim_{t \to \infty} \max_{s \in [0,1]} ||[x_g(s,t),a]|| = 0 \quad \forall g \in G, \ a \in A,$$

 $\lim_{t\to\infty} \max_{s\in[0,1]} \|x_g(s,t)\alpha_g(x_h(s,t)) - x_{gh}(s,t)\| = 0 \quad \forall g,h\in G.$

Then there exists a continuous map $y:[0,\infty)\to U(I)$ such that

$$\lim_{t \to \infty} \|[y(t), a]\| = 0 \quad \forall a \in A,$$

$$\lim_{t \to \infty} \|x_g(1,t) - y(t)\alpha_g(y(t)^*)\| = 0 \quad \forall g \in G.$$