Poly- $\mathbb Z$ group actions on Kirchberg algebras I

Hiroki Matui

Chiba University

August, 2016 Operator Algebras and Mathematical Physics Tohoku University

Goal

Goal

Classify outer actions of poly- $\mathbb Z$ groups on Kirchberg algebras up to KK-trivial cocycle conjugacy (as much as possible).

A C^* -algebra A is called a Kirchberg algebra if A is separable, nuclear, simple and purely infinite. Kirchberg algebras are classified by KK-theory.

Theorem (Kirchberg-Phillips 2000)

Let A and B be Kirchberg algebras. T.F.A.E.

- **1** A and B are stably isomorphic. i.e. $A \otimes \mathbb{K} \cong B \otimes \mathbb{K}$.
- **2** A and B are KK-equivalent, i.e. \exists invertible $x \in KK(A,B)$.

Poly- \mathbb{Z} groups

A (countable, discrete) group G is called a poly- $\mathbb Z$ group if G has a subnormal series

$$\{1\} = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_l = G$$

such that $G_{i+1}/G_i \cong \mathbb{Z}$. The length l is independent from the choice of the series, and is called the Hirsch length of G.

In other words, a poly- \mathbb{Z} group is a group of the form

$$(((\mathbb{Z} \rtimes \mathbb{Z}) \rtimes \dots) \rtimes \mathbb{Z}) \rtimes \mathbb{Z}.$$

Poly- $\mathbb Z$ groups with Hirsch length two are $\mathbb Z^2$ and the Klein bottle group $\langle a,b\mid bab=a^{-1}\rangle$.

The (discrete, three dimensional) Heisenberg group is a poly- \mathbb{Z} group with Hirsch length three.

Group actions (1/2)

Goal

Classify outer actions of poly- \mathbb{Z} groups on Kirchberg algebras up to KK-trivial cocycle conjugacy (as much as possible).

- An action $\alpha:G\curvearrowright A$ is said to be outer if for any $g\in G\setminus\{1\}$, α_g is not an inner automorphism.
- Two actions $\alpha, \beta: G \curvearrowright A$ are said to be conjugate if there exists $\theta \in \operatorname{Aut}(A)$ such that $\alpha_g = \theta \circ \beta_g \circ \theta^{-1}$ for all $g \in G$.
- A family of unitaries $(u_g)_g$ in A is called an α -cocycle if $u_g\alpha_g(u_h)=u_{gh}$ holds for all $g,h\in G$. $g\mapsto \operatorname{Ad} u_g\circ\alpha_g$ is also an action of G, and is called a cocycle perturbation of α .

Group actions (2/2)

Definition

Let $\alpha, \beta: G \curvearrowright A$ be two actions of G on A.

- α and β are said to be cocycle conjugate if β is conjugate to a cocycle perturbation of α , i.e. $\exists \ \alpha$ -cocycle $(u_g)_g$, $\exists \ \theta \in \operatorname{Aut}(A)$ such that $\operatorname{Ad} u_g \circ \alpha_g = \theta \circ \beta_g \circ \theta^{-1}$ holds for all $g \in G$.
- α and β are said to be KK-trivially cocycle conjugate if they are cocycle conjugate and one can make $KK(\theta) = 1$.

It is easy to see that if α and β are cocycle conjugate, then the crossed products $A\rtimes_{\alpha}G$ and $A\rtimes_{\beta}G$ are isomorphic. Indeed.

$$a \mapsto \theta(a), \quad \lambda_g^\beta \mapsto u_g \lambda_g^\alpha$$

gives the isomorphism.

Overview

- 1 Conjecture and partial answers
- 2 Equivariant version of Nakamura's theorem
- 3 Uniqueness of outer G-actions on \mathcal{O}_{∞}
- $ext{ 4)}$ Absorption of outer G-actions on \mathcal{O}_{∞}
- Stability
- 6 Classification

Conjecture (1/2)

In order to formulate our conjecture, we need to introduce principal $\operatorname{Aut}(A \otimes \mathbb{K})$ -bundles associated with actions of G.

Let $\alpha:G\curvearrowright A$ be an action of a poly- $\mathbb Z$ group G on a unital Kirchberg algebra A. Let $\lambda:G\curvearrowright \ell^2G$ be the left regular representation.

We denote by α^s the stabilization $\alpha \otimes \operatorname{Ad} \lambda : G \curvearrowright A \otimes \mathbb{K}(\ell^2 G)$.

Let BG be the classifying space and let EG be the total space. We can define the principal $\operatorname{Aut}(A\otimes \mathbb{K})$ -bundle \mathcal{P}^s_α over BG as the quotient space of $EG\times\operatorname{Aut}(A\otimes \mathbb{K})$ by the equivalence relation

$$(g.x, \gamma) \sim (x, \alpha_g^s \circ \gamma)$$

for $x \in EG$, $g \in G$ and $\gamma \in \operatorname{Aut}(A \otimes \mathbb{K})$.

Conjecture (2/2)

Conjecture (Izumi 2010)

Let A be a unital Kirchberg algebra and let G be a poly- $\mathbb Z$ group. Let $\alpha:G\curvearrowright A$ and $\beta:G\curvearrowright A$ be outer actions. The following are equivalent.

- **1** α and β are KK-trivially cocycle conjugate.
- 2 There exists a base point preserving isomorphism between \mathcal{P}^s_{α} and \mathcal{P}^s_{β} .

The second condition is equivalent to the following: there exists a continuous map $\Phi: EG \to \operatorname{Aut}(A \otimes \mathbb{K})_0$ such that $\Phi(x_0) = \operatorname{id}$ and $\Phi(g.x) \circ \alpha_g^s = \beta_g^s \circ \Phi(x)$.

Partial answers (1/2)

When $G=\mathbb{Z}$, its classifying space $B\mathbb{Z}$ is \mathbb{T} and its total space $E\mathbb{Z}$ is \mathbb{R} . So, the conjecture says that $\alpha\in \operatorname{Aut}(A)$ and $\beta\in\operatorname{Aut}(A)$ are KK-trivially cocycle conjugate if and only if

$$\exists \Phi : [0,1] \to \operatorname{Aut}(A \otimes \mathbb{K})_0, \quad \Phi(0) = \operatorname{id}, \ \Phi(1) \circ \alpha^s = \beta^s \circ \Phi(0),$$

i.e. α^s is homotopic to β^s .

This is known to be equivalent to $KK(\alpha) = KK(\beta)$.

Theorem (Nakamura 2000)

The conjecture is true for $G = \mathbb{Z}$.

Partial answers (2/2)

Theorem (Izumi-M)

Let G be a poly- \mathbb{Z} group. If A is either \mathcal{O}_2 , \mathcal{O}_∞ or $\mathcal{O}_\infty \otimes B$ with B being a UHF algebra of infinite type, there exists a unique cocycle conjugacy class of outer G-actions on A.

Theorem (Izumi-M)

Let A be a unital Kirchberg algebra and let G be a poly- $\mathbb Z$ group. All asymptotically representable outer actions of G on A are mutually KK-trivially cocycle conjugate.

Note that \mathcal{P}_{α}^{s} is trivial if α is asymptotically representable.

Theorem (Izumi-M)

When G is a poly- \mathbb{Z} group with Hirsch length ≤ 3 , the conjecture is true.

Obstruction theory

Let $\alpha, \beta: G \curvearrowright A$ be outer actions of a poly- $\mathbb Z$ group G. How can we know whether $\mathcal P^s_\alpha$ and $\mathcal P^s_\beta$ are isomorphic or not?

The classical obstruction theory says (at least in principle) that we can determine it by computing relevant cohomology classes in

$$H^n(G, \pi_{n-1}(\operatorname{Aut}(A \otimes \mathbb{K})_0)), \quad 1 \le n \le \dim BG.$$

For Kirchberg algebras A, the homotopy groups $\pi_n(\operatorname{Aut}(A \otimes \mathbb{K}))$ are computed by Dadarlat 2007:

$$\pi_0(\operatorname{Aut}(A\otimes\mathbb{K}))\cong KK(A,A)^{-1},$$

$$\pi_n(\operatorname{Aut}(A\otimes \mathbb{K}))\cong \begin{cases} KK(A,A) & n \text{ is even}\\ KK(A,SA) & n \text{ is odd,} \end{cases} \quad n\geq 1.$$

Central sequence algebra

Fix a free ultrafilter $\omega \in \beta \mathbb{N} \setminus \mathbb{N}$.

$$I_{\omega} = \{(a_n)_n \in \ell^{\infty}(\mathbb{N}, A) \mid \lim_{n \to \omega} ||a_n|| = 0\}$$

is an ideal of $\ell^\infty(\mathbb{N},A)$. We define the limit algebra A^ω and the central sequence algebra A_ω by

$$A^{\omega} = \ell^{\infty}(\mathbb{N}, A)/I_{\omega}$$
 and $A_{\omega} = A^{\omega} \cap A'$.

We also need the continuous version, namely

$$A^{\flat} = C_b([0, \infty), A) / C_0([0, \infty), A),$$
$$A_{\flat} = A^{\flat} \cap A'.$$

A group action $\alpha: G \curvearrowright A$ naturally extends to A^{ω} , A_{ω} , A^{\flat} and A_{\flat} , for which we use the same symbol α .

Asymptotical representability

A group action $\alpha:G\curvearrowright A$ is said to be asymptotically representable if there exists a family of continuous maps $u_g:[0,\infty)\to U(A)$ $(g\in G)$ such that

$$u_g(t)u_h(t) - u_{gh}(t) \to 0$$
, $u_g(t) \ a \ u_g(t)^* \to \alpha_g(a)$
$$\alpha_g(u_h(t)) - u_{ghg^{-1}}(t) \to 0.$$

In other words, $(u_g)_g \subset U(A^{\flat})$ forms a unitary representation satisfying $u_g a u_g^* = \alpha_g(a)$ and $\alpha_g(u_h) = u_{ghg^{-1}}$ in A^{\flat} . It is easy to see that $a \mapsto a$, $\lambda_g^{\alpha} \mapsto u_g$ give rise to a unital homomorphism $A \rtimes_{\alpha} G \to A^{\flat}$.

When G is a poly- $\mathbb Z$ group and A is a unital Kirchberg algebra, we will prove that asymptotically representable, outer actions of G on A are unique up to KK-trivial cocycle conjugacy.

Approximate representability is also defined in a similar way.

Equivariant Nakamura's theorem (1/3)

Our first goal is to show the following.

- Outer actions $\mu:G\curvearrowright \mathcal{O}_\infty$ are unique up to cocycle conjugacy.
- Any outer action $\alpha:G\curvearrowright A$ is cocycle conjugate to $\alpha\otimes\mu:G\curvearrowright A\otimes\mathcal{O}_{\infty}.$

To this end, we discuss an equivariant version of Nakamura's theorem.

Let G be a group and let $N \lhd G$ be a normal subgroup with $G/N \cong \mathbb{Z}$. Suppose that G is generated by N and $\xi \in G$. Let $\alpha: G \curvearrowright A$ be an action of G on a unital C^* -algebra. The automorphism $\alpha_\xi \in \operatorname{Aut}(A)$ extends to $\tilde{\alpha}_\xi \in \operatorname{Aut}(A \rtimes_\alpha N)$ by

$$\tilde{\alpha}_{\xi}(x) = \alpha_{\xi}(x) \quad \forall x \in A \quad \text{and} \quad \tilde{\alpha}_{\xi}(\lambda_g^{\alpha}) = \lambda_{\xi g \xi^{-1}}^{\alpha} \quad \forall g \in N.$$

Equivariant Nakamura's theorem (2/3)

Our setting is as follows:

- $G \cong N \rtimes \mathbb{Z}$ is a group generated by $N \triangleleft G$ and $\xi \in G$.
- Two outer actions $\alpha, \beta: G \curvearrowright A$ on a unital Kirchberg algebra A are given, and assume that $\alpha|N$ and $\beta|N$ are asymptotically representable.
- $\beta|N$ is a cocycle perturbation of $\alpha|N$. Thus, there exists an α -cocycle $(u_q)_{q\in N}$ such that $\beta_q=\operatorname{Ad} u_q\circ\alpha_q$ for $g\in N$.

We like to compare $\tilde{\alpha}_{\xi} \in \operatorname{Aut}(A \rtimes_{\alpha} N)$ and $\tilde{\beta}_{\xi} \in \operatorname{Aut}(A \rtimes_{\beta} N)$. Define an isomorphism $\theta : A \rtimes_{\beta} N \to A \rtimes_{\alpha} N$ by $\theta(a) = a$ for $a \in A$ and $\theta(\lambda_g^{\beta}) = u_g \lambda_q^{\alpha}$ for $g \in N$.

Theorem (Equivariant Nakamura's theorem)

If $KK(\tilde{\alpha}_{\xi}) = KK(\theta \circ \tilde{\beta}_{\xi} \circ \theta^{-1})$, then $\alpha : G \curvearrowright A$ is KK-trivially cocycle conjugate to $\beta : G \curvearrowright A$.

Equivariant Nakamura's theorem (3/3)

Theorem (Equivariant Nakamura's theorem)

If $KK(\tilde{\alpha}_{\xi}) = KK(\theta \circ \tilde{\beta}_{\xi} \circ \theta^{-1})$, then $\alpha : G \curvearrowright A$ is KK-trivially cocycle conjugate to $\beta : G \curvearrowright A$.

In the case that N is trivial (i.e. $G = \mathbb{Z}$), the theorem above becomes

$$KK(\alpha_{\xi}) = KK(\beta_{\xi}) \implies \alpha_{\xi} \sim \beta_{\xi} \quad (KK\text{-trivial cc}),$$

which is the original version of Nakamura's theorem.

The proof of this theorem consists of the following three parts.

- $\exists u: [0,\infty) \to U(A)$ s.t. $\lim_{t\to\infty} \operatorname{Ad} u(t) \circ \tilde{\alpha}_{\xi} = \theta \circ \tilde{\beta}_{\xi} \circ \theta^{-1}$
- α_{ξ} has 'Rohlin projections' in $(A_{\omega})^{\alpha|N}$ (and the same for β_{ξ})
- Evans-Kishimoto intertwining argument

Proof of Equiv. Nakamura's thm (1/3)

First, we want to find $u:[0,\infty)\to U(A)$ such that $\lim_{t\to\infty}\operatorname{Ad} u(t)\circ\tilde{\alpha}_\xi=\theta\circ\tilde{\beta}_\xi\circ\theta^{-1}$.

By $KK(\tilde{\alpha}_{\xi})=KK(\theta\circ \tilde{\beta}_{\xi}\circ \theta^{-1})$, there exists a continuous path of unitaries $v:[0,\infty)\to U(A\rtimes_{\alpha}N)$ such that

$$\lim_{t \to \infty} \operatorname{Ad} v(t) \circ \tilde{\alpha}_{\xi} = \theta \circ \tilde{\beta}_{\xi} \circ \theta^{-1}.$$

Now, $\alpha|N:N\curvearrowright A$ is asymptotically representable, and so there exists a unital homomorphism $\pi:A\rtimes_{\alpha}N\to A^{\flat}$ such that $\pi(a)=a$ for all $a\in A$. By 'sending' v by π to A, we obtain the desired $u:[0,\infty)\to U(A)$.

Proof of Equiv. Nakamura's thm (2/3)

Next, we want to find 'Rohlin projections' for α_{ξ} in $(A_{\omega})^{\alpha|N}$.

Since $\alpha:G\curvearrowright A$ is outer, we can show that the automorphisms $\alpha_\xi^n\in \operatorname{Aut}((A_\omega)^{\alpha|N})$ are outer for every $n\in\mathbb{N}$.

Furthermore, by using that $\alpha|N:N\curvearrowright A$ is approximately representable, we can show that $(A_\omega)^{\alpha|N}$ is purely infinite simple.

Then, we can modify Nakamura's argument and obtain the following: for any $m \in \mathbb{N}$, there exist projections $e_0, e_1, \ldots, e_{m-1}$, f_0, f_1, \ldots, f_m in $(A_\omega)^{\alpha|N}$ such that

$$\sum_{i=0}^{m-1} e_i + \sum_{j=0}^{m} f_j = 1,$$

$$\alpha_{\xi}(e_i) = e_{i+1}, \quad \alpha_{\xi}(f_j) = f_{j+1}.$$

Proof of Equiv. Nakamura's thm (3/3)

We have obtained

- $u:[0,\infty)\to U(A)$ s.t. $\lim_{t\to\infty}\operatorname{Ad} u(t)\circ\tilde{\alpha}_\xi=\theta\circ\tilde{\beta}_\xi\circ\theta^{-1}$,
- Rohlin projections for $\alpha_{\mathcal{E}}$ in $(A_{\omega})^{\alpha|N}$. (the same for $\beta_{\mathcal{E}}$)

Then, we can apply Evans-Kishimoto intertwining argument for the automorphisms $\tilde{\alpha}_{\mathcal{E}}$ and $\theta \circ \tilde{\beta}_{\mathcal{E}} \circ \theta^{-1}$ of $A \rtimes_{\alpha} N$.

The essence of this argument is described as follows: We have $u \in U(A^{\flat})$ such that

$$(\operatorname{Ad} u \circ \tilde{\alpha}_{\xi})(a) = (\theta \circ \tilde{\beta}_{\xi} \circ \theta^{-1})(a) \quad \forall a \in A.$$

Using the Rohlin property of $\tilde{\alpha}_{\xi}$ (and $\tilde{\beta}_{\xi}$), we can construct $v \in U(A^{\flat})$ such that $\|u - v\tilde{\alpha}_{\xi}(v^*)\| \approx 0$. Then

$$(\operatorname{Ad} v \circ \tilde{\alpha}_{\xi} \circ \operatorname{Ad} v^{*})(a) \approx (\theta \circ \tilde{\beta}_{\xi} \circ \theta^{-1})(a) \quad \forall a \in A,$$

which shows $\tilde{\alpha}_{\mathcal{E}}$ and $\tilde{\beta}_{\mathcal{E}}$ are 'conjugate'.

Overview

- ✓¹ Conjecture and partial answers
- ✓2 Equivariant version of Nakamura's theorem
 - 3 Uniqueness of outer G-actions on \mathcal{O}_{∞}
 - 4 Absorption of outer G-actions on \mathcal{O}_{∞}
 - Stability
 - 6 Classification