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Overview

dynamics on Cantor set X

!

étale groupoid G full group
H (0,) — 7
with G = X [[G]] € Homeo(X)

topological

homology group of G
H,(G), n=0,1,2,...
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Etale groupoid

A groupoid G is a ‘group-like’ algebraic object, in which the
product may not be defined for all pairs in G.
e g € G is thought of as an arrow e <— e .
e rigrggt
e 5:g+ g 'gis called the source map.
o GO = r(G) = s(G) C G is called the unit space.

is called the range map.

G is an étale groupoid if G is equipped with a locally compact
Hausdorff topology compatible with the groupoid structure and
the range (or source) map is a local homeomorphism.

An arrow e < e is thought of as a germ at s(g) = gg L.

In what follows, we assume that G(©) is a Cantor set.



Topological full group
A compact open set U C G is called a G-set
if both |U and s|U are injective.
The topological full group [[G]] is defined by

9] = {7 € Homeo(G") | 3G-set U, y=(r|U)) o (s|U) ™" } .
Equivalently, v € [[G]] if and only if

vee g 3g ¢ s71(x), v equals g as a germ at .

When ¢ : I' ~ X is a group action on a Cantor set X,
G, = I' x X becomes an étale groupoid in a natural way.
In this situation,

v € [[Gp]] <= Fconti. map c: X = T, ¥(x) = pe(q)(2).



Groupoid C*-algebra

For an étale groupoid G, the space C.(G,C) of compactly
supported continuous functions becomes a x-algebra by

(fr- f2)(9) =D filgh) (™),

heg

f(9)=Flg™).
As a completion by a suitable norm,
we get a (reduced) groupoid C*-algebra C(G).

C*(G) contains the abelian subalgebra C'(G(?).
It is maximal, and its unitary normalizers generate C;(G).
Such a subalgebra C'(G(?)) is called a Cartan subalgebra.
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Isomorphism theorem

Theorem
For minimal groupoids G and Gs, the following are equivalent.
@ G, is isomorphic to Go as an étale groupoid.
@® [[G1]] is isomorphic to [[G2]] as a group.
® D([[G1]]) is isomorphic to D([[G2]]) as a group.
@ There exists an isomorphism 7 : C(G1) — C}(G2) such that
7(C(G") = C(Gy").

Thus, [[G]] (or D(][G]])) ‘remembers’ G.
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Homology group

H,,(G) are the homology groups of the chain complex

0+— C(G©,7) L1 C.(GW, Z) &= C(6@),7) & ..

)

where G(™) is the space of composable strings of n elements.
W)=Y flo— > f9
s(g)== r(g)=x

So,
Hy(G) = C(G,2) /{1y~ Lrwy | U is a G-set).

If U is a G-set such that s(U) = 7(U) = G, then 1y € Ker §;.

Hence, one can define the index map I : [[G]] — H1(G).
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Minimal Z actions

Let ¢ : Z ~ X be a minimal action and consider G, = 7Z x X.
C(G,) is ‘classifiable by K-groups’ (Putnam, Elliott).

HO(gso) = KO(C;(gw)): Hl(gcp) = KI(C:(Q«J)) = Z and
H,(G,) =0 forn >2. So, @, Hopii = K; holds.

D([[G]]) is simple. [[Gy]]ab = Z & (Ho(Gy) ® Zs),

i.e. Abelianization = H; & (Hy ® Zs).

D([[G,]]) is finitely generated iff ¢ is expansive.

Gor =2 G, iff 1 is flip conjugate to o (Boyle-Tomiyama 1998).

[[G,]] is amenable (Juschenko-Monod 2013).
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One-sided shifts of finite type (1/3)

Let (V, &) be an irreducible finite directed graph and
let A be the adjacency matrix.
Set
X ={(zn)n € EN | t(xy) = i(xny1) Vn e N},

The one-sided shift on X is called a shift of finite type (SFT).
When #V=1 and #E=k, it's called the full shift over k symbols.

We can construct G4 from the SFT.

It is known H(G4) = Coker(id —A?), H1(Ga) = Ker(id —A?) and
H,(Ga) =0 forn > 2.

18



One-sided shifts of finite type (2/3)

The C*-algebra C}(G4) is the Cuntz-Krieger algebra,
which is generated by partial isometries {S, | e € £},
subject to the following relations:

> SeSr=1, SiSe= > SpS}.
cce t(e)=i(f)

S. corresponds to the operation of attaching e € £ to an infinite
pathz € X C &N ie 2+ ex.

The Cuntz-Krieger algebra C*(G4) is ‘classifiable by K-groups’
(Rgrdam, Kirchberg-Phillips).

It is known that

Ko(C*(Ga)) = Coker(id —A"),  K1(CF(Ga)) = Ker(id —A").

So, @, Honti = K; holds for G.
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One-sided shifts of finite type (3/3)

The triple (Coker(id —A?), [ua], det(id —A?)) is a complete
invariant for the isomorphism class of G4 within SFT groupoids
(Matsumoto-M 2014).

We have [[Gallab = H1(Ga) ® (Ho(Ga) ® Z2),
i.e. Abelianization = H; @ (Hy ® Zs2) holds.
It's also known that D([[G4]]) is simple.

When X is the full shift over N symbols, [[G4]] is canonically
isomorphic to the Higman-Thompson group V.

[[Gal] is of type Foo (in particular, finitely presented).
[[Ga]] has the Haagerup property.
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Product of groupoid

For étale groupoids G and H,
their product groupoid G x H is naturally defined.

Theorem

Let G and H be étale groupoids.
For any n > 0, there exists a natural short exact sequence:

It is easy to see CX(G x H) = C}(G) @ C}(H).
Kiinneth theorem for tensor products of C*-algebras is also known.
So, (in many cases) B, Ho,+; = K; holds for products.
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Product of SFT (1/4)

Consider the product groupoid G4, X Ga, X --- X Gga,.,
where G4, is an SFT groupoid discussed in the previous slides.

Theorem
G1 =0Ga, XxGa, X---x Gy, and Go = Gp, X Gp, X --- X Gp, are
isomorphic if and only if

e m=n,
e after permutation of indices, there exist isomorphisms
¢; : Coker(id —A!) — Coker(id —BY) such that

(Pr®: - ®pn)(ua, @ @ua,) = up, @ - Sup,,

and det(id —A!) = det(id —BY) for all i.
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Product of SFT (2/4)

When G = g[k] X Q[k] X e X Q[k} is the n-fold product of the full
shifts over k symbols, [[G]] is known as a higher dimensional
Thompson group nVj, and studied by Brin (2004) et al.

b b
a c e d
d c e a

[[G3 x G3]] =2V3
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Product of SFT (3/4)

Let G =G4, x G4, X --- X Ga, be a product of SFT groupoids.

Again, D([[G]]) is simple.

As for the abelianization [[G]]a}, of the topological full group,
we have the following.

Theorem
@ There exists an exact sequence:

Ho(G) ® Zy —2— [[G)lay —— H1(G) —— 0.

® The homomorphism j is not always injective.
© The index map I does not always have a right inverse.
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Product of SFT (4/4)

Recall that the higher dimensional Thompson group nVj is the
topological full group of the n-fold product G = Gy X - -+ X Gpy.

Theorem
(1) Whenn =1, (1Vk)ab = Zk—l 02y ZQ.
® Whenn =2,
Lig—1 ke 27
(2Vi)ab ER 7y 1 DZy k€4AZ+1
ng,Q k € 47 + 3.
©® Whenn > 3,
(@)t ke2Z ork €47 + 3
(nVi)ab = 1
(Zk_l)n D Zg k e 47 + 1.
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Cleary's group (1/2)

Let 8 > 0 be an irrational number.
Let P ={B"|ne€Z}and A=7Z[3,B71.

Consider the group Vj consisting of right continuous bijections of
[0,1) which are piecewise linear, with finitely many discontinuities
and singularities, all in A, slopes in P, and mapping AN [0,1) to
itself.

Cleary (1995, 2000) showed that Vj is of type Foo
when 3 > 0 satisfies 2 +n8 —1=0, n € N.

There exists an étale groupoid Gg such that [[Gg]] = V3.

K-groups of C)(Gg) were computed for many values of
by Carey-Phillips-Putnam-Rennie (2011).
Also, C7(Gp) is ‘classifiable by K-groups'.
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Cleary's group (2/2)
Theorem
©® When 3 > 0 satisfies 32 +nB3 —1=0, n €N,

Hy(Gg) = Zn, H1(Gg) =22, Hyp(Gg) =0 fork > 2.

® When 3 > 0 satisfies 52 —nf+1=0,n € N\ {1,2},

HD(gﬂ) =ZLp—2, Hl(gﬁ) =7, H2(gﬁ) =17,
Hk(gﬁ) =0 fork > 3.

In both cases, we have

P Hanvi(Gs) = Ki(C;(Gs)) i=0,1

and
[[Gpllab = (Ho(Gp) @ Z2) © Hi(Gp).
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