Topological full groups of étale groupoids

Hiroki Matui

Chiba University

May 31, 2016 Geometric Analysis on Discrete Groups RIMS, Kyoto University

Overview

Étale groupoid

A groupoid \mathcal{G} is a 'group-like' algebraic object, in which the product may not be defined for all pairs in \mathcal{G} .

- $g \in \mathcal{G}$ is thought of as an arrow \xleftarrow{g} .
- $r: g \mapsto gg^{-1}$ is called the range map.
- $s: g \mapsto g^{-1}g$ is called the source map.
- $\mathcal{G}^{(0)} = r(\mathcal{G}) = s(\mathcal{G}) \subset \mathcal{G}$ is called the unit space.

 \mathcal{G} is an étale groupoid if \mathcal{G} is equipped with a locally compact Hausdorff topology compatible with the groupoid structure and the range (or source) map is a local homeomorphism.

An arrow $\bullet \xleftarrow{g} \bullet$ is thought of as a germ at $s(g) = gg^{-1}$.

In what follows, we assume that $\mathcal{G}^{(0)}$ is a Cantor set.

Topological full group

A compact open set $U \subset \mathcal{G}$ is called a \mathcal{G} -set if both r|U and s|U are injective. The topological full group $[[\mathcal{G}]]$ is defined by

$$[[\mathcal{G}]] = \left\{ \gamma \in \operatorname{Homeo}(\mathcal{G}^{(0)}) \mid \exists \mathcal{G}\text{-set } U, \ \gamma = (r|U) \circ (s|U)^{-1} \right\}.$$

Equivalently, $\gamma \in [[\mathcal{G}]]$ if and only if

$$\forall x \in \mathcal{G}^{(0)} \ \exists g \in s^{-1}(x), \ \gamma \text{ equals } g \text{ as a germ at } x.$$

When $\varphi: \Gamma \curvearrowright X$ is a group action on a Cantor set X, $\mathcal{G}_{\varphi} = \Gamma \times X$ becomes an étale groupoid in a natural way. In this situation,

$$\gamma \in [[\mathcal{G}_{\varphi}]] \iff \exists \mathsf{conti.} \ \mathsf{map} \ c: X \to \Gamma, \ \gamma(x) = \varphi_{c(x)}(x).$$

Groupoid C^* -algebra

For an étale groupoid \mathcal{G} , the space $C_c(\mathcal{G}, \mathbb{C})$ of compactly supported continuous functions becomes a *-algebra by

$$(f_1 \cdot f_2)(g) = \sum_{h \in \mathcal{G}} f_1(gh) f_2(h^{-1}),$$

$$f^*(g) = \overline{f(g^{-1})}.$$

As a completion by a suitable norm, we get a (reduced) groupoid C^* -algebra $C^*_r(\mathcal{G})$.

 $C_r^*(\mathcal{G})$ contains the abelian subalgebra $C(\mathcal{G}^{(0)})$. It is maximal, and its unitary normalizers generate $C_r^*(\mathcal{G})$. Such a subalgebra $C(\mathcal{G}^{(0)})$ is called a Cartan subalgebra.

Isomorphism theorem

Theorem

For minimal groupoids G_1 and G_2 , the following are equivalent.

- **1** \mathcal{G}_1 is isomorphic to \mathcal{G}_2 as an étale groupoid.
- **2** $[[\mathcal{G}_1]]$ is isomorphic to $[[\mathcal{G}_2]]$ as a group.
- **3** $D([[\mathcal{G}_1]])$ is isomorphic to $D([[\mathcal{G}_2]])$ as a group.
- **4** There exists an isomorphism $\pi : C_r^*(\mathcal{G}_1) \to C_r^*(\mathcal{G}_2)$ such that $\pi(C(\mathcal{G}_1^{(0)})) = C(\mathcal{G}_2^{(0)}).$

Thus, $[[\mathcal{G}]]$ (or $D([[\mathcal{G}]])$) 'remembers' \mathcal{G} .

Homology group

 $H_n(\mathcal{G})$ are the homology groups of the chain complex

$$0 \longleftarrow C(\mathcal{G}^{(0)}, \mathbb{Z}) \xleftarrow{\delta_1} C_c(\mathcal{G}^{(1)}, \mathbb{Z}) \xleftarrow{\delta_2} C_c(\mathcal{G}^{(2)}, \mathbb{Z}) \xleftarrow{\delta_3} \dots,$$

where $\mathcal{G}^{(n)}$ is the space of composable strings of n elements.

$$\delta_1(f)(x) = \sum_{s(g)=x} f(g) - \sum_{r(g)=x} f(g)$$

So,

$$H_0(\mathcal{G}) = C(\mathcal{G}^{(0)}, \mathbb{Z}) / \langle 1_{s(U)} - 1_{r(U)} \mid U \text{ is a } \mathcal{G}\text{-set} \rangle.$$

If U is a G-set such that $s(U) = r(U) = G^{(0)}$, then $1_U \in \text{Ker } \delta_1$. Hence, one can define the index map $I : [[\mathcal{G}]] \to H_1(\mathcal{G})$.

Minimal ${\mathbb Z}$ actions

Let $\varphi : \mathbb{Z} \curvearrowright X$ be a minimal action and consider $\mathcal{G}_{\varphi} = \mathbb{Z} \times X$.

 $C_r^*(\mathcal{G}_{\varphi})$ is 'classifiable by *K*-groups' (Putnam, Elliott).

 $H_0(\mathcal{G}_{\varphi}) \cong K_0(C_r^*(\mathcal{G}_{\varphi})), \ H_1(\mathcal{G}_{\varphi}) \cong K_1(C_r^*(\mathcal{G}_{\varphi})) \cong \mathbb{Z}$ and $H_n(\mathcal{G}_{\varphi}) = 0$ for $n \ge 2$. So, $\bigoplus_n H_{2n+i} \cong K_i$ holds.

$$\begin{split} D([[\mathcal{G}_{\varphi}]]) \text{ is simple. } & [[\mathcal{G}_{\varphi}]]_{\mathrm{ab}} \cong \mathbb{Z} \oplus (H_0(\mathcal{G}_{\varphi}) \otimes \mathbb{Z}_2), \\ \text{i.e. Abelianization} & \cong H_1 \oplus (H_0 \otimes \mathbb{Z}_2). \\ & D([[\mathcal{G}_{\varphi}]]) \text{ is finitely generated iff } \varphi \text{ is expansive.} \end{split}$$

 $\mathcal{G}_{\varphi_1} \cong \mathcal{G}_{\varphi_2}$ iff φ_1 is flip conjugate to φ_2 (Boyle-Tomiyama 1998).

 $[[\mathcal{G}_{\varphi}]]$ is amenable (Juschenko-Monod 2013).

One-sided shifts of finite type (1/3)

Let $(\mathcal{V},\mathcal{E})$ be an irreducible finite directed graph and let A be the adjacency matrix. Set

$$X = \{ (x_n)_n \in \mathcal{E}^{\mathbb{N}} \mid t(x_n) = i(x_{n+1}) \quad \forall n \in \mathbb{N} \},\$$

The one-sided shift on X is called a shift of finite type (SFT). When $\#\mathcal{V}=1$ and $\#\mathcal{E}=k$, it's called the full shift over k symbols.

We can construct \mathcal{G}_A from the SFT.

It is known $H_0(\mathcal{G}_A) \cong \operatorname{Coker}(\operatorname{id} - A^t)$, $H_1(\mathcal{G}_A) \cong \operatorname{Ker}(\operatorname{id} - A^t)$ and $H_n(\mathcal{G}_A) = 0$ for $n \ge 2$.

One-sided shifts of finite type (2/3)

The C^* -algebra $C^*_r(\mathcal{G}_A)$ is the Cuntz-Krieger algebra, which is generated by partial isometries $\{S_e \mid e \in \mathcal{E}\}$, subject to the following relations:

$$\sum_{e \in \mathcal{E}} S_e S_e^* = 1, \quad S_e^* S_e = \sum_{t(e)=i(f)} S_f S_f^*.$$

 S_e corresponds to the operation of attaching $e \in \mathcal{E}$ to an infinite path $x \in X \subset \mathcal{E}^{\mathbb{N}}$, i.e. $x \mapsto ex$.

The Cuntz-Krieger algebra $C_r^*(\mathcal{G}_A)$ is 'classifiable by *K*-groups' (Rørdam, Kirchberg-Phillips).

It is known that

 $K_0(C_r^*(\mathcal{G}_A)) \cong \operatorname{Coker}(\operatorname{id} - A^t), \quad K_1(C_r^*(\mathcal{G}_A)) \cong \operatorname{Ker}(\operatorname{id} - A^t).$

So, $\bigoplus_n H_{2n+i} \cong K_i$ holds for \mathcal{G}_A .

One-sided shifts of finite type (3/3)

The triple $(\text{Coker}(\text{id} - A^t), [u_A], \det(\text{id} - A^t))$ is a complete invariant for the isomorphism class of \mathcal{G}_A within SFT groupoids (Matsumoto-M 2014).

We have $[[\mathcal{G}_A]]_{ab} \cong H_1(\mathcal{G}_A) \oplus (H_0(\mathcal{G}_A) \otimes \mathbb{Z}_2)$, i.e. Abelianization $\cong H_1 \oplus (H_0 \otimes \mathbb{Z}_2)$ holds. It's also known that $D([[\mathcal{G}_A]])$ is simple.

When X is the full shift over N symbols, $[[\mathcal{G}_A]]$ is canonically isomorphic to the Higman-Thompson group V_N .

 $[[\mathcal{G}_A]]$ is of type F_{∞} (in particular, finitely presented). $[[\mathcal{G}_A]]$ has the Haagerup property.

Product of groupoid

For étale groupoids \mathcal{G} and \mathcal{H} , their product groupoid $\mathcal{G} \times \mathcal{H}$ is naturally defined.

Theorem

Let \mathcal{G} and \mathcal{H} be étale groupoids. For any $n \geq 0$, there exists a natural short exact sequence:

$$0 \longrightarrow \bigoplus_{i+j=n} H_i(\mathcal{G}) \otimes H_j(\mathcal{H}) \longrightarrow H_n(\mathcal{G} \times \mathcal{H})$$
$$\longrightarrow \bigoplus_{i+j=n-1} \operatorname{Tor}(H_i(\mathcal{G}), H_j(\mathcal{H})) \longrightarrow 0.$$

It is easy to see $C_r^*(\mathcal{G} \times \mathcal{H}) = C_r^*(\mathcal{G}) \otimes C_r^*(\mathcal{H})$. Künneth theorem for tensor products of C^* -algebras is also known. So, (in many cases) $\bigoplus_n H_{2n+i} \cong K_i$ holds for products.

Product of SFT (1/4)

Consider the product groupoid $\mathcal{G}_{A_1} \times \mathcal{G}_{A_2} \times \cdots \times \mathcal{G}_{A_m}$, where \mathcal{G}_{A_i} is an SFT groupoid discussed in the previous slides.

Theorem

 $\mathcal{G}_1 = \mathcal{G}_{A_1} \times \mathcal{G}_{A_2} \times \cdots \times \mathcal{G}_{A_m}$ and $\mathcal{G}_2 = \mathcal{G}_{B_1} \times \mathcal{G}_{B_2} \times \cdots \times \mathcal{G}_{B_n}$ are isomorphic if and only if

• m = n,

• after permutation of indices, there exist isomorphisms $\varphi_i : \operatorname{Coker}(\operatorname{id} - A_i^t) \to \operatorname{Coker}(\operatorname{id} - B_i^t)$ such that

$$(\varphi_1 \otimes \cdots \otimes \varphi_n)(u_{A_1} \otimes \cdots \otimes u_{A_n}) = u_{B_1} \otimes \cdots \otimes u_{B_n},$$

and $\det(\operatorname{id} - A_i^t) = \det(\operatorname{id} - B_i^t)$ for all *i*.

Product of SFT (2/4)

When $\mathcal{G} = \mathcal{G}_{[k]} \times \mathcal{G}_{[k]} \times \cdots \times \mathcal{G}_{[k]}$ is the *n*-fold product of the full shifts over *k* symbols, $[[\mathcal{G}]]$ is known as a higher dimensional Thompson group nV_k and studied by Brin (2004) et al.

 $\left[\left[\mathcal{G}_3 \times \mathcal{G}_3\right]\right] = 2V_3$

Product of SFT (3/4)

Let $\mathcal{G} = \mathcal{G}_{A_1} \times \mathcal{G}_{A_2} \times \cdots \times \mathcal{G}_{A_n}$ be a product of SFT groupoids. Again, $D([[\mathcal{G}]])$ is simple.

As for the abelianization $[[\mathcal{G}]]_{ab}$ of the topological full group, we have the following.

Theorem

1 There exists an exact sequence:

$$H_0(\mathcal{G})\otimes \mathbb{Z}_2 \xrightarrow{j} [[\mathcal{G}]]_{\mathrm{ab}} \xrightarrow{I} H_1(\mathcal{G}) \longrightarrow 0.$$

2 The homomorphism j is not always injective.

3 The index map I does not always have a right inverse.

Product of SFT (4/4)

Recall that the higher dimensional Thompson group nV_k is the topological full group of the *n*-fold product $\mathcal{G} = \mathcal{G}_{[k]} \times \cdots \times \mathcal{G}_{[k]}$.

Theorem

1 When n = 1, $(1V_k)_{ab} \cong \mathbb{Z}_{k-1} \otimes \mathbb{Z}_2$.

2 When n = 2,

$$(2V_k)_{ab} \cong \begin{cases} \mathbb{Z}_{k-1} & k \in 2\mathbb{Z} \\ \mathbb{Z}_{k-1} \oplus \mathbb{Z}_2 & k \in 4\mathbb{Z} + 1 \\ \mathbb{Z}_{2k-2} & k \in 4\mathbb{Z} + 3. \end{cases}$$

3 When $n \geq 3$,

$$(nV_k)_{\mathrm{ab}} \cong \begin{cases} (\mathbb{Z}_{k-1})^{n-1} & k \in 2\mathbb{Z} \text{ or } k \in 4\mathbb{Z} + 3\\ (\mathbb{Z}_{k-1})^{n-1} \oplus \mathbb{Z}_2 & k \in 4\mathbb{Z} + 1. \end{cases}$$

Cleary's group (1/2)

Let $\beta > 0$ be an irrational number. Let $P = \{\beta^n \mid n \in \mathbb{Z}\}$ and $A = \mathbb{Z}[\beta, \beta^{-1}]$.

Consider the group V_{β} consisting of right continuous bijections of [0,1) which are piecewise linear, with finitely many discontinuities and singularities, all in A, slopes in P, and mapping $A \cap [0,1)$ to itself.

Cleary (1995, 2000) showed that V_{β} is of type F_{∞} when $\beta > 0$ satisfies $\beta^2 + n\beta - 1 = 0$, $n \in \mathbb{N}$.

There exists an étale groupoid \mathcal{G}_{β} such that $[[\mathcal{G}_{\beta}]] \cong V_{\beta}$.

K-groups of $C_r^*(\mathcal{G}_\beta)$ were computed for many values of β by Carey-Phillips-Putnam-Rennie (2011). Also, $C_r^*(\mathcal{G}_\beta)$ is 'classifiable by *K*-groups'.

Cleary's group (2/2)

Theorem

1 When $\beta > 0$ satisfies $\beta^2 + n\beta - 1 = 0$, $n \in \mathbb{N}$,

$$H_0(\mathcal{G}_\beta) = \mathbb{Z}_n, \quad H_1(\mathcal{G}_\beta) = \mathbb{Z}_2, \quad H_k(\mathcal{G}_\beta) = 0 \text{ for } k \ge 2.$$

2 When $\beta > 0$ satisfies $\beta^2 - n\beta + 1 = 0$, $n \in \mathbb{N} \setminus \{1, 2\}$,

$$egin{aligned} H_0(\mathcal{G}_eta) &= \mathbb{Z}_{n-2}, \quad H_1(\mathcal{G}_eta) = \mathbb{Z}, \quad H_2(\mathcal{G}_eta) = \mathbb{Z}, \ H_k(\mathcal{G}_eta) &= 0 ext{ for } k \geq 3. \end{aligned}$$

In both cases, we have

$$\bigoplus_{n} H_{2n+i}(\mathcal{G}_{\beta}) \cong K_i(C_r^*(\mathcal{G}_{\beta})) \quad i = 0, 1$$

and

$$[[\mathcal{G}_{\beta}]]_{\mathrm{ab}} \cong (H_0(\mathcal{G}_{\beta}) \otimes \mathbb{Z}_2) \oplus H_1(\mathcal{G}_{\beta}).$$