Topological full groups of étale groupoids

Hiroki Matui

Chiba University

May 31, 2016
Geometric Analysis on Discrete Groups
RIMS, Kyoto University

Étale groupoid

A groupoid \mathcal{G} is a 'group-like' algebraic object, in which the product may not be defined for all pairs in \mathcal{G}.

- $g \in \mathcal{G}$ is thought of as an arrow $\bullet \stackrel{g}{\iota^{\bullet}}$.
- $r: g \mapsto g g^{-1}$ is called the range map.
- $s: g \mapsto g^{-1} g$ is called the source map.
- $\mathcal{G}^{(0)}=r(\mathcal{G})=s(\mathcal{G}) \subset \mathcal{G}$ is called the unit space.
\mathcal{G} is an étale groupoid if \mathcal{G} is equipped with a locally compact Hausdorff topology compatible with the groupoid structure and the range (or source) map is a local homeomorphism.
An arrow $\bullet \stackrel{g}{\longleftarrow} \bullet$ is thought of as a germ at $s(g)=g g^{-1}$.
In what follows, we assume that $\mathcal{G}^{(0)}$ is a Cantor set.

Topological full group

A compact open set $U \subset \mathcal{G}$ is called a \mathcal{G}-set
if both $r \mid U$ and $s \mid U$ are injective.
The topological full group $[[\mathcal{G}]]$ is defined by

$$
[[\mathcal{G}]]=\left\{\gamma \in \operatorname{Homeo}\left(\mathcal{G}^{(0)}\right) \mid \exists \mathcal{G} \text {-set } U, \gamma=(r \mid U) \circ(s \mid U)^{-1}\right\}
$$

Equivalently, $\gamma \in[[\mathcal{G}]]$ if and only if

$$
\forall x \in \mathcal{G}^{(0)} \exists g \in s^{-1}(x), \gamma \text { equals } g \text { as a germ at } x
$$

When $\varphi: \Gamma \curvearrowright X$ is a group action on a Cantor set X, $\mathcal{G}_{\varphi}=\Gamma \times X$ becomes an étale groupoid in a natural way. In this situation,

$$
\gamma \in\left[\left[\mathcal{G}_{\varphi}\right]\right] \Longleftrightarrow \text { conti. map } c: X \rightarrow \Gamma, \gamma(x)=\varphi_{c(x)}(x)
$$

Groupoid C^{*}-algebra

For an étale groupoid \mathcal{G}, the space $C_{c}(\mathcal{G}, \mathbb{C})$ of compactly supported continuous functions becomes a *-algebra by

$$
\begin{gathered}
\left(f_{1} \cdot f_{2}\right)(g)=\sum_{h \in \mathcal{G}} f_{1}(g h) f_{2}\left(h^{-1}\right), \\
f^{*}(g)=\overline{f\left(g^{-1}\right)} .
\end{gathered}
$$

As a completion by a suitable norm, we get a (reduced) groupoid C^{*}-algebra $C_{r}^{*}(\mathcal{G})$.
$C_{r}^{*}(\mathcal{G})$ contains the abelian subalgebra $C\left(\mathcal{G}^{(0)}\right)$. It is maximal, and its unitary normalizers generate $C_{r}^{*}(\mathcal{G})$. Such a subalgebra $C\left(\mathcal{G}^{(0)}\right)$ is called a Cartan subalgebra.

Isomorphism theorem

Theorem

For minimal groupoids \mathcal{G}_{1} and \mathcal{G}_{2}, the following are equivalent.
(1) \mathcal{G}_{1} is isomorphic to \mathcal{G}_{2} as an étale groupoid.
(2) $\left[\left[\mathcal{G}_{1}\right]\right]$ is isomorphic to $\left[\left[\mathcal{G}_{2}\right]\right]$ as a group.
(3) $D\left(\left[\left[\mathcal{G}_{1}\right]\right]\right)$ is isomorphic to $D\left(\left[\left[\mathcal{G}_{2}\right]\right]\right)$ as a group.
(4) There exists an isomorphism $\pi: C_{r}^{*}\left(\mathcal{G}_{1}\right) \rightarrow C_{r}^{*}\left(\mathcal{G}_{2}\right)$ such that $\pi\left(C\left(\mathcal{G}_{1}^{(0)}\right)\right)=C\left(\mathcal{G}_{2}^{(0)}\right)$.

Thus, [[G]] (or $D([[\mathcal{G}]])$) 'remembers' \mathcal{G}.

Homology group

$H_{n}(\mathcal{G})$ are the homology groups of the chain complex

$$
0 \longleftarrow C\left(\mathcal{G}^{(0)}, \mathbb{Z}\right) \stackrel{\delta_{1}}{\longleftarrow} C_{c}\left(\mathcal{G}^{(1)}, \mathbb{Z}\right) \stackrel{\delta_{2}}{\longleftarrow} C_{c}\left(\mathcal{G}^{(2)}, \mathbb{Z}\right) \stackrel{\delta_{3}}{\longleftarrow} \ldots,
$$

where $\mathcal{G}^{(n)}$ is the space of composable strings of n elements.

$$
\delta_{1}(f)(x)=\sum_{s(g)=x} f(g)-\sum_{r(g)=x} f(g)
$$

So,

$$
\left.H_{0}(\mathcal{G})=C\left(\mathcal{G}^{(0)}, \mathbb{Z}\right) /\left\langle 1_{s(U)}-1_{r(U)}\right| U \text { is a } \mathcal{G} \text {-set }\right\rangle
$$

If U is a \mathcal{G}-set such that $s(U)=r(U)=G^{(0)}$, then $1_{U} \in \operatorname{Ker} \delta_{1}$. Hence, one can define the index map $I:[[\mathcal{G}]] \rightarrow H_{1}(\mathcal{G})$.

Minimal \mathbb{Z} actions

Let $\varphi: \mathbb{Z} \curvearrowright X$ be a minimal action and consider $\mathcal{G}_{\varphi}=\mathbb{Z} \times X$.
$C_{r}^{*}\left(\mathcal{G}_{\varphi}\right)$ is 'classifiable by K-groups' (Putnam, Elliott).
$H_{0}\left(\mathcal{G}_{\varphi}\right) \cong K_{0}\left(C_{r}^{*}\left(\mathcal{G}_{\varphi}\right)\right), H_{1}\left(\mathcal{G}_{\varphi}\right) \cong K_{1}\left(C_{r}^{*}\left(\mathcal{G}_{\varphi}\right)\right) \cong \mathbb{Z}$ and $H_{n}\left(\mathcal{G}_{\varphi}\right)=0$ for $n \geq 2$. So, $\bigoplus_{n} H_{2 n+i} \cong K_{i}$ holds.
$D\left(\left[\left[\mathcal{G}_{\varphi}\right]\right]\right)$ is simple. $\left[\left[\mathcal{G}_{\varphi}\right]\right]_{\mathrm{ab}} \cong \mathbb{Z} \oplus\left(H_{0}\left(\mathcal{G}_{\varphi}\right) \otimes \mathbb{Z}_{2}\right)$,
i.e. Abelianization $\cong H_{1} \oplus\left(H_{0} \otimes \mathbb{Z}_{2}\right)$.
$D\left(\left[\left[\mathcal{G}_{\varphi}\right]\right]\right)$ is finitely generated iff φ is expansive.
$\mathcal{G}_{\varphi_{1}} \cong \mathcal{G}_{\varphi_{2}}$ iff φ_{1} is flip conjugate to φ_{2} (Boyle-Tomiyama 1998).
$\left[\left[\mathcal{G}_{\varphi}\right]\right]$ is amenable (Juschenko-Monod 2013).

One-sided shifts of finite type ($1 / 3$)

Let $(\mathcal{V}, \mathcal{E})$ be an irreducible finite directed graph and let A be the adjacency matrix.
Set

$$
X=\left\{\left(x_{n}\right)_{n} \in \mathcal{E}^{\mathbb{N}} \mid t\left(x_{n}\right)=i\left(x_{n+1}\right) \quad \forall n \in \mathbb{N}\right\}
$$

The one-sided shift on X is called a shift of finite type (SFT). When $\# \mathcal{V}=1$ and $\# \mathcal{E}=k$, it's called the full shift over k symbols.

We can construct \mathcal{G}_{A} from the SFT.
It is known $H_{0}\left(\mathcal{G}_{A}\right) \cong \operatorname{Coker}\left(\mathrm{id}-A^{t}\right), H_{1}\left(\mathcal{G}_{A}\right) \cong \operatorname{Ker}\left(\mathrm{id}-A^{t}\right)$ and $H_{n}\left(\mathcal{G}_{A}\right)=0$ for $n \geq 2$.

One-sided shifts of finite type (2/3)

The C^{*}-algebra $C_{r}^{*}\left(\mathcal{G}_{A}\right)$ is the Cuntz-Krieger algebra, which is generated by partial isometries $\left\{S_{e} \mid e \in \mathcal{E}\right\}$, subject to the following relations:

$$
\sum_{e \in \mathcal{E}} S_{e} S_{e}^{*}=1, \quad S_{e}^{*} S_{e}=\sum_{t(e)=i(f)} S_{f} S_{f}^{*}
$$

S_{e} corresponds to the operation of attaching $e \in \mathcal{E}$ to an infinite path $x \in X \subset \mathcal{E}^{\mathbb{N}}$, i.e. $x \mapsto e x$.
The Cuntz-Krieger algebra $C_{r}^{*}\left(\mathcal{G}_{A}\right)$ is 'classifiable by K-groups' (Rørdam, Kirchberg-Phillips).

It is known that

$$
K_{0}\left(C_{r}^{*}\left(\mathcal{G}_{A}\right)\right) \cong \operatorname{Coker}\left(\mathrm{id}-A^{t}\right), \quad K_{1}\left(C_{r}^{*}\left(\mathcal{G}_{A}\right)\right) \cong \operatorname{Ker}\left(\mathrm{id}-A^{t}\right)
$$

So, $\bigoplus_{n} H_{2 n+i} \cong K_{i}$ holds for \mathcal{G}_{A}.

One-sided shifts of finite type (3/3)

The triple $\left(\operatorname{Coker}\left(\mathrm{id}-A^{t}\right),\left[u_{A}\right], \operatorname{det}\left(\mathrm{id}-A^{t}\right)\right)$ is a complete invariant for the isomorphism class of \mathcal{G}_{A} within SFT groupoids (Matsumoto-M 2014).

We have $\left[\left[\mathcal{G}_{A}\right]\right]_{\mathrm{ab}} \cong H_{1}\left(\mathcal{G}_{A}\right) \oplus\left(H_{0}\left(\mathcal{G}_{A}\right) \otimes \mathbb{Z}_{2}\right)$,
i.e. Abelianization $\cong H_{1} \oplus\left(H_{0} \otimes \mathbb{Z}_{2}\right)$ holds.

It's also known that $D\left(\left[\left[\mathcal{G}_{A}\right]\right]\right)$ is simple.
When X is the full shift over N symbols, $\left[\left[\mathcal{G}_{A}\right]\right]$ is canonically isomorphic to the Higman-Thompson group V_{N}.
$\left[\left[\mathcal{G}_{A}\right]\right]$ is of type F_{∞} (in particular, finitely presented).
$\left[\left[\mathcal{G}_{A}\right]\right]$ has the Haagerup property.

Product of groupoid

For étale groupoids \mathcal{G} and \mathcal{H}, their product groupoid $\mathcal{G} \times \mathcal{H}$ is naturally defined.

Theorem
Let \mathcal{G} and \mathcal{H} be étale groupoids.
For any $n \geq 0$, there exists a natural short exact sequence:

$$
\begin{aligned}
0 \longrightarrow \bigoplus_{i+j=n} H_{i}(\mathcal{G}) \otimes H_{j}(\mathcal{H}) & \longrightarrow H_{n}(\mathcal{G} \times \mathcal{H}) \\
& \longrightarrow \bigoplus_{i+j=n-1} \operatorname{Tor}\left(H_{i}(\mathcal{G}), H_{j}(\mathcal{H})\right) \longrightarrow 0
\end{aligned}
$$

It is easy to see $C_{r}^{*}(\mathcal{G} \times \mathcal{H})=C_{r}^{*}(\mathcal{G}) \otimes C_{r}^{*}(\mathcal{H})$.
Künneth theorem for tensor products of C^{*}-algebras is also known.
So, (in many cases) $\bigoplus_{n} H_{2 n+i} \cong K_{i}$ holds for products.

Product of SFT (1/4)

Consider the product groupoid $\mathcal{G}_{A_{1}} \times \mathcal{G}_{A_{2}} \times \cdots \times \mathcal{G}_{A_{m}}$, where $\mathcal{G}_{A_{i}}$ is an SFT groupoid discussed in the previous slides.

Theorem
$\mathcal{G}_{1}=\mathcal{G}_{A_{1}} \times \mathcal{G}_{A_{2}} \times \cdots \times \mathcal{G}_{A_{m}}$ and $\mathcal{G}_{2}=\mathcal{G}_{B_{1}} \times \mathcal{G}_{B_{2}} \times \cdots \times \mathcal{G}_{B_{n}}$ are isomorphic if and only if

- $m=n$,
- after permutation of indices, there exist isomorphisms $\varphi_{i}: \operatorname{Coker}\left(\mathrm{id}-A_{i}^{t}\right) \rightarrow \operatorname{Coker}\left(\mathrm{id}-B_{i}^{t}\right)$ such that

$$
\left(\varphi_{1} \otimes \cdots \otimes \varphi_{n}\right)\left(u_{A_{1}} \otimes \cdots \otimes u_{A_{n}}\right)=u_{B_{1}} \otimes \cdots \otimes u_{B_{n}}
$$

$$
\text { and } \operatorname{det}\left(\mathrm{id}-A_{i}^{t}\right)=\operatorname{det}\left(\mathrm{id}-B_{i}^{t}\right) \text { for all } i \text {. }
$$

Product of SFT (2/4)

When $\mathcal{G}=\mathcal{G}_{[k]} \times \mathcal{G}_{[k]} \times \cdots \times \mathcal{G}_{[k]}$ is the n-fold product of the full shifts over k symbols, $[[\mathcal{G}]]$ is known as a higher dimensional Thompson group $n V_{k}$ and studied by Brin (2004) et al.

$$
\left[\left[\mathcal{G}_{3} \times \mathcal{G}_{3}\right]\right]=2 V_{3}
$$

Product of SFT (3/4)

Let $\mathcal{G}=\mathcal{G}_{A_{1}} \times \mathcal{G}_{A_{2}} \times \cdots \times \mathcal{G}_{A_{n}}$ be a product of SFT groupoids.
Again, $D([[\mathcal{G}]])$ is simple.
As for the abelianization $[[\mathcal{G}]]_{\mathrm{ab}}$ of the topological full group, we have the following.

Theorem
(1) There exists an exact sequence:

$$
H_{0}(\mathcal{G}) \otimes \mathbb{Z}_{2} \xrightarrow{j}[[\mathcal{G}]]_{\mathrm{ab}} \xrightarrow{I} H_{1}(\mathcal{G}) \longrightarrow 0 .
$$

(2) The homomorphism j is not always injective.
(3) The index map I does not always have a right inverse.

Product of SFT (4/4)

Recall that the higher dimensional Thompson group $n V_{k}$ is the topological full group of the n-fold product $\mathcal{G}=\mathcal{G}_{[k]} \times \cdots \times \mathcal{G}_{[k]}$.

Theorem
(1) When $n=1,\left(1 V_{k}\right)_{\mathrm{ab}} \cong \mathbb{Z}_{k-1} \otimes \mathbb{Z}_{2}$.
(2) When $n=2$,

$$
\left(2 V_{k}\right)_{\mathrm{ab}} \cong \begin{cases}\mathbb{Z}_{k-1} & k \in 2 \mathbb{Z} \\ \mathbb{Z}_{k-1} \oplus \mathbb{Z}_{2} & k \in 4 \mathbb{Z}+1 \\ \mathbb{Z}_{2 k-2} & k \in 4 \mathbb{Z}+3\end{cases}
$$

(3) When $n \geq 3$,

$$
\left(n V_{k}\right)_{\mathrm{ab}} \cong \begin{cases}\left(\mathbb{Z}_{k-1}\right)^{n-1} & k \in 2 \mathbb{Z} \text { or } k \in 4 \mathbb{Z}+3 \\ \left(\mathbb{Z}_{k-1}\right)^{n-1} \oplus \mathbb{Z}_{2} & k \in 4 \mathbb{Z}+1\end{cases}
$$

Cleary's group (1/2)

Let $\beta>0$ be an irrational number.
Let $P=\left\{\beta^{n} \mid n \in \mathbb{Z}\right\}$ and $A=\mathbb{Z}\left[\beta, \beta^{-1}\right]$.
Consider the group V_{β} consisting of right continuous bijections of $[0,1)$ which are piecewise linear, with finitely many discontinuities and singularities, all in A, slopes in P, and mapping $A \cap[0,1)$ to itself.

Cleary $(1995,2000)$ showed that V_{β} is of type F_{∞} when $\beta>0$ satisfies $\beta^{2}+n \beta-1=0, n \in \mathbb{N}$.

There exists an étale groupoid \mathcal{G}_{β} such that $\left[\left[\mathcal{G}_{\beta}\right]\right] \cong V_{\beta}$.
K-groups of $C_{r}^{*}\left(\mathcal{G}_{\beta}\right)$ were computed for many values of β by Carey-Phillips-Putnam-Rennie (2011). Also, $C_{r}^{*}\left(\mathcal{G}_{\beta}\right)$ is 'classifiable by K-groups'.

Cleary's group (2/2)

Theorem
(1) When $\beta>0$ satisfies $\beta^{2}+n \beta-1=0, n \in \mathbb{N}$,

$$
H_{0}\left(\mathcal{G}_{\beta}\right)=\mathbb{Z}_{n}, \quad H_{1}\left(\mathcal{G}_{\beta}\right)=\mathbb{Z}_{2}, \quad H_{k}\left(\mathcal{G}_{\beta}\right)=0 \text { for } k \geq 2
$$

(2) When $\beta>0$ satisfies $\beta^{2}-n \beta+1=0, n \in \mathbb{N} \backslash\{1,2\}$,

$$
\begin{gathered}
H_{0}\left(\mathcal{G}_{\beta}\right)=\mathbb{Z}_{n-2}, \quad H_{1}\left(\mathcal{G}_{\beta}\right)=\mathbb{Z}, \quad H_{2}\left(\mathcal{G}_{\beta}\right)=\mathbb{Z} \\
H_{k}\left(\mathcal{G}_{\beta}\right)=0 \text { for } k \geq 3
\end{gathered}
$$

In both cases, we have

$$
\bigoplus H_{2 n+i}\left(\mathcal{G}_{\beta}\right) \cong K_{i}\left(C_{r}^{*}\left(\mathcal{G}_{\beta}\right)\right) \quad i=0,1
$$

and

$$
\left[\left[\mathcal{G}_{\beta}\right]\right]_{\mathrm{ab}} \cong\left(H_{0}\left(\mathcal{G}_{\beta}\right) \otimes \mathbb{Z}_{2}\right) \oplus H_{1}\left(\mathcal{G}_{\beta}\right)
$$

