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Main theorem

For an N ×N matrix A with entries in {0, 1}, we consider the associated
one-sided shift of finite type (XA, σA), where

XA =
{
(xn)n ∈ {1, . . . , N}N | A(xn, xn+1) = 1 ∀n ∈ N

}
.

.

Theorem (K. Matsumoto and M)

.

.

.

. ..

. .

For irreducible matrices A and B, the following are equivalent.

.

.

.

1 (XA, σA) and (XB, σB) are continuously orbit equivalent.

.

.

.

2 The étale groupoids GA and GB are isomorphic.

.

.

.

3 There exists an isomorphism Ψ : OA → OB such that
Ψ(C(XA)) = C(XB).

.

.

.

4 (BF(At), uA) ∼= (BF(Bt), uB) and det(id−A) = det(id−B).
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Continuous orbit equivalence

Two one-sided shifts of finite type (XA, σA) and (XB, σB) are said to be
continuously orbit equivalent if there exists a homeomorphism
h : XA → XB, continuous maps k1, l1 : XA → Z+ and k2, l2 : XB → Z+

such that
σ
k1(x)
B (h(σA(x))) = σ

l1(x)
B (h(x)) ∀x ∈ XA

and
σ
k2(x)
A (h−1(σB(x))) = σ

l2(x)
A (h−1(x)) ∀x ∈ XB.

For the two matrices

A =

[
1 1
1 1

]
and B =

[
1 1
1 0

]
,

(XA, σA) and (XB, σB) are continuously orbit equivalent, but not
topologically conjugate.
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Étale groupoids

The étale groupoid GA for (XA, σA) is given by

GA =
{
(x, n, y) ∈ XA × Z×XA | ∃k, l ∈ Z+, n = k−l, σk

A(x)=σl
A(y)

}
with

(x, n, y) · (x′, n′, y′) = (x, n+n′, y′) if y = x′,

(x, n, y)−1 = (y,−n, x).

The topology of GA is generated by the sets{
(x, k−l, y) ∈ GA | x ∈ V, y ∈ W, σk

A(x) = σl
A(y)

}
,

where V,W ⊂ XA are open and k, l ∈ Z+.

The unit space (GA)
(0) = {(x, 0, x) | x ∈ XA} is identified with XA.

C∗
r (GA) is equal to the Cuntz-Krieger algebra OA.
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Bowen-Franks group

Let A be an N ×N matrix with entries in {0, 1} (or Z+).
The Bowen-Franks group is

BF(A) = ZN/(id−A)ZN .

The Bowen-Franks group is an invariant of flow equivalence for two-sided
shifts of finite type (R. Bowen and J. Franks 1977).

The Bowen-Franks group is also related to the Cuntz-Krieger algebra OA.
Namely, the Ext group of OA is isomorphic to BF(A) (J. Cuntz and W.
Krieger 1980), and (K0(OA), [1]) is isomorphic to (BF(At), uA), where
uA ∈ BF(At) is the equivalence class of (1, 1, . . . , 1) ∈ ZN (J. Cuntz
1981).
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Main theorem

.

Theorem (K. Matsumoto and M)

.

.

.

. ..

.

.

For irreducible matrices A and B, the following are equivalent.

(1) (XA, σA) and (XB, σB) are continuously orbit equivalent.

(2) The étale groupoids GA and GB are isomorphic.

(3) There exists an isomorphism Ψ : OA → OB such that
Ψ(C(XA)) = C(XB).

(4) (BF(At), uA) ∼= (BF(Bt), uB) and det(id−A) = det(id−B).

(1)⇔(2) is easy.
(2)⇒(3) is clear, and (3)⇒(2) is due to J. Renault.

As mentioned before, (K0(OA), [1]) ∼= (BF(At), uA).
So, OA

∼= OB implies (BF(At), uA) ∼= (BF(Bt), uB).
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Flow equivalence

We denote the two-sided shift by (X̄A, σ̄A).
The suspension space of (X̄A, σ̄A) is the quotient of X̄A × R by the
relations

(x, t) ∼ (σ̄A(x), t+ 1) x ∈ X̄A, t ∈ R.

(X̄A, σ̄A) and (X̄B, σ̄B) are said to be flow equivalent if there exists an
orientation preserving homeomorphism between their suspension spaces.

B. Parry and D. Sullivan in 1975 showed that det(id−A) is an invariant of
flow equivalence.

J. Franks in 1984 proved that the pair of BF(A) and det(id−A) is a
complete invariant of flow equivalence.

Clearly, #BF(A) < ∞ ⇐⇒ det(id−A) ̸= 0,
and in this case #BF(A) = |det(id−A)|.
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Proof of (4)⇒(3)

.

Theorem (K. Matsumoto)

.

.

.

. ..

.

.

If (BF(At), uA) ∼= (BF(Bt), uB) and det(id−A) = det(id−B),
then (OA, C(XA)) ∼= (OB, C(XB)).

.

Proof.

.

.

.

. ..

.

.

By the theorem of Franks, (X̄A, σ̄A) and (X̄B, σ̄B) are flow equivalent.
Then, by a result of Cuntz and Krieger, there exists an isomorphism
Ψ : OA ⊗K → OB ⊗K such that Ψ(C(XA)⊗ C) = C(XB)⊗ C,
where C ⊂ K is the abelian subalgebra of diagonal operators.
Since (BF(At), uA) ∼= (BF(Bt), uB), thanks to a theorem of D. Huang,
we may further assume K0(Ψ)(uA) = uB.
Thus K0(Ψ)([1OA

⊗ e]) = [1OB
⊗ e], where e ∈ K is a minimal projection.

Hence we get (OA, C(XA)) ∼= (OB, C(XB)).
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Main theorem

.

Theorem (K. Matsumoto and M)

.

.

.

. ..

.

.

For irreducible matrices A and B, the following are equivalent.

(1) (XA, σA) and (XB, σB) are continuously orbit equivalent.

(2) The étale groupoids GA and GB are isomorphic.

(3) There exists an isomorphism Ψ : OA → OB such that
Ψ(C(XA)) = C(XB).

(4) (BF(At), uA) ∼= (BF(Bt), uB) and det(id−A) = det(id−B).

It remains for us to show that
(1) or (2) or (3) implies det(id−A) = det(id−B).

To this end, it suffices to show that (X̄A, σ̄A) and (X̄B, σ̄B) are flow
equivalent, because det(id−A) is an invariant for flow equivalence.
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Boyle-Handelman’s theorem

For a two-sided SFT (X̄A, σ̄A), we let

H̄A = C(X̄A,Z)/{ξ − ξ ◦ σ̄A | ξ ∈ C(X̄A,Z)},

H̄A
+ = {[ξ] ∈ H̄A | ξ(x) ≥ 0 ∀x ∈ X̄A}.

(H̄A, H̄A
+) is called the ordered cohomology group.

.

Theorem (M. Boyle and D. Handelman 1996)

.

.

.

. ..

.

.

For irreducible matrices A and B, the following are equivalent.

.

.

.

1 (X̄A, σ̄A) and (X̄B, σ̄B) are flow equivalent.

.

.

.

2 (H̄A, H̄A
+)

∼= (H̄B, H̄B
+ ).
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2-sided versus 1-sided

For a one-sided SFT (XA, σA), we let

HA = C(XA,Z)/{ξ − ξ ◦ σA | ξ ∈ C(XA,Z)},

HA
+ = {[ξ] ∈ HA | ξ(x) ≥ 0 ∀x ∈ XA}.

.

Lemma

.

.

.

. ..

. .

The canonical projection ρ : X̄A → XA induces an isomorphism
ρ̃ from (HA,HA

+) to (H̄A, H̄A
+).

Let us see the surjectivity of ρ̃.
Take ζ ∈ C(X̄A,Z). There exists n ∈ N such that ζ(x) depends only on
finitely many coordinates x−n, . . . , x0, . . . , xn of x ∈ X̄A.
Hence there exists ξ ∈ C(XA,Z) such that ζ ◦ σ̄n+1

A = ξ ◦ ρ,
and so ρ̃([ξ]) = [ξ ◦ ρ] = [ζ ◦ σ̄n+1

A ] = [ζ] in H̄A.
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Cohomology of groupoid (1/2)

For an étale groupoid G, we let Hom(G,Z) be the set of continuous
homomorphisms ω : G → Z. For ξ ∈ C(G(0),Z), we can define
∂(ξ) ∈ Hom(G,Z) by ∂(ξ) = ξ(r(g))− ξ(s(g)).
The cohomology group H1(G) = H1(G,Z) is the quotient of Hom(G,Z)
by {∂(ξ) | ξ ∈ C(G(0),Z)}.

For the SFT groupoid GA, it is known that H1(GA) is isomorphic to HA.
The isomorphism is given as follows. Let ω ∈ Hom(G,Z). For every
x ∈ XA, we consider an element (x, 1, σA(x)) ∈ GA and define
ξ ∈ C(XA,Z) by

ξ(x) = ω((x, 1, σA(x))).

Then ω 7→ ξ gives rise to an isomorphism Φ : H1(GA) → HA.

We have to characterize the positive cone of H1(GA) ∼= HA in terms of
groupoids.
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Cohomology of groupoid (2/2)

Let g ∈ G be such that r(g) = s(g) and let U ⊂ G be a compact open
G-set containing g. Then πU = (r|U) ◦ (s|U)−1 is a homeomorphism from
s(U) to r(U).
We say that g is attracting if there exists U such that r(U) ⊂ s(U) and

lim
n→+∞

(πU )
n(y) = r(g) ∀y ∈ s(U).

.

Lemma

.

.

.

. ..

.

.

There exists an isomorphism Φ : H1(GA) → HA such that

Φ([ω]) ∈ HA
+ ⇐⇒ ω(g) ≥ 0 ∀attracting g ∈ GA.
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Proof of GA
∼= GB ⇒ det(id−A) = det(id−B)

.

Theorem (K. Matsumoto and M)

.

.

.

. ..

.

.

If irreducible one-sided SFT (XA, σA) and (XB, σB) are continuously orbit
equivalent, then the two-sided SFT (X̄A, σ̄A) and (X̄B, σ̄B) are flow
equivalent. In particular, det(id−A) = det(id−B).

.

Proof.

.

.

.

. ..

. .

There exists an isomorphism φ : GA → GB. For any g ∈ GA, g is
attracting iff φ(g) is attracting. Hence we get (HA,HA

+)
∼= (HB, HB

+ ).
This implies (H̄A, H̄A

+)
∼= (H̄B, H̄B

+ ).
By the Boyle-Handelman’s theorem, we can conclude that (X̄A, σ̄A) and
(X̄B, σ̄B) are flow equivalent.
By the Parry-Sullivan’s theorem, we have det(id−A) = det(id−B).

This completes the proof of the main theorem.
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Example

For the matrices

A =

[
1 1
1 1

]
, B =

[
1 1
1 0

]
, C =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 ,

we have
BF(At) = BF(Bt) = BF(Ct) = 0,

det(id−At) = −1, det(id−Bt) = −1, det(id−Ct) = 1.

So we have O2
∼= OA

∼= OB
∼= OC ,

(OA, C(XA)) ∼= (OB, C(XB)), (OA, C(XA)) ̸∼= (OC , C(XC)).
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Stable isomorphism (1/2)

Let C ∼= c0(Z) be the maximal abelian subalgebra of K = K(ℓ2(Z))
consisting of diagonal operators.

.

Corollary

.

.

.

. ..

.

.

Let (X̄A, σ̄A) and (X̄B, σ̄B) be irreducible two-sided SFT.
The following are equivalent.

(1) (X̄A, σ̄A) and (X̄B, σ̄B) are flow equivalent.

(2) There exists an isomorphism Ψ : OA ⊗K → OB ⊗K such that
Ψ(C(XA)⊗ C) = C(XB)⊗ C.

(1)⇒(2) is due to Cuntz and Krieger. We prove (2)⇒(1).
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Stable isomorphism (2/2)

Let Ψ : OA ⊗K → OB ⊗K be an isomorphism such that
Ψ(C(XA)⊗ C) = C(XB)⊗ C.

K0(Ψ) gives an isomorphism BF(At) → BF(Bt). Let v = K0(Ψ)(uA).
There exists an irreducible matrix C such that
(BF(Bt), v) ∼= (BF(Ct), uC) and det(id−B) = det(id−C). Then
(X̄B, σ̄B) and (X̄C , σ̄C) are flow equivalent. Moreover, by Huang’s
theorem, there exists an isomorphism Φ : OB ⊗K → OC ⊗K such that
Φ(C(XB)⊗ C) = C(XC)⊗ C and K0(Φ)(v) = uC .

It follows that Φ ◦Ψ is an isomorphism OA ⊗K → OC ⊗K such that
(Φ ◦Ψ)(C(XA)⊗ C) = C(XC)⊗ C and K0(Φ ◦Ψ)(uA) = uC .
Hence we get (OA, C(XA)) ∼= (OC , C(XC)). By the main theorem, we
have det(id−A) = det(id−C), which equals det(id−B).
Therefore (X̄A, σ̄A) and (X̄B, σ̄B) are flow equivalent.
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Topological full groups (1/2)

Let G be an étale groupoid whose unit space G(0) is a Cantor set.
We call

[[G]] = {(r|U) ◦ (s|U)−1 ∈ Homeo(G(0)) | U ⊂ G is compact and open}

the topological full group of G.

.

Corollary

.

.

.

. ..

.

.

For irreducible matrices A and B, the following are equivalent.

.

.

.

1 The étale groupoids GA and GB are isomorphic.

.

.

.

2 (BF(At), uA) ∼= (BF(Bt), uB) and det(id−A) = det(id−B).

.

.

.

3 [[GA]] ∼= [[GB]].

.

.

.

4 D([[GA]]) ∼= D([[GB]]).
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Topological full groups (2/2)

.

Theorem

.

.

.

. ..

.

.

Let GA be the étale groupoid arising from an irreducible one-sided SFT.

.

.
.

1 D([[GA]]) is simple.

.

.

.

2 [[GA]]/D([[GA]]) is isomorphic to Ker(id−At)⊕ (BF(At)⊗ Z2).

.

.

.

3 [[GA]] is finitely presented.

.

.

.

4 [[GA]] has the Haagerup property.

When (XA, σA) is the full shift over n symbols, [[GA]] is isomorphic to the
Higman-Thompson group Vn.

So, [[GA]] for general SFT may be thought of as a generalization of the
Higman-Thompson group Vn.
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