Continuous orbit equivalence of one-sided shifts of finite type

Hiroki Matui matui@math.s.chiba-u.ac.jp

Chiba University

September 17, 2013 Classifying Structures for Operator Algebras and Dynamical Systems Aberystwyth University

Main theorem

For an $N \times N$ matrix A with entries in $\{0, 1\}$, we consider the associated one-sided shift of finite type (X_A, σ_A) , where

$$X_A = \left\{ (x_n)_n \in \{1, \dots, N\}^{\mathbb{N}} \mid A(x_n, x_{n+1}) = 1 \quad \forall n \in \mathbb{N} \right\}.$$

Theorem (K. Matsumoto and M)

For irreducible matrices A and B, the following are equivalent.

- (X_A, σ_A) and (X_B, σ_B) are continuously orbit equivalent.
- **2** The étale groupoids G_A and G_B are isomorphic.
- So There exists an isomorphism $\Psi : \mathcal{O}_A \to \mathcal{O}_B$ such that $\Psi(C(X_A)) = C(X_B).$
- $(BF(A^t), u_A) \cong (BF(B^t), u_B)$ and det(id A) = det(id B).

Continuous orbit equivalence

Two one-sided shifts of finite type (X_A, σ_A) and (X_B, σ_B) are said to be continuously orbit equivalent if there exists a homeomorphism $h: X_A \to X_B$, continuous maps $k_1, l_1: X_A \to \mathbb{Z}_+$ and $k_2, l_2: X_B \to \mathbb{Z}_+$ such that

$$\sigma_B^{k_1(x)}(h(\sigma_A(x))) = \sigma_B^{l_1(x)}(h(x)) \quad \forall x \in X_A$$

and

$$\sigma_A^{k_2(x)}(h^{-1}(\sigma_B(x))) = \sigma_A^{l_2(x)}(h^{-1}(x)) \quad \forall x \in X_B.$$

For the two matrices

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$,

 (X_A,σ_A) and (X_B,σ_B) are continuously orbit equivalent, but not topologically conjugate.

Étale groupoids

The étale groupoid G_A for (X_A, σ_A) is given by

$$G_A = \left\{ (x, n, y) \in X_A \times \mathbb{Z} \times X_A \mid \exists k, l \in \mathbb{Z}_+, \ n = k - l, \ \sigma_A^k(x) = \sigma_A^l(y) \right\}$$

with

$$\begin{split} (x,n,y)\cdot(x',n',y') &= (x,n{+}n',y') \quad \text{if} \quad y=x', \\ (x,n,y)^{-1} &= (y,-n,x). \end{split}$$

The topology of G_A is generated by the sets

$$\left\{ (x,k-l,y) \in G_A \mid x \in V, \ y \in W, \ \sigma_A^k(x) = \sigma_A^l(y) \right\},\$$

where $V, W \subset X_A$ are open and $k, l \in \mathbb{Z}_+$.

The unit space $(G_A)^{(0)} = \{(x, 0, x) \mid x \in X_A\}$ is identified with X_A .

 $C_r^*(G_A)$ is equal to the Cuntz-Krieger algebra \mathcal{O}_A .

Let A be an $N \times N$ matrix with entries in $\{0,1\}$ (or \mathbb{Z}_+). The Bowen-Franks group is

$$BF(A) = \mathbb{Z}^N / (\mathrm{id} - A)\mathbb{Z}^N.$$

The Bowen-Franks group is an invariant of flow equivalence for two-sided shifts of finite type (R. Bowen and J. Franks 1977).

The Bowen-Franks group is also related to the Cuntz-Krieger algebra \mathcal{O}_A . Namely, the Ext group of \mathcal{O}_A is isomorphic to BF(A) (J. Cuntz and W. Krieger 1980), and $(K_0(\mathcal{O}_A), [1])$ is isomorphic to $(BF(A^t), u_A)$, where $u_A \in BF(A^t)$ is the equivalence class of $(1, 1, \ldots, 1) \in \mathbb{Z}^N$ (J. Cuntz 1981).

Theorem (K. Matsumoto and M)

For irreducible matrices A and B, the following are equivalent.

- (1) (X_A, σ_A) and (X_B, σ_B) are continuously orbit equivalent.
- (2) The étale groupoids G_A and G_B are isomorphic.
- (3) There exists an isomorphism $\Psi : \mathcal{O}_A \to \mathcal{O}_B$ such that $\Psi(C(X_A)) = C(X_B).$
- (4) $(BF(A^t), u_A) \cong (BF(B^t), u_B)$ and $\det(id A) = \det(id B)$.

(1)⇔(2) is easy. (2)⇒(3) is clear, and (3)⇒(2) is due to J. Renault.

As mentioned before, $(K_0(\mathcal{O}_A), [1]) \cong (BF(A^t), u_A)$. So, $\mathcal{O}_A \cong \mathcal{O}_B$ implies $(BF(A^t), u_A) \cong (BF(B^t), u_B)$.

Flow equivalence

We denote the two-sided shift by $(\bar{X}_A, \bar{\sigma}_A)$.

The suspension space of $(\bar{X}_A, \bar{\sigma}_A)$ is the quotient of $\bar{X}_A \times \mathbb{R}$ by the relations

 $(x,t) \sim (\bar{\sigma}_A(x), t+1) \quad x \in \bar{X}_A, \ t \in \mathbb{R}.$

 $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ are said to be flow equivalent if there exists an orientation preserving homeomorphism between their suspension spaces.

B. Parry and D. Sullivan in 1975 showed that det(id - A) is an invariant of flow equivalence.

J. Franks in 1984 proved that the pair of BF(A) and det(id - A) is a complete invariant of flow equivalence.

Clearly, $\# BF(A) < \infty \iff \det(\operatorname{id} - A) \neq 0$, and in this case $\# BF(A) = |\det(\operatorname{id} - A)|$.

Theorem (K. Matsumoto)

If $(BF(A^t), u_A) \cong (BF(B^t), u_B)$ and $\det(id - A) = \det(id - B)$, then $(\mathcal{O}_A, C(X_A)) \cong (\mathcal{O}_B, C(X_B))$.

Proof.

By the theorem of Franks, $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ are flow equivalent. Then, by a result of Cuntz and Krieger, there exists an isomorphism $\Psi: \mathcal{O}_A \otimes \mathbb{K} \to \mathcal{O}_B \otimes \mathbb{K}$ such that $\Psi(C(X_A) \otimes \mathcal{C}) = C(X_B) \otimes \mathcal{C}$, where $\mathcal{C} \subset \mathbb{K}$ is the abelian subalgebra of diagonal operators. Since $(BF(A^t), u_A) \cong (BF(B^t), u_B)$, thanks to a theorem of D. Huang, we may further assume $K_0(\Psi)(u_A) = u_B$. Thus $K_0(\Psi)([1_{\mathcal{O}_A} \otimes e]) = [1_{\mathcal{O}_B} \otimes e]$, where $e \in \mathbb{K}$ is a minimal projection. Hence we get $(\mathcal{O}_A, C(X_A)) \cong (\mathcal{O}_B, C(X_B))$.

Theorem (K. Matsumoto and M)

For irreducible matrices A and B, the following are equivalent.

- (1) (X_A, σ_A) and (X_B, σ_B) are continuously orbit equivalent.
- (2) The étale groupoids G_A and G_B are isomorphic.
- (3) There exists an isomorphism $\Psi : \mathcal{O}_A \to \mathcal{O}_B$ such that $\Psi(C(X_A)) = C(X_B).$
- (4) $(BF(A^t), u_A) \cong (BF(B^t), u_B)$ and $\det(id A) = \det(id B)$.

It remains for us to show that (1) or (2) or (3) implies det(id - A) = det(id - B).

To this end, it suffices to show that $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ are flow equivalent, because $\det(\operatorname{id} - A)$ is an invariant for flow equivalence.

For a two-sided SFT $(\bar{X}_A, \bar{\sigma}_A)$, we let

$$\bar{H}^A = C(\bar{X}_A, \mathbb{Z}) / \{\xi - \xi \circ \bar{\sigma}_A \mid \xi \in C(\bar{X}_A, \mathbb{Z})\},$$
$$\bar{H}^A_+ = \{ [\xi] \in \bar{H}^A \mid \xi(x) \ge 0 \quad \forall x \in \bar{X}_A \}.$$

 (\bar{H}^A, \bar{H}^A_+) is called the ordered cohomology group.

Theorem (M. Boyle and D. Handelman 1996)

For irreducible matrices A and B, the following are equivalent.

•
$$(\bar{X}_A, \bar{\sigma}_A)$$
 and $(\bar{X}_B, \bar{\sigma}_B)$ are flow equivalent.
• $(\bar{H}^A, \bar{H}^A_{\perp}) \cong (\bar{H}^B, \bar{H}^B_{\perp}).$

For a one-sided SFT (X_A, σ_A) , we let

$$H^{A} = C(X_{A}, \mathbb{Z}) / \{\xi - \xi \circ \sigma_{A} \mid \xi \in C(X_{A}, \mathbb{Z})\},$$
$$H^{A}_{+} = \{[\xi] \in H^{A} \mid \xi(x) \ge 0 \quad \forall x \in X_{A}\}.$$

Lemma

The canonical projection $\rho: \bar{X}_A \to X_A$ induces an isomorphism $\tilde{\rho}$ from (H^A, H^A_+) to (\bar{H}^A, \bar{H}^A_+) .

Let us see the surjectivity of $\tilde{\rho}$. Take $\zeta \in C(\bar{X}_A, \mathbb{Z})$. There exists $n \in \mathbb{N}$ such that $\zeta(x)$ depends only on finitely many coordinates $x_{-n}, \ldots, x_0, \ldots, x_n$ of $x \in \bar{X}_A$. Hence there exists $\xi \in C(X_A, \mathbb{Z})$ such that $\zeta \circ \bar{\sigma}_A^{n+1} = \xi \circ \rho$, and so $\tilde{\rho}([\xi]) = [\xi \circ \rho] = [\zeta \circ \bar{\sigma}_A^{n+1}] = [\zeta]$ in \bar{H}^A .

Cohomology of groupoid (1/2)

For an étale groupoid G, we let $\operatorname{Hom}(G, \mathbb{Z})$ be the set of continuous homomorphisms $\omega : G \to \mathbb{Z}$. For $\xi \in C(G^{(0)}, \mathbb{Z})$, we can define $\partial(\xi) \in \operatorname{Hom}(G, \mathbb{Z})$ by $\partial(\xi) = \xi(r(g)) - \xi(s(g))$. The cohomology group $H^1(G) = H^1(G, \mathbb{Z})$ is the quotient of $\operatorname{Hom}(G, \mathbb{Z})$ by $\{\partial(\xi) \mid \xi \in C(G^{(0)}, \mathbb{Z})\}$.

For the SFT groupoid G_A , it is known that $H^1(G_A)$ is isomorphic to H^A . The isomorphism is given as follows. Let $\omega \in \text{Hom}(G, \mathbb{Z})$. For every $x \in X_A$, we consider an element $(x, 1, \sigma_A(x)) \in G_A$ and define $\xi \in C(X_A, \mathbb{Z})$ by

$$\xi(x) = \omega((x, 1, \sigma_A(x))).$$

Then $\omega \mapsto \xi$ gives rise to an isomorphism $\Phi : H^1(G_A) \to H^A$.

We have to characterize the positive cone of $H^1(G_A) \cong H^A$ in terms of groupoids.

Let $g \in G$ be such that r(g) = s(g) and let $U \subset G$ be a compact open G-set containing g. Then $\pi_U = (r|U) \circ (s|U)^{-1}$ is a homeomorphism from s(U) to r(U).

We say that g is attracting if there exists U such that $r(U) \subset s(U)$ and

$$\lim_{n \to +\infty} (\pi_U)^n (y) = r(g) \quad \forall y \in s(U).$$

Lemma

There exists an isomorphism $\Phi: H^1(G_A) \to H^A$ such that

 $\Phi([\omega]) \in H^A_+ \iff \omega(g) \ge 0 \quad \forall \text{attracting } g \in G_A.$

Theorem (K. Matsumoto and M)

If irreducible one-sided SFT (X_A, σ_A) and (X_B, σ_B) are continuously orbit equivalent, then the two-sided SFT $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ are flow equivalent. In particular, $\det(\operatorname{id} - A) = \det(\operatorname{id} - B)$.

Proof.

There exists an isomorphism $\varphi : G_A \to G_B$. For any $g \in G_A$, g is attracting iff $\varphi(g)$ is attracting. Hence we get $(H^A, H^A_+) \cong (H^B, H^B_+)$. This implies $(\bar{H}^A, \bar{H}^A_+) \cong (\bar{H}^B, \bar{H}^B_+)$. By the Boyle-Handelman's theorem, we can conclude that $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ are flow equivalent. By the Parry-Sullivan's theorem, we have $\det(\operatorname{id} - A) = \det(\operatorname{id} - B)$.

This completes the proof of the main theorem.

For the matrices

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix},$$

we have

$$BF(A^t) = BF(B^t) = BF(C^t) = 0,$$

 $det(id - A^t) = -1, \quad det(id - B^t) = -1, \quad det(id - C^t) = 1.$

So we have $\mathcal{O}_2 \cong \mathcal{O}_A \cong \mathcal{O}_B \cong \mathcal{O}_C$,

 $(\mathcal{O}_A, C(X_A)) \cong (\mathcal{O}_B, C(X_B)), \quad (\mathcal{O}_A, C(X_A)) \not\cong (\mathcal{O}_C, C(X_C)).$

Let $C \cong c_0(\mathbb{Z})$ be the maximal abelian subalgebra of $\mathbb{K} = \mathbb{K}(\ell^2(\mathbb{Z}))$ consisting of diagonal operators.

Corollary

Let $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ be irreducible two-sided SFT. The following are equivalent.

- (1) $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ are flow equivalent.
- (2) There exists an isomorphism $\Psi : \mathcal{O}_A \otimes \mathbb{K} \to \mathcal{O}_B \otimes \mathbb{K}$ such that $\Psi(C(X_A) \otimes \mathcal{C}) = C(X_B) \otimes \mathcal{C}.$

 $(1)\Rightarrow(2)$ is due to Cuntz and Krieger. We prove $(2)\Rightarrow(1)$.

Let $\Psi : \mathcal{O}_A \otimes \mathbb{K} \to \mathcal{O}_B \otimes \mathbb{K}$ be an isomorphism such that $\Psi(C(X_A) \otimes \mathcal{C}) = C(X_B) \otimes \mathcal{C}.$

 $K_0(\Psi)$ gives an isomorphism $BF(A^t) \to BF(B^t)$. Let $v = K_0(\Psi)(u_A)$. There exists an irreducible matrix C such that $(BF(B^t), v) \cong (BF(C^t), u_C)$ and $\det(\operatorname{id} -B) = \det(\operatorname{id} -C)$. Then $(\bar{X}_B, \bar{\sigma}_B)$ and $(\bar{X}_C, \bar{\sigma}_C)$ are flow equivalent. Moreover, by Huang's theorem, there exists an isomorphism $\Phi : \mathcal{O}_B \otimes \mathbb{K} \to \mathcal{O}_C \otimes \mathbb{K}$ such that $\Phi(C(X_B) \otimes \mathcal{C}) = C(X_C) \otimes \mathcal{C}$ and $K_0(\Phi)(v) = u_C$.

It follows that $\Phi \circ \Psi$ is an isomorphism $\mathcal{O}_A \otimes \mathbb{K} \to \mathcal{O}_C \otimes \mathbb{K}$ such that $(\Phi \circ \Psi)(C(X_A) \otimes \mathcal{C}) = C(X_C) \otimes \mathcal{C}$ and $K_0(\Phi \circ \Psi)(u_A) = u_C$. Hence we get $(\mathcal{O}_A, C(X_A)) \cong (\mathcal{O}_C, C(X_C))$. By the main theorem, we have $\det(\operatorname{id} - A) = \det(\operatorname{id} - C)$, which equals $\det(\operatorname{id} - B)$. Therefore $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ are flow equivalent. Let G be an étale groupoid whose unit space $G^{\left(0\right)}$ is a Cantor set. We call

 $[[G]] = \{ (r|U) \circ (s|U)^{-1} \in \operatorname{Homeo}(G^{(0)}) \mid U \subset G \text{ is compact and open} \}$

the topological full group of G.

Corollary

For irreducible matrices A and B, the following are equivalent.

- **1** The étale groupoids G_A and G_B are isomorphic.
- $(BF(A^t), u_A) \cong (BF(B^t), u_B) \text{ and } \det(\mathrm{id} A) = \det(\mathrm{id} B).$
- $[[G_A]] \cong [[G_B]].$
- $D([[G_A]]) \cong D([[G_B]]).$

Theorem

Let G_A be the étale groupoid arising from an irreducible one-sided SFT.

- $D([[G_A]])$ is simple.
- $[[G_A]]/D([[G_A]]) \text{ is isomorphic to } \operatorname{Ker}(\operatorname{id} -A^t) \oplus (\operatorname{BF}(A^t) \otimes \mathbb{Z}_2).$
- \bigcirc [[G_A]] is finitely presented.
- $[[G_A]]$ has the Haagerup property.

When (X_A, σ_A) is the full shift over n symbols, $[[G_A]]$ is isomorphic to the Higman-Thompson group V_n .

So, $[[G_A]]$ for general SFT may be thought of as a generalization of the Higman-Thompson group $V_n.$