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Main theorem

For an N x N matrix A with entries in {0,1}, we consider the associated
one-sided shift of finite type (X 4,04), where

Xy = {(xn)n e{l,...,NW | Aln,zns1) =1 Vne N}.

Theorem (K. Matsumoto and M)

For irreducible matrices A and B, the following are equivalent.

O (X4,04) and (Xp,op) are continuously orbit equivalent.

@ The étale groupoids G 4 and G are isomorphic.

© There exists an isomorphism ¥ : O4 — Op such that
U(C(Xa)) = C(Xp).

Q (BF(AY),ua) = (BF(B!),up) and det(id —A) = det(id —B).




Continuous orbit equivalence

Two one-sided shifts of finite type (X4,04) and (Xp,op) are said to be
continuously orbit equivalent if there exists a homeomorphism
h: X4 — Xp, continuous maps k1,01 : X4 — Z4 and ko,lo: Xp — Z+
such that
o (Woa(@) = o (h(z) Vo€ Xa
and
2O (VN op(x) = a2 (WY (2)) Vo e Xp.

For the two matrices
1 1 11
PR P (1)

(Xa,04) and (Xp,0p) are continuously orbit equivalent, but not
topologically conjugate.



Etale groupoids

The étale groupoid G 4 for (X 4,04) is given by

Gy = {(:L‘,n,y) EXAXZxXal|3Ik,EZy, n=Fk-l, aff\(x):ai‘(y)}

with
(z,n,y) - (&', n',y) = (x,n4+n',y) if y=2a,

(ZL‘, n, y)_l = (y7 —-n, 33')
The topology of G 4 is generated by the sets

{h-ly) eGalzeV, yeW, oh(z) =k},
where VW C X4 are open and k,l € Z,.
The unit space (G4) = {(z,0,2) | z € X4} is identified with X 4.

C¥ (G 4) is equal to the Cuntz-Krieger algebra Oy4.



Bowen-Franks group

Let A be an N x N matrix with entries in {0,1} (or Z,).
The Bowen-Franks group is

BF(A) =z /(id—A)Z"

The Bowen-Franks group is an invariant of flow equivalence for two-sided
shifts of finite type (R. Bowen and J. Franks 1977).

The Bowen-Franks group is also related to the Cuntz-Krieger algebra O 4.
Namely, the Ext group of Q4 is isomorphic to BF(A) (J. Cuntz and W.
Krieger 1980), and (K¢(O4),[1]) is isomorphic to (BF(A?),u4), where
ua € BF(A?) is the equivalence class of (1,1,...,1) € ZV (J. Cuntz
1981).



Main theorem

Theorem (K. Matsumoto and M)

For irreducible matrices A and B, the following are equivalent.
(1) (Xa,04) and (Xp,op) are continuously orbit equivalent.
(2) The étale groupoids G 4 and G g are isomorphic.

(3) There exists an isomorphism ¥ : O 4 — Op such that
U(C(Xa)) = C(XB).

(4) (BF(AY),ua) = (BF(B'),up) and det(id —A) = det(id —B).

(1)<(2) is easy.
(2)=(3) is clear, and (3)=(2) is due to J. Renault.

As mentioned before, (K¢(O4),[1]) = :
So, 04 = Op implies (BF(AY),us) = (BF(BY), up).




Flow equivalence

We denote the two-sided shift by (X 4,5 4).
The suspension space of (X 4,54) is the quotient of X4 x R by the
relations

(,t) ~ (Ga(z),t+1) z€ Xa, teR.

(X4,54) and (Xp,5p) are said to be flow equivalent if there exists an
orientation preserving homeomorphism between their suspension spaces.

B. Parry and D. Sullivan in 1975 showed that det(id —A) is an invariant of
flow equivalence.

J. Franks in 1984 proved that the pair of BF(A) and det(id —A) is a
complete invariant of flow equivalence.

Clearly, # BF(A) < 0o <= det(id—A) # 0,
and in this case # BF(A) = |det(id —A)|.



Proof of (4)=(3)

Theorem (K. Matsumoto)

If (BF(AY),ua) = (BF(B!),up) and det(id —A) = det(id —B),
then (04,C(X4)) = (0p,C(XBR)).

Proof

By the theorem of Franks, (X 4,54) and (Xp,0p) are flow equivalent.
Then, by a result of Cuntz and Krieger, there exists an isomorphism
U:040K— Op®K such that UV(C(X4) ®C) =C(Xp)®C,
where C C K is the abelian subalgebra of diagonal operators.

|
|
| A\

Since (BF(A!),u4) = (BF(B?!),up), thanks to a theorem of D. Huang,
we may further assume Ko(¥)(ua) = up.

Thus Ko(V)([lo, ®€]) = [lo, ® €], where e € K is a minimal projection.
Hence we get (O4,C(X4)) = (0Op,C(XB)). O

v




Main theorem

Theorem (K. Matsumoto and M)

For irreducible matrices A and B, the following are equivalent.

(1) (Xa,04) and (Xp,0p) are continuously orbit equivalent.

(2) The étale groupoids G 4 and G g are isomorphic.

(3) There exists an isomorphism ¥ : O 4 — Op such that
¥(C(Xa)) = C(XB).

(4) (BF(AY),us) = (BF(BY),up) and det(id —A) = det(id —B).

It remains for us to show that
(1) or (2) or (3) implies det(id —A) = det(id —B).

To this end, it suffices to show that (X4,54) and (Xp,55) are flow
equivalent, because det(id —A) is an invariant for flow equivalence.



Boyle-Handelman's theorem

For a two-sided SFT (X 4,54), we let
H*=C(XA,Z)/{¢—E€0ba| &€ C(Xa,Z)},

A ={l¢g e A*[£(x) >0 Vo e Xa}.

(HA, ﬁf) is called the ordered cohomology group.

Theorem (M. Boyle and D. Handelman 1996)

For irreducible matrices A and B, the following are equivalent.
@ (X4,64) and (Xp,5R) are flow equivalent.
@ (A4, HA)~ (AP, AP).
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2-sided versus 1-sided

For a one-sided SFT (X 4,04), we let
H (XA7 )/{5 go gA | g S C(Xsz)}v

HY={[g)e H"|&(x) >0 Vo€ Xa}.

The canonical projection p : X 4 — X 4 induces an isomorphism
p from (HA, H%) to (HA, HY).

Let us see the surjectivity of p.

Take ¢ € C(X4,7Z). There exists n € N such that ((x) depends only on
finitely many coordinates z_,,, ..., g, ..., T, of x € X4.

Hence there exists £ € C(X 4,7Z) such that (o 52“ =¢op,

and so §([¢]) = [0 p] = [Coa’™] = [(] in HA.

11/19



Cohomology of groupoid (1/2)

For an étale groupoid GG, we let Hom(G,Z) be the set of continuous
homomorphisms w : G — Z. For £ € C(G(©),Z), we can define

9(§) € Hom(G, Z) by 9(¢) = &£(r(g)) — £(s(g)).

The cohomology group H'(G) = H'(G,Z) is the quotient of Hom(G, Z)
by {9(¢) | € € C(G, Z)}.

For the SFT groupoid G 4, it is known that H!(G4) is isomorphic to HA.
The isomorphism is given as follows. Let w € Hom(G,Z). For every
x € X4, we consider an element (z,1,04(z)) € G4 and define
§£€C(Xa,Z) by

§(2) = w((z,1,04())).

Then w + £ gives rise to an isomorphism ® : H'(G4) — HA.

We have to characterize the positive cone of H'(G 4) = H in terms of
groupoids.
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Cohomology of groupoid (2/2)

Let g € G be such that r(g) = s(g) and let U C G be a compact open

G-set containing g. Then my = (r|U) o (s|U)~! is a homeomorphism from

s(U) to r(U).

We say that g is attracting if there exists U such that »(U) C s(U) and
lim ()" (y) =r(g) Yy < s(U).

n—-+00

There exists an isomorphism ® : H'(G 4) — H* such that

d([w]) € Hf <= w(g) >0 Vattracting g € G 4.
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Proof of G4 = Gp = det(id —A) = det(id —B)

Theorem (K. Matsumoto and M)

If irreducible one-sided SFT (X a,04) and (Xp,op) are continuously orbit
equivalent, then the two-sided SFT (X 4,54) and (Xp,55) are flow
equivalent. In particular, det(id —A) = det(id —B).

Proof

There exists an isomorphism ¢ : G4 — Gp. For any g € G4, g is
attracting iff ¢(g) is attracting. Hence we get (HA, H{') =~ (HP, HB).
This implies (H4, H4') = (HB, HP).

By the Boyle-Handelman's theorem, we can conclude that (X 4,54) and
(XB,aR) are flow equivalent.

By the Parry-Sullivan’s theorem, we have det(id —A) = det(id —B). O

| \

v

This completes the proof of the main theorem.
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For the matrices

11 11
A:[l 1]’ B:[l 0}’ ¢ =

S O ==
O = =
— = = O
_ = O O

we have
BF(A") = BF(B') = BF(C") =0,

det(id —A") = —1, det(id —B") = -1, det(id —C") = 1.

So we have Oy 2 04 =2 O = O¢,

(04, C(X4)) = (0B,C(XB)), (0a,C(X4)) # (Oc,C(Xc)).
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Stable isomorphism (1/2)

Let C =2 ¢y(Z) be the maximal abelian subalgebra of K = K(¢?(Z))
consisting of diagonal operators.

Corollary

Let (Xa,04) and (Xp,op) be irreducible two-sided SFT.

The following are equivalent.

(1) (Xa,54) and (Xp,5R) are flow equivalent.

(2) There exists an isomorphism ¥ : O4 ® K — Op ® K such that
U(C(Xa)®C)=C(Xp)®C.

(1)=(2) is due to Cuntz and Krieger. We prove (2)=-(1).
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Stable isomorphism (2/2)

Let V: 04 ®K — Op ®K be an isomorphism such that
V(C(X4)®C)=C(Xp)®C.

Ko() gives an isomorphism BF(A!) — BF(B?). Let v = Ko(¥)(u4).
There exists an irreducible matrix C' such that

(BF(B'),v) = (BF(C"),uc) and det(id —B) = det(id —C). Then
(Xp,oB) and (X¢,5¢) are flow equivalent. Moreover, by Huang's
theorem, there exists an isomorphism ® : Op ® K — O¢ ® K such that
O(C(Xp)®C)=C(Xc)®C and Ko(®)(v) = uc.

It follows that ® o W is an isomorphism O 4 ® K — O¢ ® K such that
(PoV)(C(X4)®C)=C(Xc)®C and Ko(Po ¥)(ua) = uc.

Hence we get (O4,C(X4)) = (Oc,C(X¢)). By the main theorem, we
have det(id —A) = det(id —C'), which equals det(id —B).

Therefore (X 4,54) and (Xp,5) are flow equivalent.
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Topological full groups (1/2)

Let G be an étale groupoid whose unit space G(©) is a Cantor set.
We call

[G]] = {(r|U) o (s|U)~" € Homeo(G) | U C G is compact and open}

the topological full group of G.

Corollary
For irreducible matrices A and B, the following are equivalent.
© The étale groupoids G 4 and G are isomorphic.
Q@ (BF(AY),ua) = (BF(B?),up) and det(id —A) = det(id —B).
Q [[GA]l = [IGB]]-
Q@ D([[G4]]) = D([[GB]))-
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Topological full groups (2/2)

Theorem

Let G 4 be the étale groupoid arising from an irreducible one-sided SFT.
@ D([|G4]]) is simple.
Q [[G4]l/D([[GA]]) is isomorphic to Ker(id —A?) & (BF(A?) @ Zs).
@ [[G4]] is finitely presented.

Q [[G4]] has the Haagerup property.

v

When (X 4,04) is the full shift over n symbols, [[G 4]] is isomorphic to the
Higman-Thompson group V.

So, [[G 4]] for general SFT may be thought of as a generalization of the
Higman-Thompson group V.
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