# Continuous orbit equivalence of one-sided shifts of finite type 

Hiroki Matui<br>matui@math.s.chiba-u.ac.jp

## Chiba University

September 17, 2013
Classifying Structures for Operator Algebras and Dynamical Systems Aberystwyth University

## Main theorem

For an $N \times N$ matrix $A$ with entries in $\{0,1\}$, we consider the associated one-sided shift of finite type $\left(X_{A}, \sigma_{A}\right)$, where

$$
X_{A}=\left\{\left(x_{n}\right)_{n} \in\{1, \ldots, N\}^{\mathbb{N}} \mid A\left(x_{n}, x_{n+1}\right)=1 \quad \forall n \in \mathbb{N}\right\}
$$

## Theorem (K. Matsumoto and M)

For irreducible matrices $A$ and $B$, the following are equivalent.
(1) $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent.
(2) The étale groupoids $G_{A}$ and $G_{B}$ are isomorphic.
(3) There exists an isomorphism $\Psi: \mathcal{O}_{A} \rightarrow \mathcal{O}_{B}$ such that $\Psi\left(C\left(X_{A}\right)\right)=C\left(X_{B}\right)$.
(3) $\left(\mathrm{BF}\left(A^{t}\right), u_{A}\right) \cong\left(\mathrm{BF}\left(B^{t}\right), u_{B}\right)$ and $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$.

## Continuous orbit equivalence

Two one-sided shifts of finite type $\left(X_{A}, \sigma_{A}\right)$ and ( $X_{B}, \sigma_{B}$ ) are said to be continuously orbit equivalent if there exists a homeomorphism $h: X_{A} \rightarrow X_{B}$, continuous maps $k_{1}, l_{1}: X_{A} \rightarrow \mathbb{Z}_{+}$and $k_{2}, l_{2}: X_{B} \rightarrow \mathbb{Z}_{+}$ such that

$$
\sigma_{B}^{k_{1}(x)}\left(h\left(\sigma_{A}(x)\right)\right)=\sigma_{B}^{l_{1}(x)}(h(x)) \quad \forall x \in X_{A}
$$

and

$$
\sigma_{A}^{k_{2}(x)}\left(h^{-1}\left(\sigma_{B}(x)\right)\right)=\sigma_{A}^{l_{2}(x)}\left(h^{-1}(x)\right) \quad \forall x \in X_{B}
$$

For the two matrices

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

( $X_{A}, \sigma_{A}$ ) and ( $X_{B}, \sigma_{B}$ ) are continuously orbit equivalent, but not topologically conjugate.

## Étale groupoids

The étale groupoid $G_{A}$ for $\left(X_{A}, \sigma_{A}\right)$ is given by

$$
G_{A}=\left\{(x, n, y) \in X_{A} \times \mathbb{Z} \times X_{A} \mid \exists k, l \in \mathbb{Z}_{+}, n=k-l, \sigma_{A}^{k}(x)=\sigma_{A}^{l}(y)\right\}
$$

with

$$
\begin{gathered}
(x, n, y) \cdot\left(x^{\prime}, n^{\prime}, y^{\prime}\right)=\left(x, n+n^{\prime}, y^{\prime}\right) \quad \text { if } \quad y=x^{\prime} \\
(x, n, y)^{-1}=(y,-n, x) .
\end{gathered}
$$

The topology of $G_{A}$ is generated by the sets

$$
\left\{(x, k-l, y) \in G_{A} \mid x \in V, y \in W, \sigma_{A}^{k}(x)=\sigma_{A}^{l}(y)\right\}
$$

where $V, W \subset X_{A}$ are open and $k, l \in \mathbb{Z}_{+}$.
The unit space $\left(G_{A}\right)^{(0)}=\left\{(x, 0, x) \mid x \in X_{A}\right\}$ is identified with $X_{A}$.
$C_{r}^{*}\left(G_{A}\right)$ is equal to the Cuntz-Krieger algebra $\mathcal{O}_{A}$.

## Bowen-Franks group

Let $A$ be an $N \times N$ matrix with entries in $\{0,1\}$ (or $\mathbb{Z}_{+}$).
The Bowen-Franks group is

$$
\operatorname{BF}(A)=\mathbb{Z}^{N} /(\mathrm{id}-A) \mathbb{Z}^{N}
$$

The Bowen-Franks group is an invariant of flow equivalence for two-sided shifts of finite type (R. Bowen and J. Franks 1977).

The Bowen-Franks group is also related to the Cuntz-Krieger algebra $\mathcal{O}_{A}$. Namely, the Ext group of $\mathcal{O}_{A}$ is isomorphic to $\operatorname{BF}(A)$ (J. Cuntz and W. Krieger 1980), and $\left(K_{0}\left(\mathcal{O}_{A}\right),[1]\right)$ is isomorphic to $\left(\operatorname{BF}\left(A^{t}\right), u_{A}\right)$, where $u_{A} \in \operatorname{BF}\left(A^{t}\right)$ is the equivalence class of $(1,1, \ldots, 1) \in \mathbb{Z}^{N}$ (J. Cuntz 1981).

## Main theorem

## Theorem (K. Matsumoto and M)

For irreducible matrices $A$ and $B$, the following are equivalent.
(1) $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent.
(2) The étale groupoids $G_{A}$ and $G_{B}$ are isomorphic.
(3) There exists an isomorphism $\Psi: \mathcal{O}_{A} \rightarrow \mathcal{O}_{B}$ such that $\Psi\left(C\left(X_{A}\right)\right)=C\left(X_{B}\right)$.
(4) $\left(\mathrm{BF}\left(A^{t}\right), u_{A}\right) \cong\left(\mathrm{BF}\left(B^{t}\right), u_{B}\right)$ and $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$.
$(1) \Leftrightarrow(2)$ is easy.
$(2) \Rightarrow(3)$ is clear, and $(3) \Rightarrow(2)$ is due to J. Renault.
As mentioned before, $\left(K_{0}\left(\mathcal{O}_{A}\right),[1]\right) \cong\left(\mathrm{BF}\left(A^{t}\right), u_{A}\right)$. So, $\mathcal{O}_{A} \cong \mathcal{O}_{B}$ implies $\left(\operatorname{BF}\left(A^{t}\right), u_{A}\right) \cong\left(\operatorname{BF}\left(B^{t}\right), u_{B}\right)$.

## Flow equivalence

We denote the two-sided shift by $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$.
The suspension space of $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ is the quotient of $\bar{X}_{A} \times \mathbb{R}$ by the relations

$$
(x, t) \sim\left(\bar{\sigma}_{A}(x), t+1\right) \quad x \in \bar{X}_{A}, t \in \mathbb{R}
$$

$\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are said to be flow equivalent if there exists an orientation preserving homeomorphism between their suspension spaces.
B. Parry and D. Sullivan in 1975 showed that $\operatorname{det}(\mathrm{id}-A)$ is an invariant of flow equivalence.
J. Franks in 1984 proved that the pair of $\operatorname{BF}(A)$ and $\operatorname{det}(\mathrm{id}-A)$ is a complete invariant of flow equivalence.

Clearly, $\# \mathrm{BF}(A)<\infty \Longleftrightarrow \operatorname{det}(\mathrm{id}-A) \neq 0$, and in this case $\# \mathrm{BF}(A)=|\operatorname{det}(\mathrm{id}-A)|$.

## Proof of $(4) \Rightarrow(3)$

## Theorem (K. Matsumoto)

If $\left(\mathrm{BF}\left(A^{t}\right), u_{A}\right) \cong\left(\mathrm{BF}\left(B^{t}\right), u_{B}\right)$ and $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$, then $\left(\mathcal{O}_{A}, C\left(X_{A}\right)\right) \cong\left(\mathcal{O}_{B}, C\left(X_{B}\right)\right)$.

## Proof.

By the theorem of Franks, $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent. Then, by a result of Cuntz and Krieger, there exists an isomorphism $\Psi: \mathcal{O}_{A} \otimes \mathbb{K} \rightarrow \mathcal{O}_{B} \otimes \mathbb{K}$ such that $\Psi\left(C\left(X_{A}\right) \otimes \mathcal{C}\right)=C\left(X_{B}\right) \otimes \mathcal{C}$, where $\mathcal{C} \subset \mathbb{K}$ is the abelian subalgebra of diagonal operators.
Since $\left(\mathrm{BF}\left(A^{t}\right), u_{A}\right) \cong\left(\mathrm{BF}\left(B^{t}\right), u_{B}\right)$, thanks to a theorem of D . Huang, we may further assume $K_{0}(\Psi)\left(u_{A}\right)=u_{B}$.
Thus $K_{0}(\Psi)\left(\left[1_{\mathcal{O}_{A}} \otimes e\right]\right)=\left[1_{\mathcal{O}_{B}} \otimes e\right]$, where $e \in \mathbb{K}$ is a minimal projection. Hence we get $\left(\mathcal{O}_{A}, C\left(X_{A}\right)\right) \cong\left(\mathcal{O}_{B}, C\left(X_{B}\right)\right)$.

## Main theorem

## Theorem (K. Matsumoto and M)

For irreducible matrices $A$ and $B$, the following are equivalent.
(1) $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent.
(2) The étale groupoids $G_{A}$ and $G_{B}$ are isomorphic.
(3) There exists an isomorphism $\Psi: \mathcal{O}_{A} \rightarrow \mathcal{O}_{B}$ such that

$$
\Psi\left(C\left(X_{A}\right)\right)=C\left(X_{B}\right)
$$

(4) $\left(\operatorname{BF}\left(A^{t}\right), u_{A}\right) \cong\left(\mathrm{BF}\left(B^{t}\right), u_{B}\right)$ and $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$.

It remains for us to show that (1) or (2) or (3) implies $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\operatorname{id}-B)$.

To this end, it suffices to show that $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent, because $\operatorname{det}(\mathrm{id}-A)$ is an invariant for flow equivalence.

## Boyle-Handelman's theorem

For a two-sided $\operatorname{SFT}\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$, we let

$$
\begin{gathered}
\bar{H}^{A}=C\left(\bar{X}_{A}, \mathbb{Z}\right) /\left\{\xi-\xi \circ \bar{\sigma}_{A} \mid \xi \in C\left(\bar{X}_{A}, \mathbb{Z}\right)\right\}, \\
\bar{H}_{+}^{A}=\left\{[\xi] \in \bar{H}^{A} \mid \xi(x) \geq 0 \quad \forall x \in \bar{X}_{A}\right\} .
\end{gathered}
$$

$\left(\bar{H}^{A}, \bar{H}_{+}^{A}\right)$ is called the ordered cohomology group.

## Theorem (M. Boyle and D. Handelman 1996)

For irreducible matrices $A$ and $B$, the following are equivalent.
(1) $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent.
(2) $\left(\bar{H}^{A}, \bar{H}_{+}^{A}\right) \cong\left(\bar{H}^{B}, \bar{H}_{+}^{B}\right)$.

## 2-sided versus 1 -sided

For a one-sided $\operatorname{SFT}\left(X_{A}, \sigma_{A}\right)$, we let

$$
\begin{gathered}
H^{A}=C\left(X_{A}, \mathbb{Z}\right) /\left\{\xi-\xi \circ \sigma_{A} \mid \xi \in C\left(X_{A}, \mathbb{Z}\right)\right\}, \\
H_{+}^{A}=\left\{[\xi] \in H^{A} \mid \xi(x) \geq 0 \quad \forall x \in X_{A}\right\} .
\end{gathered}
$$

## Lemma

The canonical projection $\rho: \bar{X}_{A} \rightarrow X_{A}$ induces an isomorphism $\tilde{\rho}$ from $\left(H^{A}, H_{+}^{A}\right)$ to $\left(\bar{H}^{A}, \bar{H}_{+}^{A}\right)$.

Let us see the surjectivity of $\tilde{\rho}$.
Take $\zeta \in C\left(\bar{X}_{A}, \mathbb{Z}\right)$. There exists $n \in \mathbb{N}$ such that $\zeta(x)$ depends only on finitely many coordinates $x_{-n}, \ldots, x_{0}, \ldots, x_{n}$ of $x \in \bar{X}_{A}$. Hence there exists $\xi \in C\left(X_{A}, \mathbb{Z}\right)$ such that $\zeta \circ \bar{\sigma}_{A}^{n+1}=\xi \circ \rho$, and so $\tilde{\rho}([\xi])=[\xi \circ \rho]=\left[\zeta \circ \bar{\sigma}_{A}^{n+1}\right]=[\zeta]$ in $\bar{H}^{A}$.

## Cohomology of groupoid (1/2)

For an étale groupoid $G$, we let $\operatorname{Hom}(G, \mathbb{Z})$ be the set of continuous homomorphisms $\omega: G \rightarrow \mathbb{Z}$. For $\xi \in C\left(G^{(0)}, \mathbb{Z}\right)$, we can define $\partial(\xi) \in \operatorname{Hom}(G, \mathbb{Z})$ by $\partial(\xi)=\xi(r(g))-\xi(s(g))$.
The cohomology group $H^{1}(G)=H^{1}(G, \mathbb{Z})$ is the quotient of $\operatorname{Hom}(G, \mathbb{Z})$ by $\left\{\partial(\xi) \mid \xi \in C\left(G^{(0)}, \mathbb{Z}\right)\right\}$.

For the SFT groupoid $G_{A}$, it is known that $H^{1}\left(G_{A}\right)$ is isomorphic to $H^{A}$. The isomorphism is given as follows. Let $\omega \in \operatorname{Hom}(G, \mathbb{Z})$. For every $x \in X_{A}$, we consider an element $\left(x, 1, \sigma_{A}(x)\right) \in G_{A}$ and define $\xi \in C\left(X_{A}, \mathbb{Z}\right)$ by

$$
\xi(x)=\omega\left(\left(x, 1, \sigma_{A}(x)\right)\right) .
$$

Then $\omega \mapsto \xi$ gives rise to an isomorphism $\Phi: H^{1}\left(G_{A}\right) \rightarrow H^{A}$.
We have to characterize the positive cone of $H^{1}\left(G_{A}\right) \cong H^{A}$ in terms of groupoids.

## Cohomology of groupoid (2/2)

Let $g \in G$ be such that $r(g)=s(g)$ and let $U \subset G$ be a compact open $G$-set containing $g$. Then $\pi_{U}=(r \mid U) \circ(s \mid U)^{-1}$ is a homeomorphism from $s(U)$ to $r(U)$.
We say that $g$ is attracting if there exists $U$ such that $r(U) \subset s(U)$ and

$$
\lim _{n \rightarrow+\infty}\left(\pi_{U}\right)^{n}(y)=r(g) \quad \forall y \in s(U)
$$

## Lemma

There exists an isomorphism $\Phi: H^{1}\left(G_{A}\right) \rightarrow H^{A}$ such that

$$
\Phi([\omega]) \in H_{+}^{A} \Longleftrightarrow \omega(g) \geq 0 \quad \forall \text { attracting } g \in G_{A}
$$

## Proof of $G_{A} \cong G_{B} \Rightarrow \operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$

## Theorem (K. Matsumoto and M)

If irreducible one-sided $\operatorname{SFT}\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent, then the two-sided $\operatorname{SFT}\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent. In particular, $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$.

## Proof.

There exists an isomorphism $\varphi: G_{A} \rightarrow G_{B}$. For any $g \in G_{A}, g$ is attracting iff $\varphi(g)$ is attracting. Hence we get $\left(H^{A}, H_{+}^{A}\right) \cong\left(H^{B}, H_{+}^{B}\right)$. This implies $\left(\bar{H}^{A}, \bar{H}_{+}^{A}\right) \cong\left(\bar{H}^{B}, \bar{H}_{+}^{B}\right)$.
By the Boyle-Handelman's theorem, we can conclude that $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and ( $\bar{X}_{B}, \bar{\sigma}_{B}$ ) are flow equivalent.
By the Parry-Sullivan's theorem, we have $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$.
This completes the proof of the main theorem.

## Example

For the matrices

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right], \quad C=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

we have

$$
\begin{gathered}
\operatorname{BF}\left(A^{t}\right)=\operatorname{BF}\left(B^{t}\right)=\mathrm{BF}\left(C^{t}\right)=0 \\
\operatorname{det}\left(\mathrm{id}-A^{t}\right)=-1, \quad \operatorname{det}\left(\mathrm{id}-B^{t}\right)=-1, \quad \operatorname{det}\left(\mathrm{id}-C^{t}\right)=1
\end{gathered}
$$

So we have $\mathcal{O}_{2} \cong \mathcal{O}_{A} \cong \mathcal{O}_{B} \cong \mathcal{O}_{C}$,

$$
\left(\mathcal{O}_{A}, C\left(X_{A}\right)\right) \cong\left(\mathcal{O}_{B}, C\left(X_{B}\right)\right), \quad\left(\mathcal{O}_{A}, C\left(X_{A}\right)\right) \not \approx\left(\mathcal{O}_{C}, C\left(X_{C}\right)\right)
$$

## Stable isomorphism (1/2)

Let $\mathcal{C} \cong c_{0}(\mathbb{Z})$ be the maximal abelian subalgebra of $\mathbb{K}=\mathbb{K}\left(\ell^{2}(\mathbb{Z})\right)$ consisting of diagonal operators.

## Corollary

Let $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ be irreducible two-sided SFT.
The following are equivalent.
(1) $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent.
(2) There exists an isomorphism $\Psi: \mathcal{O}_{A} \otimes \mathbb{K} \rightarrow \mathcal{O}_{B} \otimes \mathbb{K}$ such that $\Psi\left(C\left(X_{A}\right) \otimes \mathcal{C}\right)=C\left(X_{B}\right) \otimes \mathcal{C}$.
$(1) \Rightarrow(2)$ is due to Cuntz and Krieger. We prove $(2) \Rightarrow(1)$.

## Stable isomorphism (2/2)

Let $\Psi: \mathcal{O}_{A} \otimes \mathbb{K} \rightarrow \mathcal{O}_{B} \otimes \mathbb{K}$ be an isomorphism such that $\Psi\left(C\left(X_{A}\right) \otimes \mathcal{C}\right)=C\left(X_{B}\right) \otimes \mathcal{C}$.
$K_{0}(\Psi)$ gives an isomorphism $\operatorname{BF}\left(A^{t}\right) \rightarrow \mathrm{BF}\left(B^{t}\right)$. Let $v=K_{0}(\Psi)\left(u_{A}\right)$.
There exists an irreducible matrix $C$ such that
$\left(\mathrm{BF}\left(B^{t}\right), v\right) \cong\left(\mathrm{BF}\left(C^{t}\right), u_{C}\right)$ and $\operatorname{det}(\mathrm{id}-B)=\operatorname{det}(\mathrm{id}-C)$. Then $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ and $\left(\bar{X}_{C}, \bar{\sigma}_{C}\right)$ are flow equivalent. Moreover, by Huang's theorem, there exists an isomorphism $\Phi: \mathcal{O}_{B} \otimes \mathbb{K} \rightarrow \mathcal{O}_{C} \otimes \mathbb{K}$ such that $\Phi\left(C\left(X_{B}\right) \otimes \mathcal{C}\right)=C\left(X_{C}\right) \otimes \mathcal{C}$ and $K_{0}(\Phi)(v)=u_{C}$.

It follows that $\Phi \circ \Psi$ is an isomorphism $\mathcal{O}_{A} \otimes \mathbb{K} \rightarrow \mathcal{O}_{C} \otimes \mathbb{K}$ such that $(\Phi \circ \Psi)\left(C\left(X_{A}\right) \otimes \mathcal{C}\right)=C\left(X_{C}\right) \otimes \mathcal{C}$ and $K_{0}(\Phi \circ \Psi)\left(u_{A}\right)=u_{C}$. Hence we get $\left(\mathcal{O}_{A}, C\left(X_{A}\right)\right) \cong\left(\mathcal{O}_{C}, C\left(X_{C}\right)\right)$. By the main theorem, we have $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-C)$, which equals $\operatorname{det}(\mathrm{id}-B)$.
Therefore $\left(\bar{X}_{A}, \bar{\sigma}_{A}\right)$ and $\left(\bar{X}_{B}, \bar{\sigma}_{B}\right)$ are flow equivalent.

## Topological full groups (1/2)

Let $G$ be an étale groupoid whose unit space $G^{(0)}$ is a Cantor set. We call

$$
[[G]]=\left\{(r \mid U) \circ(s \mid U)^{-1} \in \operatorname{Homeo}\left(G^{(0)}\right) \mid U \subset G \text { is compact and open }\right\}
$$

the topological full group of $G$.

## Corollary

For irreducible matrices $A$ and $B$, the following are equivalent.
(1) The étale groupoids $G_{A}$ and $G_{B}$ are isomorphic.
(2) $\left(\operatorname{BF}\left(A^{t}\right), u_{A}\right) \cong\left(\mathrm{BF}\left(B^{t}\right), u_{B}\right)$ and $\operatorname{det}(\mathrm{id}-A)=\operatorname{det}(\mathrm{id}-B)$.
(3) $\left[\left[G_{A}\right]\right] \cong\left[\left[G_{B}\right]\right]$.
(1) $D\left(\left[\left[G_{A}\right]\right]\right) \cong D\left(\left[\left[G_{B}\right]\right]\right)$.

## Topological full groups (2/2)

## Theorem

Let $G_{A}$ be the étale groupoid arising from an irreducible one-sided SFT.
(1) $D\left(\left[\left[G_{A}\right]\right]\right)$ is simple.
(2) $\left[\left[G_{A}\right]\right] / D\left(\left[\left[G_{A}\right]\right]\right)$ is isomorphic to $\operatorname{Ker}\left(\mathrm{id}-A^{t}\right) \oplus\left(\mathrm{BF}\left(A^{t}\right) \otimes \mathbb{Z}_{2}\right)$.
(3) $\left[\left[G_{A}\right]\right]$ is finitely presented.
(4) $\left[\left[G_{A}\right]\right]$ has the Haagerup property.

When $\left(X_{A}, \sigma_{A}\right)$ is the full shift over $n$ symbols, $\left[\left[G_{A}\right]\right]$ is isomorphic to the Higman-Thompson group $V_{n}$.

So, $\left[\left[G_{A}\right]\right]$ for general SFT may be thought of as a generalization of the Higman-Thompson group $V_{n}$.

