Minimal dynamical systems and simple C^* -algebras

Hiroki Matui matui@math.s.chiba-u.ac.jp

Chiba University

July 2, 2013 The Asian Mathematical Conference 2013 Busan, Korea

Crossed product C^* -algebras

Throughout this talk, X is a compact, Hausdorff, metrizable, infinite space. Let $\alpha \in \text{Homeo}(X)$. (X, α) is a topological dynamical system.

Consider the automorphism of C(X) defined by $f \mapsto f \circ \alpha^{-1}$. We let $C^*(X, \alpha)$ denote the crossed product C^* -algebra of C(X) by this automorphism. $C^*(X, \alpha)$ is the universal C^* -algebra generated by C(X) and a unitary λ subject to the relation

$$\lambda f \lambda^* = f \circ \alpha^{-1} \quad \forall f \in C(X).$$

 $C^*(X, \alpha)$ contains a dense subalgebra

$$\left\{\sum_{i=-N}^{N} f_i \lambda^i \mid N \in \mathbb{N}, f_i \in C(X)\right\}$$

consisting of 'Laurent polynomials' with coefficients in C(X).

 α is said to be minimal if $\{\alpha^n(x) \in X \mid n \in \mathbb{Z}\}$ is dense for any $x \in X$, or equivalently if α has no non-trivial closed invariant sets.

Theorem

 C^* -algebra $C^*(X, \alpha)$ is simple if and only if α is minimal.

It is an important (and difficult) problem to classify those C^* -algebras.

For an $\alpha\text{-invariant}$ probability measure μ on X,

$$C^*(X,\alpha) \ni \sum f_i \lambda^i \mapsto \int_X f_0 \, d\mu \in \mathbb{C}$$

gives rise to a tracial state $\tau_{\mu}: C^*(X, \alpha) \to \mathbb{C}$, i.e. $\tau_{\mu}(xy) = \tau_{\mu}(yx)$.

The correspondence $\mu \mapsto \tau_{\mu}$ gives a bijection between the space $M(X, \alpha)$ of α -invariant probability measures on X and the space $T(C^*(X, \alpha))$ of tracial states on $C^*(X, \alpha)$.

We say that (X, α) is uniquely ergodic if there exists a unique α -invariant probability measure on X.

Let X be a Cantor set, i.e. X is a compact, metrizable, totally disconnected (clopen sets generate the topology) space with no isolated points.

Let $\alpha \in \operatorname{Homeo}(X)$ be a minimal homeomorphism.

Theorem (I. F. Putnam 1990)

 $C^*(X, \alpha)$ is a unital simple AT algebra with real rank zero.

Fix $y \in X$. Let A_y be the C^* -subalgebra of $C^*(X, \alpha)$ generated by C(X) and $\{\lambda f \mid f \in C(X), f(y) = 0\}.$

Theorem (I. F. Putnam 1989)

 A_y is a unital simple AF algebra.

Classification of AF algebras

A finite dimensional C^* -algebra F is a direct sum of matrix algebras:

$$F = M_{n_1} \oplus M_{n_2} \oplus \cdots \oplus M_{n_k}.$$

An inductive limit of finite dimensional C^* -algebras

$\varinjlim \ F_j$

is called an AF algebra. The UHF algebra

$$M_{n^{\infty}} = M_n \otimes M_n \otimes M_n \otimes \dots$$

is a typical AF algebra.

Theorem (G. Elliott 1976)

The class of unital AF algebras is completely classified by the K-theory invariant $(K_0(A), K_0(A)^+, [1_A])$.

 K_0 of $M_{n^{\infty}}$ is isomorphic to $\mathbb{Z}[1/n] = \{k/n^l \in \mathbb{Q} \mid k \in \mathbb{Z}, l \in \mathbb{N}\}.$

A circle algebra means a C^* -algebra of the form $F \otimes C(\mathbb{T})$, where F is a finite dimensional C^* -algebra. An inductive limit of circle algebras

$$\varinjlim F_j \otimes C(\mathbb{T})$$

is called an AT algebra.

Theorem (G. Elliott 1993)

The class of unital simple AT algebras with real rank zero is completely classified by the K-theory invariant $(K_0(A), K_0(A)^+, [1_A], K_1(A))$.

A C^* -algebra is of real rank zero if every hereditary subalgebra has an approximate unit consisting of projections.

For an automorphism α of a $C^*\mbox{-algebra}\ A$ we have:

When (X, α) is a Cantor minimal Z-system, $K_0(C(X)) \cong C(X, \mathbb{Z})$ and $K_1(C(X)) = 0$, and so

$$K_0(C^*(X,\alpha)) = \operatorname{Coker}(\operatorname{id} - K_0(\alpha))$$

$$\cong C(X,\mathbb{Z})/\{f - f \circ \alpha \mid f \in C(X,\mathbb{Z})\}$$

$$K_1(C^*(X,\alpha)) = \operatorname{Ker}(\operatorname{id} - K_0(\alpha)) \cong \mathbb{Z}.$$

Orbit equivalence for Cantor systems (1/2)

 (X, α) and (Y, β) are said to be orbit equivalent if there exists a homeomorphism $h: X \to Y$ such that $h(\operatorname{Orb}_{\alpha}(x)) = \operatorname{Orb}_{\beta}(h(x))$ holds for all $x \in X$.

Theorem (T. Giordano, I. F. Putnam and C. F. Skau 1995)

For Cantor minimal \mathbb{Z} -systems (X, α) and (Y, β) , T.F.A.E.

•
$$C^*(X, \alpha)$$
 is isomorphic to $C^*(Y, \beta)$.

- **(** X, α) and (Y, β) are strongly orbit equivalent.

Theorem (T. Giordano, I. F. Putnam and C. F. Skau 1995)

For Cantor minimal \mathbb{Z} -systems (X, α) and (Y, β) , T.F.A.E.

- **1** (X, α) and (Y, β) are orbit equivalent.
- **2** \exists homeomorphism $h: X \to Y$ such that $h_*(M(X, \alpha)) = M(Y, \beta)$.

Let $\alpha : \mathbb{Z}^N \curvearrowright X$ be a free minimal action of \mathbb{Z}^N on a Cantor set X. Classification of $C^*(X, \alpha) = C(X) \rtimes_{\alpha} \mathbb{Z}^N$ is not yet obtained so far.

But, classification up to orbit equivalence is known.

Theorem (T. Giordano, M, I. F. Putnam and C. F. Skau 2010)

For minimal actions $\alpha : \mathbb{Z}^N \curvearrowright X$ and $\beta : \mathbb{Z}^M \curvearrowright Y$ on Cantor sets, the following are equivalent.

- **1** (X, α) and (Y, β) are orbit equivalent.
- **2** \exists homeomorphism $h: X \to Y$ such that $h_*(M(X, \alpha)) = M(Y, \beta)$.

Let $X = \mathbb{T} = \mathbb{R}/\mathbb{Z}$. Take an irrational number $\theta \in (0, 1)$. Let $\alpha \in \operatorname{Homeo}(X)$ be the translation by θ , i.e. $\alpha(t) = t + \theta$. It is easy to see that α is minimal, thus $C^*(X, \alpha)$ is simple. $C^*(X, \alpha)$ is called the irrational rotation algebra.

Theorem (G. Elliott and D. Evans 1993)

 $C^*(X, \alpha)$ is a unital simple AT algebra with real rank zero.

K-groups of $C^*(X, \alpha)$ are $K_0(C^*(X, \alpha)) \cong \mathbb{Z} \oplus \mathbb{Z}$,

$$K_0(C^*(X,\alpha))^+ \cong \{(a,b) \in \mathbb{Z} \oplus \mathbb{Z} \mid a+b\theta \ge 0\}$$

and $K_1(C^*(X, \alpha)) \cong \mathbb{Z} \oplus \mathbb{Z}$.

A unital separable simple C^* -algebra A has tracial rank zero if for every finite subset $F \subset A$, $\varepsilon > 0$ and every nonzero positive $c \in A$, there exists a finite dimensional subalgebra $B \subset A$ such that

• $1_A - 1_B$ is equivalent to a projection in \overline{cAc} .

•
$$||[a, 1_B]|| < \varepsilon$$
 for every $a \in F$.

• $\operatorname{dist}(1_B a 1_B, B) < \varepsilon$ for every $a \in F$.

Theorem (H. Lin 2004)

The class of unital separable simple nuclear C^* -algebras with tracial rank zero satisfying the UCT is completely classified by the K-theory invariant $(K_0(A), K_0(A)^+, [1_A], K_1(A))$.

Theorem (H. Lin and N. C. Phillips 2010)

Suppose that X has finite covering dimension and α is minimal. If the image of $K_0(C^*(X, \alpha))$ is dense in $\operatorname{Aff}(T(C^*(X, \alpha)))$, then $C^*(X, \alpha)$ has tracial rank zero.

In general, there exists a homomorphism $D_A: K_0(A) \to \operatorname{Aff}(T(A))$ defined by

$$D_A([p])(\tau) = (\tau \otimes \operatorname{Tr})(p)$$

for a projection $p \in A \otimes M_n$ and $\tau \in T(A)$.

For a large class of C^* -algebras, the image of D_A is dense in Aff(T(A)) if and only if A has real rank zero.

Theorem (A. Connes 1981)

Let X be a compact smooth manifold with $H^1(X, \mathbb{Z}) = 0$ and let α be a minimal diffeomorphism of X. Then $C^*(X, \alpha)$ has no non-trivial projections. In particular, $C^*(X, \alpha)$ does not have real rank zero.

A sphere S^n admits a minimal (uniquely ergodic) diffeomorphism $\alpha \in \operatorname{Homeo}(S^n)$ if and only if n is odd (A. Fathi and M. Herman 1977). $H^1(S^n, \mathbb{Z}) = 0$ for $n \geq 2$.

So, when n is odd and greater than 2, $C^*(S^n,\alpha)$ is not covered by Lin-Phillips' theorem.

We let \mathcal{Z} denote the Jiang-Su algebra, which is unital simple separable nuclear, infinite-dimensional, has a unique trace and $K_*(\mathcal{Z}) \cong K_*(\mathbb{C})$. \mathcal{Z} has no non-trivial projections.

Let ${\cal C}$ denote the class of unital separable simple nuclear $C^*\mbox{-algebras}\;A$ such that

- A satisfies the UCT,
- A is \mathcal{Z} -stable, i.e. $A \cong A \otimes \mathcal{Z}$,
- $A \otimes U$ has tracial rank zero for a UHF algebra U.

Note that A may not be of real rank zero.

Theorem (W. Winter, H. Lin and Z. Niu 2008)

The class \mathcal{C} is completely classified by the *K*-theory invariant $(K_0(A), K_0(A)^+, [1_A], K_1(A)).$

Theorem (K. Strung and W. Winter 2010)

Suppose that projections in $C^*(X, \alpha)$ separate tracial states (i.e. if $\tau_1 \neq \tau_2$, then \exists projection p such that $\tau_1(p) \neq \tau_2(p)$). Then $C^*(X, \alpha) \otimes U$ has tracial rank zero for any UHF algebra U.

Theorem (A. Toms and W. Winter 2013)

If X has finite covering dimension, then $C^*(X, \alpha)$ is Z-stable.

In particular, when $\alpha \in \operatorname{Homeo}(S^n)$ is minimal and uniquely ergodic, $C^*(S^n, \alpha)$ belongs to \mathcal{C} .

Theorem (M and Y. Sato 2013)

Let A be a unital separate simple nuclear C^* -algebra. Suppose that A has a unique trace. If A has strict comparison and is quasidiagonal, then A is \mathcal{Z} -stable and $A \otimes U$ has tracial rank zero for any UHF algebra U. In particular, if A satisfies the UCT, then A is in \mathcal{C} .

Let $\alpha : \mathbb{Z}^N \curvearrowright X$ be a free minimal action of \mathbb{Z}^N on a Cantor set X. Consider $A = C^*(X, \alpha) = C(X) \rtimes_{\alpha} \mathbb{Z}^N$. Assume that α is uniquely ergodic (hence A has a unique trace). A has strict comparion (N. C. Phillips 2005). A is AF embeddable (H. Lin 2008), and hence is quasidiagonal.

So, $A = C^*(X, \alpha)$ belongs to \mathcal{C} .