Recent progress in classification of simple C^* -algebras

Hiroki Matui matui@math.s.chiba-u.ac.jp

Chiba University / University of Copenhagen

June 12, 2013 Nordic Congress of Mathematicians Lund University In 1990's, G. A. Elliott initiated a program to classify nuclear $C^{\ast}\mbox{-algebras}$ via $K\mbox{-}{\rm groups}.$

Goal

For unital separable simple nuclear C^* -algebras A and B,

$$A \cong B \quad \iff \quad K_*(A) \cong K_*(B).$$

But ...

 $K_*(A)$ is always isomorphic to $K_*(A \otimes \mathcal{Z})$, while there exists A such that $A \not\cong A \otimes \mathcal{Z}$.

 \mathcal{Z} is the Jiang-Su algebra, which is unital simple separable nuclear, infinite-dimensional, has a unique tracial state and $K_*(\mathcal{Z}) \cong K_*(\mathbb{C})$.

 \mathcal{Z} absorbs \mathcal{Z} tensorially, i.e. $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$.

We must assume that A is \mathbb{Z} -stable, i.e. $A \cong A \otimes \mathbb{Z}$.

Two other regularity properties are known: strict comparison and finite decomposition rank (for stably finite algebras).

A is said to have strict comparison if for any positive elements $a, b \in A \otimes M_m$,

$$\lim_{n \to \infty} (\tau \otimes \operatorname{Tr}_m)(a^{1/n}) < \lim_{n \to \infty} (\tau \otimes \operatorname{Tr}_m)(b^{1/n}) \quad \forall \tau \in QT(A)$$

implies $\exists (v_n)_n$ in $A \otimes M_m$ such that $v_n b v_n^* \to a$.

Unlike the case of von-Neumann algebras, we have to consider comparison property not only for projections but also for positive elements.

A has decomposition rank at most d if for any finite subset $F \subset A$ and $\varepsilon > 0$ we can find completely positive contractions

$$A \xrightarrow{\varphi} \bigoplus_{i=0}^{d} E_i \xrightarrow{\psi} A$$

such that $\dim E_i < \infty$, $\|\psi(\varphi(a)) - a\| < \varepsilon$ for $a \in F$ and $\psi|E_i$ is order zero, i.e.

$$x, y \in E_i, \ xy = 0 \implies \psi(x)\psi(y) = 0.$$

Decomposition rank is a noncommutative analogue of ordinary covering dimension for topological spaces.

If A has finite decomposition rank, then A is quasidiagonal (E. Kirchberg and W. Winter 2004).

It is then natural to ask whether these regularity properties are equivalent to each other (Toms-Winter conjecture).

For a unital simple separable exact finite C^* -algebra, *Z*-stability implies strict comparison (M. Rørdam 2004).

For a unital simple separable nuclear finite C^* -algebra A such that T(A) has a compact extreme boundary with finite covering dimension, strict comparison implies \mathcal{Z} -stability (Kirchberg-Rørdam, Sato, Toms-White-Winter 2012).

For a unital simple separable nuclear finite C^* -algebra, finite decomposition rank implies \mathbb{Z} -stability (W. Winter 2010).

Theorem (M-Sato 2013)

Let A be a unital separable simple nuclear C^* -algebra with a unique tracial state. If A is quasidiagonal and has strict comparison, then A has decomposition rank at most three.

Corollary

Let A be a unital separable simple nuclear C^* -algebra with a unique tracial state. The following are equivalent.

- A has finite decomposition rank.
- **2** A is quasidiagonal and \mathcal{Z} -stable.
- A is quasidiagonal and has strict comparison.

Theorem (M-Sato 2013)

Let A be a unital separable simple nuclear C^* -algebra with a unique tracial state. If A is quasidiagonal, then $A \otimes U$ has tracial rank zero for any UHF algebra U.

A unital separable simple C^* -algebra A has tracial rank zero if for any finite subset $F\subset A$ and $\varepsilon>0$ there exists a finite dimensional subalgebra $B\subset A$ such that

•
$$\tau(1_A - 1_B) < \varepsilon$$
 for every $\tau \in T(A)$.

• $||[a, 1_B]|| < \varepsilon$ for every $a \in F$.

• $\operatorname{dist}(1_B a 1_B, B) < \varepsilon$ for every $a \in F$.

H. Lin proved that nuclear C^* -algebras with tracial rank zero satisfying the UCT are classified by K-groups.

Let C denote the class of all unital separable simple nuclear C^* -algebras A which has a unique tracial state, is quasidiagonal, and has strict comparison.

Let C_{UCT} be the subclass of C consisting of A which satisfies the UCT.

Corollary

For
$$A, B \in \mathcal{C}_{\mathsf{UCT}}$$
, we have $A \cong B \iff K_*(A) \cong K_*(B)$.

Proof.

For $A \in C$, A is Z-stable, and $A \otimes U$ has tracial rank zero for any UHF algebra U. Then the conclusion follows from the classification theorem of Lin-Niu, Winter 2008.

Let X be a Cantor set and let $\alpha : \mathbb{Z}^N \curvearrowright X$ be an action of \mathbb{Z}^N on X by homeomorphisms. We say that α is free if α_n has no fixed points for any $n \neq 0$. We say that α is minimal if the orbit $\{\alpha_n(x) \mid n \in \mathbb{Z}^N\}$ of x is dense in X for every $x \in X$.

$$\label{eq:alpha} \begin{split} \alpha: \mathbb{Z}^N \curvearrowright X \text{ induces } \bar{\alpha}: \mathbb{Z}^N \curvearrowright C(X) \text{ by } \bar{\alpha}_n(f) = f \circ \alpha_n^{-1}. \end{split}$$
 When α is free and minimal, $C(X) \rtimes_{\bar{\alpha}} \mathbb{Z}^N$ is simple.

Theorem (I. F. Putnam 1990)

When $\alpha : \mathbb{Z} \curvearrowright X$ is free and minimal, the C^* -algebra $C(X) \rtimes_{\bar{\alpha}} \mathbb{Z}$ is a unital simple AT-algebra with real rank zero. In particular, it is classifiable by K-groups.

Theorem

Let $\alpha : \mathbb{Z}^N \curvearrowright X$ be a free minimal action on a Cantor set X. If α is uniquely ergodic, then $C(X) \rtimes_{\bar{\alpha}} \mathbb{Z}^N$ is in the class $\mathcal{C}_{\mathsf{UCT}}$.

Proof.

Clearly $A = C(X) \rtimes_{\bar{\alpha}} \mathbb{Z}^N$ is unital, separable, simple, nuclear and satisfies the UCT.

Since α is uniquely ergodic, A has a unique tracial state.

A is AF-embeddable (H. Lin 2008), and hence is quasidiagonal.

A is of real rank zero and has strict comparison for projections

(N. C. Phillips 2005), and hence has strict comparison.

Therefore A is in C_{UCT} .

Let A be a unital, separable, simple, nuclear C^* -algebra with a unique tracial state τ . The weak closure $\pi_{\tau}(A)''$ with respect to τ is the hyperfinite II₁-factor.

Let $\alpha : \Gamma \curvearrowright A$ be an action of a discrete group Γ .

 $\alpha: \Gamma \curvearrowright A$ gives rise to $\bar{\alpha}: \Gamma \curvearrowright \pi_{\tau}(A)''$.

We say that α is strongly outer if $\bar{\alpha}$ is outer. In this case, $A \rtimes_{\alpha} \Gamma$ has a unique trace.

Theorem (M-Sato 2012)

Suppose that A is \mathbb{Z} -stable and that Γ is elementary amenable. If $\alpha : \Gamma \curvearrowright A$ is strongly outer, then $A \rtimes_{\alpha} \Gamma$ is \mathbb{Z} -stable.

Theorem

Let $A \in \mathcal{C}_{\mathsf{UCT}}$ and let $\alpha : \mathbb{Z} \curvearrowright A$ be a strongly outer action. Then $A \rtimes_{\alpha} \mathbb{Z}$ is again in \mathcal{C}_{UCT} .

Proof.

Clearly, $A \rtimes_{\alpha} \mathbb{Z}$ is unital, separable, simple, nuclear and satisfies the UCT. As mentioned before, it has a unique trace, and is \mathcal{Z} -stable (and hence has strict comparison).

Let Q be the universal UHF algebra. Then $A \otimes Q$ is a unital simple AT algebra with real rank zero. It follows that

 $(A \otimes Q) \rtimes_{\alpha \otimes \mathrm{id}} \mathbb{Z} \cong (A \rtimes_{\alpha} \mathbb{Z}) \otimes Q$ is AF-embeddable (M 2002). Thus $A \rtimes_{\alpha} \mathbb{Z}$ is AF-embeddable, and hence is quasidiagonal.

Therefore $A \rtimes_{\alpha} \mathbb{Z}$ is in \mathcal{C}_{UCT} .

Let Γ be a finite group.

Theorem

Let $A \in C$ and let $\alpha : \Gamma \frown A$ be a strongly outer action. Then $A \rtimes_{\alpha} \Gamma$ is again in C.

Proof.

Clearly, $A \rtimes_{\alpha} \Gamma$ is unital, separable, simple, nuclear. As mentioned before, it has a unique trace, and is \mathcal{Z} -stable (and hence has strict comparison). Since Γ is finite, it is easy to see that $A \rtimes_{\alpha} \Gamma$ is embeddable into $A \otimes M_{|\Gamma|}$, and hence is quasidiagonal. Therefore $A \rtimes_{\alpha} \Gamma$ is in \mathcal{C} . We consider an action $\alpha : \mathbb{R} \frown A$ which is strongly continuous, i.e. $t \mapsto \alpha_t(a)$ is continuous for every $a \in A$. $\alpha : \mathbb{R} \frown A$ is said to be approximately inner if there exists a sequence $(h_n)_n$ of self-adjoint elements in A such that

$$\max_{|t| \le 1} \|e^{ith_n} a e^{-ith_n} - \alpha_t(a)\| \to 0$$

as $n \to \infty$ for all $a \in A$.

Conjecture (R. Powers and S. Sakai 1975)

Every strongly continuous action $\alpha : \mathbb{R} \frown A$ on a UHF algebra A is approximately inner.

Why is it important?

See "Operator Algebras and Dynamical Systems" by S. Sakai.

- C^* -dynamical systems provide a framework for understanding quantum statistical mechanics.
- For quantum lattice systems, the dynamics is given by approximately inner actions $\alpha : \mathbb{R} \curvearrowright A$ on UHF algebras.
- An approximately inner action always has a ground state, and also has a KMS state at each inverse temperatures provided that A has a tracial state (R. Powers and S. Sakai 1975).

Here we shall present a counter-example to the conjecture by using our main result. To this end, it suffices to construct an action $\alpha : \mathbb{T} \curvearrowright A$ on a UHF algebra A such that the crossed product $A \rtimes_{\alpha} \mathbb{T}$ is simple.

Kishimoto's construction

A. Kishimoto obtained a counter-example to the AF version of the Powers-Sakai conjecture in 2003.

Take a unital simple AF algebra A with a unique trace τ and two projections $p, q \in A$ such that $\tau(p) = \tau(q)$ but $[p] \neq [q]$ in $K_0(A)$. Let B be the inductive limit of $A^{\otimes 2n}$ with the connecting map

$$A^{\otimes 2n} \ni x \mapsto p \otimes x \otimes q \in A^{\otimes (2n+2)}$$

Then B is a non-unital simple AF algebra.

Let $\sigma: B \to B$ be the shift automorphism. Kishimoto proved that $B \rtimes_{\sigma} \mathbb{Z}$ is a non-unital simple AF algebra by using Lin's classification result.

Take a projection $e \in B$ and consider $\hat{\sigma} : \mathbb{T} \frown e(B \rtimes_{\sigma} \mathbb{Z})e$. Then the crossed product is a hereditary subalgebra of $B \rtimes_{\sigma} \mathbb{Z} \rtimes_{\hat{\sigma}} \mathbb{T} \cong B \otimes \mathbb{K}$, which is simple.

A counter-example

Let A be a UHF algebra. Define (D, D^+) by $D = \bigoplus_{\mathbb{Z}} K_0(A)$ and

$$D^{+} = \left\{ (x_{n})_{n} \in D \mid \sum_{n} x_{n} \in K_{0}(A)^{+} \setminus \{0\} \right\} \cup \{0\}.$$

Find a stable simple AF algebra B whose K_0 is (D, D^+) .

There exists $\sigma \in \operatorname{Aut}(B)$ such that $K_0(\sigma)$ is the shift on D. Clearly $K_0(B \rtimes_{\sigma} \mathbb{Z}) \cong K_0(A)$ and $K_1(B \rtimes_{\sigma} \mathbb{Z}) = 0$. Take a projection $e \in B$. By replacing σ with $\sigma \otimes \gamma \in \operatorname{Aut}(B \otimes \mathbb{Z})$ if necessary, we may assume that $e(B \rtimes_{\sigma} \mathbb{Z})e$ has a unique tracial state and is \mathbb{Z} -stable. It is known that $B \rtimes_{\sigma} \mathbb{Z}$ is AF-embeddable (N. Brown 1998), and hence is quasidiagonal.

Therefore $e(B \rtimes_{\sigma} \mathbb{Z})e$ is in $\mathcal{C}_{\mathsf{UCT}}$, and so $e(B \rtimes_{\sigma} \mathbb{Z})e$ is a UHF algebra. The dual action $\hat{\sigma} : \mathbb{T} \frown e(B \rtimes_{\sigma} \mathbb{Z})e$ is a counter-example.