Topological full groups of étale groupoids

Hiroki Matui matui@math.s.chiba-u.ac.jp

Chiba University

March 13, 2013 Geometry of groups 2013 Les Diablerets

Outline

(minimal) topological dynamical system on a Cantor set (group action, equivalence relation, one-sided SFT...)

- \longrightarrow étale groupoid G whose $G^{(0)}$ is a Cantor set
- $\longrightarrow \text{ topological full group } [[G]] \subset \text{Homeo}(G^{(0)}) \\ C^*\text{-algebra } C^*_r(G) \text{ and its } K\text{-groups } K_i(C^*_r(G))$

Properties of [[G]] (and its commutator subgroup D([[G]])):

- [[G]] (and D([[G]])) 'remembers' G.
- D([[G]]) is (often) simple.
- What is [[G]]/D([[G]])?
- Is [[G]] amenable?
- [[G]] is sometimes finitely generated.
- $\bullet ~[[G]]$ is sometimes finitely presented.

Étale groupoids

A groupoid G is a 'group-like' algebraic object, in which the product may not be defined for all pairs in G.

•
$$g \in G$$
 is thought of as an arrow • \xleftarrow{g} •

•
$$r: g \mapsto gg^{-1}$$
 is called the range map.

•
$$s: g \mapsto g^{-1}g$$
 is called the source map.

• $G^{(0)} = r(G) = s(G) \subset G$ is called the unit space.

Thus, G is a small category in which every morphism is invertible.

A topological groupoid G is étale if the range map and the source map $r, s : G \to G^{(0)}$ are local homeomorphisms. A groupoid G is essentially principal if the interior of $\{g \in G \mid r(g) = s(g)\}$ is $G^{(0)}$.

Topological full groups

From now on, we always assume that ${\cal G}$ is essentially principal and ${\cal G}^{(0)}$ is a Cantor set.

A compact open set $U \subset G$ is a *G*-set if r|U and s|U are injective. Then $\pi_U = (r|U) \circ (s|U)^{-1}$ is a partial homeomorphism on $G^{(0)}$. The topological full group [[*G*]] of *G* is defined by

$$[[G]] = \left\{ \pi_U \in \operatorname{Homeo}(G^{(0)}) \mid r(U) = s(U) = G^{(0)} \right\}.$$

Homology groups

1

 $H_n(G)$ are the homology groups of the chain complex

$$0 \longleftarrow C_c(G^{(0)}, \mathbb{Z}) \stackrel{\delta_1}{\longleftarrow} C_c(G^{(1)}, \mathbb{Z}) \stackrel{\delta_2}{\longleftarrow} C_c(G^{(2)}, \mathbb{Z}) \stackrel{\delta_3}{\longleftarrow} \dots,$$

where $G^{(n)}$ is the space of composable strings of n elements.

For $\alpha = \pi_U \in [[G]]$, we have $\delta_1(1_U) = 0$, because r(U) = s(U). Thus 1_U is a 1-cycle. We define the index map $I : [[G]] \to H_1(G)$ by $I(\alpha) = [1_U]$. It is easy to see that I is a homomorphism. Set $[[G]]_0 = \operatorname{Ker} I$.

We study the groups

 $D([[G]]) \subset [[G]]_0 \subset [[G]].$

Examples of étale groupoids (1/3)

Let $\varphi:\Gamma \curvearrowright X$ be an essentially free action of a discrete group Γ on a Cantor set X.

 $G_{\varphi}=\Gamma\times X$ is an étale groupoid with

 $(\gamma', \varphi_{\gamma}(x)) \cdot (\gamma, x) = (\gamma'\gamma, x), \quad (\gamma, x)^{-1} = (\gamma^{-1}, \varphi_{\gamma}(x)).$

 G_{φ} is called the transformation groupoid. The unit space $G_{\varphi}^{(0)} = \{1\} \times X$ is identified with X.

 $[[G_{\varphi}]] \text{ consists of } \alpha \in \operatorname{Homeo}(X) \text{ for which there exists a continuous map } c: X \to \Gamma \text{ such that } \alpha(x) = \varphi_{c(x)}(x) \; \forall x \in X.$

 $H_n(G_{\varphi})$ are canonically isomorphic to the group homology $H_n(\Gamma,C(X,\mathbb{Z})).$

Examples of étale groupoids (2/3)

Let $(\mathcal{V},\mathcal{E})$ be an irreducible finite directed graph and let M be the adjacency matrix.

Set

$$X = \{ (x_k)_k \in \mathcal{E}^{\mathbb{N}} \mid t(x_k) = i(x_{k+1}) \quad \forall k \in \mathbb{N} \},\$$

Let $\sigma: X \to X$ be the shift, i.e. $\sigma((x_k)_k) = (x_{k+1})_k$.

 (X, σ) is a one-sided shift of finite type (SFT).

Examples of étale groupoids (3/3)

Set

$$G = \left\{ (x, n, y) \in X \times \mathbb{Z} \times X \mid \exists k, l \in \mathbb{N}, \ n = k - l, \ \sigma^k(x) = \sigma^l(y) \right\}.$$

${\boldsymbol{G}}$ is an étale groupoid with

$$(x, n, y) \cdot (y, n', y') = (x, n+n', y'), \quad (x, n, y)^{-1} = (y, -n, x).$$

We call G an SFT groupoid.

We have

$$H_n(G) = \begin{cases} \operatorname{Coker}(\operatorname{id} - M^t) & n = 0\\ \operatorname{Ker}(\operatorname{id} - M^t) & n = 1\\ 0 & n \ge 2, \end{cases}$$

where M is acting on $\mathbb{Z}^{\mathcal{V}}$.

Isomorphism theorem

Theorem (M)

For minimal groupoids G_1 and G_2 , the following are equivalent.

- G_1 is isomorphic to G_2 as an étale groupoid.
- **2** $[[G_1]]$ is isomorphic to $[[G_2]]$ as a group.
- $[[G_1]]_0$ is isomorphic to $[[G_2]]_0$ as a group.
- $D([[G_1]])$ is isomorphic to $D([[G_2]])$ as a group.

This generalizes the result of T. Giordano, I. F. Putnam and C. F. Skau (for minimal \mathbb{Z} -actions) and the result of K. Matsumoto (for SFT groupoids). K. Medynets also obtains a similar result. The proof is based on an algebraic characterization of transpositions in [[G]].

Purely infinite groupoids

Definition (M)

G is said to be purely infinite if for any clopen set $A \subset G^{(0)}$ there exist G-sets $U, V \subset G$ such that s(U) = s(V) = A, $r(U) \cup r(V) \subset A$ and $r(U) \cap r(V) = \emptyset$.

A purely infinite groupoid G admits no invariant probability measures on $G^{(0)}$.

Lemma (M)

Any SFT groupoid G is purely infinite and minimal.

Simplicity of commutator subgroups

Theorem (M)

Suppose that G is either G_{φ} for $\varphi : \mathbb{Z}^N \curvearrowright X$ or purely infinite.

- The index map $I : [[G]] \to H_1(G)$ is surjective.
- **2** Assume further that G is minimal. Then D([[G]]) is simple.

It follows that the abelianization $[[G]]_{\sf ab}=[[G]]/D([[G]])$ has $H_1(G)\cong [[G]]/[[G]]_0$ as its quotient.

We may think of $[[G]]_0$ and D([[G]]) as 'symmetric group' and 'alternating group' acting on the Cantor set. This is the reason why D([[G]]) is simple.

Minimal \mathbb{Z} -actions

Theorem (M 2006)

Let $\varphi : \mathbb{Z} \curvearrowright X$ be a minimal \mathbb{Z} -action on a Cantor set X.

- $[[G_{\varphi}]]_{ab}$ is isomorphic to $(H_0(G_{\varphi}) \otimes \mathbb{Z}_2) \oplus \mathbb{Z}$.
- D([[G_φ]]) is finitely generated if and only if φ is expansive (i.e. two-sided subshift).
- $D([[G_{\varphi}]])$ is never finitely presented.

Theorem (K. Juschenko and N. Monod 2012)

Let $\varphi : \mathbb{Z} \curvearrowright X$ be a minimal \mathbb{Z} -action on a Cantor set X. Then $[[G_{\varphi}]]$ is amenable.

This provides the first examples of finitely generated simple amenable infinite groups.

Preliminaries

Let $(\mathcal{V}, \mathcal{E})$, M and (X, σ) be as before. The SFT groupoid of (X, σ) (or of M) is

$$G = \left\{ (x, n, y) \in X \times \mathbb{Z} \times X \mid \exists k, l \in \mathbb{N}, \ n = k - l, \ \sigma^k(x) = \sigma^l(y) \right\}.$$

Any element $\alpha \in [[G]] \subset \operatorname{Homeo}(X)$ is locally equal to a partial homeomorphism of the form

$$(e_1, e_2, \ldots, e_k, x_1, x_2, \ldots) \mapsto (f_1, f_2, \ldots, f_l, x_1, x_2, \ldots),$$

where (e_1, e_2, \ldots, e_k) and (f_1, f_2, \ldots, f_l) are paths on the graph $(\mathcal{V}, \mathcal{E})$ such that $i(e_k) = i(f_l)$.

Matsumoto's classification theorem

For G and $Y \subset G^{(0)}$, we let $G|Y = \{g \in G \mid r(g), s(g) \in Y\}$ be the reduction of G to Y.

Theorem (K. Matsumoto 2011)

For i = 1, 2, let (X_i, σ_i) and M_i be as before. Let G_i be the étale groupoid for (X_i, σ_i) and let $Y_i \subset X_i$ be a clopen subset. If

$$\exists \varphi : H_0(G_1) \xrightarrow{\cong} H_0(G_2), \quad \varphi([1_{Y_1}]_{G_1}) = [1_{Y_2}]_{G_2},$$

$$\det(\mathrm{id} - M_1^t) = \det(\mathrm{id} - M_2^t),$$

then $G_1|Y_1 \cong G_2|Y_2$ as an étale groupoid.

We have:

- $#H_0(G) = \infty \iff \det(\operatorname{id} M^t) = 0$
- When $#H_0(G) < \infty$, $#H_0(G) = |\det(\mathrm{id} M^t)|$.

Higman-Thompson groups

In 1965 R. Thompson gave the first example of a finitely presented infinite simple group. G. Higman and K. S. Brown later generalized it to infinite families $F_{n,r} \subset T_{n,r} \subset V_{n,r}$ for $n \in \mathbb{N} \setminus \{1\}$ and $r \in \mathbb{N}$.

The group $V_{n,r}$ consists of PL right continuous bijections $f:[0,r) \to [0,r)$ with finitely many singularities, all in $\mathbb{Z}[1/n]$, slopes lying in powers of n, and mapping $\mathbb{Z}[1/n] \cap [0,r)$ to itself. $V_{n,r}$ is called the Higman-Thompson group.

It is known that $V_{n,r}$ is finitely presented, $D(V_{n,r})$ is simple, and $V_{n,r}/D(V_{n,r})$ is trivial when n is even and is \mathbb{Z}_2 when n is odd.

 $F_{n,r}$ is a subgroup of $V_{n,r}$ consisting of continuous maps f. $F_{n,r}$ is also finitely presented. It is not yet known if $F_{n,r}$ is amenable or not.

Nekrashevych's observation

Theorem (V. V. Nekrashevych 2004)

When (X, σ) is the full shift over n symbols, the topological full group [[G]] is isomorphic to $V_{n,1}$.

The continuous map $\rho:\{0,1,\ldots,n{-}1\}^{\mathbb{N}}\rightarrow [0,1]$ defined by

$$\rho((x_k)_k) = \sum_{k=1}^{\infty} \frac{x_k}{n^k}$$

induces the isomorphism $[[G]] \cong V_{n,1}$.

[[G]] for general SFT groupoids G may be thought of as a generalization of the Higman-Thompson group $V_{n.r.}$

The results

For G and $Y \subset G^{(0)},$ we let $G|Y = \{g \in G \mid r(g), s(g) \in Y\}$ be the reduction of G to Y.

Theorem (M)

Let G be an SFT groupoid and let $Y \subset X$ be a clopen set.

- $\label{eq:generalized_states} \left[[G|Y] \right] (\text{and } [[G|Y]]_0 \text{ and } D([[G|Y]])) \text{ `remembers' } G|Y.$
- **2** D([[G|Y]]) is simple.
- \circ [[G|Y]] has the Haagerup property. (due to B. Hughes)
- $[[G|Y]]_{ab}$ is isomorphic to $(H_0(G) \otimes \mathbb{Z}_2) \oplus H_1(G)$.
- **5** [[G|Y]] is of type F_{∞} , and hence is finitely presented.
- $[[G|Y]]_0$ and D([[G|Y]]) are finitely generated.

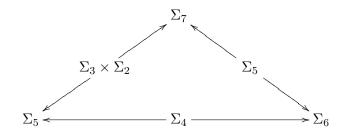
Brown's criterion

Theorem (K. S. Brown 1987)

Suppose that a group Γ admits a contractible Γ -complex Zsuch that the stabilizer of every cell is of type F_{∞} . Let $\{Z_q\}_{q\in\mathbb{N}}$ be a filtration of Z such that each Z_q is finite mod Γ . Suppose that the connectivity of the pair (Z_{q+1}, Z_q) tends to ∞ as q tends to ∞ . Then Γ is of type F_{∞} .

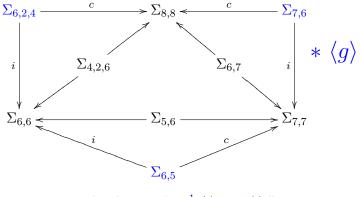
Finite presentation (1/2)

Let M = [2] (i.e. the full shift over 2 symbols). [[G]] is the Higman-Thompson group $V_{2,1}$ and it is described by the following diagram (due to K. S. Brown).



Finite presentation (2/2)

Let $M = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. We have $H_0(G) = H_1(G) = \mathbb{Z}$. [[G]] is described as follows.



with relations " $g^{-1}i(\cdot)g = c(\cdot)$ "

References

- T. Giordano, I. F. Putnam and C. F. Skau, *Full groups of Cantor minimal systems*, Israel J. Math. 111 (1999), 285–320.
- K. Matsumoto, *Classification of Cuntz-Krieger algebras by orbit equivalence of topological Markov shifts*, to appear in Proc. Amer. Math. Soc.
- H. Matui, Some remarks on topological full groups of Cantor minimal systems, Internat. J. Math. 17 (2006), 231–251.
- H. Matui, Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. London Math. Soc. 104 (2012), 27–56.
- H. Matui, *Topological full groups of one-sided shifts of finite type*, preprint.
- J. Renault, *A Groupoid Approach to C*-algebras*, Lecture Notes in Mathematics 793, Springer, Berlin, 1980.