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Outline

(minimal) topological dynamical system on a Cantor set

(group action, equivalence relation, one-sided SFT...)

−→ étale groupoid G whose G(0) is a Cantor set

−→ topological full group [[G]] ⊂ Homeo(G(0))

Properties of [[G]] (and its commutator subgroup D([[G]])):

[[G]] (and D([[G]])) ‘remembers’ G.

D([[G]]) is (often) simple.

What is [[G]]/D([[G]])?

Is [[G]] amenable?

[[G]] is sometimes finitely generated.

[[G]] is sometimes finitely presented.
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Étale groupoids

A groupoid G is étale if the range map and the source map
r, s : G→ G(0) are local homeomorphisms.
A groupoid G is essentially principal
if the interior of {g ∈ G | r(g) = s(g)} is G(0).

.

Theorem (J. Renault 2008)

.

.

.

. ..

.

.

For essentially principal étale groupoids G1 and G2,
the following are equivalent.

.

.

.

1 G1 is isomorphic to G2.

.

.

.

2 There exists an isomorphism φ : C∗
r (G1)→ C∗

r (G2) such that

φ(C0(G
(0)
1 )) = C0(G

(0)
2 ).
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Topological full groups

From now on, we always assume that G is essentially principal and
G(0) is a Cantor set.
A compact open set U ⊂ G is a G-set if r|U and s|U are injective.
Then πU = (r|U) ◦ (s|U)−1 is a partial homeomorphism on G(0).
The topological full group [[G]] of G is defined by

[[G]] =
{
πU ∈ Homeo(G(0)) | r(U) = s(U) = G(0)

}
.

.

Theorem (M 2012)

.

.

.

. ..

.

.

There exists a short exact sequence

1 −→ U(C(G(0))) −→ N(C(G(0)), C∗
r (G)) −→ [[G]] −→ 1.
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Homology groups

Hn(G) are the homology groups of the chain complex

0←− Cc(G
(0),Z) δ1←− Cc(G

(1),Z) δ2←− Cc(G
(2),Z) δ3←− . . . ,

where G(n) is the space of composable strings of n elements.

For α = πU ∈ [[G]], we have δ1(1U ) = 0, because r(U) = s(U).
Thus 1U is a 1-cycle.
We define the index map I : [[G]]→ H1(G) by I(α) = [1U ].
It is easy to see that I is a homomorphism.
Set [[G]]0 = Ker I.

We study the groups

D([[G]]) ⊂ [[G]]0 ⊂ [[G]].
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Examples of étale groupoids (1/3)

Let φ : Γ y X be an essentially free action of a discrete group Γ
on a Cantor set X.
Gφ = Γ×X is an étale groupoid with

(γ′, φγ(x)) · (γ, x) = (γ′γ, x), (γ, x)−1 = (γ−1, φγ(x)).

Gφ is called the transformation groupoid.
C∗
r (Gφ) is canonically isomorphic to C(X)or,φ Γ.

[[Gφ]] consists of α ∈ Homeo(X) for which there exists a
continuous map c : X → Γ such that α(x) = φc(x)(x) ∀x ∈ X.

Hn(Gφ) are canonically isomorphic to the group homology
Hn(Γ, C(X,Z)).
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Examples of étale groupoids (2/3)

Let (V, E) be an irreducible finite directed graph and
let M be the adjacency matrix. Set

X = {(xk)k ∈ EN | t(xk) = i(xk+1) ∀k ∈ N},

G = {((xk)k, (yk)k) ∈ X ×X | ∃n ∀k ≥ n xk = yk} .

G is a typical example of an AF groupoid.

[[G]] is an increasing union of finite direct sum of symmetric
groups, and

Hn(G) =

{
lim(ZV Mt

−→ ZV Mt

−→ . . . ) n = 0

0 n ≥ 1.

7 / 21



Preliminaries General results Minimal Z-actions One-sided SFT

Examples of étale groupoids (3/3)

Let (V, E), M and X be as before.
Let σ : X → X be the shift. (X,σ) is a one-sided SFT.
Set

G =
{
(x, n, y) ∈ X × Z×X | ∃k, l ∈ N, n = k−l, σk(x)=σl(y)

}
.

G is an étale groupoid with

(x, n, y) · (y, n′, y′) = (x, n+n′, y′), (x, n, y)−1 = (y,−n, x).

We call G an SFT groupoid. The subgroupoid {(x, 0, y) ∈ G} is
the AF groupoid mentioned in the previous slide.

We have

Hn(G) =


Coker(id−M t) n = 0

Ker(id−M t) n = 1

0 n ≥ 2.
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Isomorphism theorem

We always assume that G is essentially principal and G(0) is a
Cantor set.

.

Theorem (M)

.

.

.

. ..

.

.

For minimal groupoids G1 and G2, the following are equivalent.

.

.

.

1 G1 is isomorphic to G2 as an étale groupoid.

.

.

.

2 [[G1]] is isomorphic to [[G2]] as a group.

.

.

.

3 [[G1]]0 is isomorphic to [[G2]]0 as a group.

.

.

.

4 D([[G1]]) is isomorphic to D([[G2]]) as a group.

This generalizes the result of T. Giordano, I. F. Putnam and C. F.
Skau (for minimal Z-actions) and the result of K. Matsumoto (for
SFT groupoids).
The proof is based on an algebraic characterization of
transpositions in [[G]].
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Almost finite groupoids

.

Definition (M 2012)

.

.

.

. ..

.

.

G is said to be almost finite if for any compact subset C ⊂ G and
ε > 0 there exists an elementary subgroupoid K ⊂ G such that

|CKx \Kx|
|Kx|

< ε ∀x ∈ G(0).

This may remind us of the Følner condition for amenable groups,
but there is no direct relationship between them.
AF groupoids are clearly almost finite (∵ ∀C ∃K C ⊂ K).

.

Lemma (M 2012)

.

.

.

. ..

.

.

When φ : ZN y X is free, Gφ is almost finite.
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Purely infinite groupoids

.

Definition (M)

.

.

.

. ..

.

.

G is said to be purely infinite if for any clopen set A ⊂ G(0)

there exist G-sets U, V ⊂ G such that s(U) = s(V ) = A,
r(U) ∪ r(V ) ⊂ A and r(U) ∩ r(V ) = ∅.

A purely infinite groupoid G admits no invariant probability
measures on G(0).
If G is purely infinite, then C∗

r (G) is purely infinite (M. Rørdam
and A. Sierakowski 2012).

.

Lemma (M)

.

.

.

. ..

.

.

Any SFT groupoid G is purely infinite and minimal.
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Simplicity of commutator subgroups

.

Theorem (M)

.

.

.

. ..

.

.

Suppose that G is either almost finite or purely infinite.

.

.

.

1 The index map I : [[G]]→ H1(G) is surjective.

.

.

.

2 Assume further that G is minimal. Then D([[G]]) is simple.

It follows that the abelianization [[G]]ab = [[G]]/D([[G]]) has
H1(G) ∼= [[G]]/[[G]]0 as its quotient.

We may think of [[G]]0 and D([[G]]) as ‘symmetric group’ and
‘alternating group’ acting on the Cantor set.
This is the reason why D([[G]]) is simple.
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Minimal Z-actions

.

Theorem (M 2006)

.

.

.

. ..

.

.

Let φ : Z y X be a minimal Z-action on a Cantor set X.

.

.

.

1 [[Gφ]]ab is isomorphic to (H0(Gφ)⊗ Z2)⊕ Z.

.

.

.

2 D([[Gφ]]) is finitely generated if and only if φ is expansive.

.

.

.

3 D([[Gφ]]) is never finitely presented.

.

Theorem (K. Juschenko and N. Monod 2012)

.

.

.

. ..

.

.

Let φ : Z y X be a minimal Z-action on a Cantor set X.
Then [[Gφ]] is amenable.

This provides the first examples of finitely generated simple
amenable infinite groups.
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Preliminaries

Let (V, E), M and (X,σ) be as before.
The SFT groupoid of (X,σ) (or of M) is

G =
{
(x, n, y) ∈ X × Z×X | ∃k, l ∈ N, n = k−l, σk(x)=σl(y)

}
.

Any element α ∈ [[G]] ⊂ Homeo(X) is locally equal to
a partial homeomorphism of the form

(e1, e2, . . . , ek, x1, x2, . . . ) 7→ (f1, f2, . . . , fl, x1, x2, . . . ),

where (e1, e2, . . . , ek) and (f1, f2, . . . , fl) are paths on the graph
(V, E) such that i(ek) = i(fl).
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Higman-Thompson groups

In 1965 R. Thompson gave the first example of a finitely presented
infinite simple group. G. Higman and K. S. Brown later generalized
it to infinite families Fn,r ⊂ Tn,r ⊂ Vn,r for n ∈ N \ {1} and r ∈ N.

The group Vn,r consists of PL right continuous bijections
f : [0, r)→ [0, r) with finitely many singularities, all in Z[1/n],
slopes lying in powers of n, and mapping Z[1/n] ∩ [0, r) to itself.
Vn,r is called the Higman-Thompson group.

It is known that Vn,r is finitely presented, D(Vn,r) is simple, and
Vn,r/D(Vn,r) is trivial when n is even and is Z2 when n is odd.

Fn,r is a subgroup of Vn,r consisting of continuous maps f .
Fn,r is also finitely presented.
It is not yet known if Fn,r is amenable or not.
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Nekrashevych’s observation

.

Theorem (V. V. Nekrashevych 2004)

.

.

.

. ..

.

.

When (X,σ) is the full shift over n symbols,
the topological full group [[G]] is isomorphic to Vn,1.

The continuous map ρ : {0, 1, . . . , n−1}N → [0, 1] defined by

ρ((xk)k) =

∞∑
k=1

xk
nk

induces the isomorphism [[G]] ∼= Vn,1.

[[G]] for general SFT groupoids G may be thought of
as a generalization of the Higman-Thompson group Vn,r.
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The results

For G and Y ⊂ G(0), we let G|Y = {g ∈ G | r(g), s(g) ∈ Y } be
the reduction of G to Y .

.

Theorem (M)

.

.

.

. ..

.

.

Let G be an SFT groupoid and let Y ⊂ X be a clopen set.

.

.

.

1 [[G|Y ]] (and [[G|Y ]]0 and D([[G|Y ]])) ‘remembers’ G|Y .

.

.

.

2 D([[G|Y ]]) is simple.

.

.

.

3 [[G|Y ]] has the Haagerup property.

.

.

.

4 [[G|Y ]]ab is isomorphic to (H0(G)⊗ Z2)⊕H1(G).

.

.

.

5 [[G|Y ]] is of type F∞, and hence is finitely presented.

.

.

.

6 [[G|Y ]]0 and D([[G|Y ]]) are finitely generated.
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Brown’s criterion

.

Theorem (K. S. Brown 1987)

.

.

.

. ..

.

.

Suppose that a group Γ admits a contractible Γ-complex Z
such that the stabilizer of every cell is of type F∞.
Let {Zq}q∈N be a filtration of Z such that each Zq is finite mod Γ.
Suppose that the connectivity of the pair (Zq+1, Zq) tends to ∞
as q tends to ∞. Then Γ is of type F∞.
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Finite presentation (1/2)

Let M = [2] (i.e. the full shift over 2 symbols).
[[G]] is the Higman-Thompson group V2,1 and
it is described by the following diagram (due to K. S. Brown).

Σ7

Σ3 × Σ2

::vvvvvvvvv

zzvvvvvvvvv
Σ5

ccHHHHHHHHH

##HH
HH

HH
HH

H

Σ5 Σ4
oo // Σ6
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Finite presentation (2/2)

Let M =

[
2 1
1 2

]
. We have H0(G) = H1(G) = Z.

[[G]] is described as follows.

Σ6,2,4
c //

i

��

Σ8,8 Σ7,6
coo

i

��

Σ4,2,6

;;xxxxxxxx

{{vvv
vv

vv
vv

Σ6,7

bbEEEEEEEE

""EE
EE

EE
EE

Σ6,6 Σ5,6oo // Σ7,7

Σ6,5

i

iiSSSSSSSSSSSSSSSSSS

c

66llllllllllllllll

∗ ⟨g⟩

with relations “ g−1i(·)g = c(·) ”
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