Jiang-Su 環への群作用について

松井 宏樹 matui@math.s.chiba-u.ac.jp

千葉大学大学院理学研究科

2012 年 3 月 28 日 日本数学会年会 @ 東京理科大学

Let $(r_n)_n \subset \mathbb{N}$ be such that r_n divides r_{n+1} and $r_n \to \infty$, and let $\varphi_n : M_{r_n} \to M_{r_{n+1}}$ be a unital homomorphism. The inductive limit C^* -algebra A arising from $(M_{r_n}, \varphi_n)_n$ is called the UHF algebra of type $(r_n)_n$. For example, when $r_n = k^n$, A is thought of as an infinite tensor product of M_k :

$$A = M_k \otimes M_k \otimes M_k \otimes \cdots$$

A is said to be of infinite type if $A \otimes A \cong A$.

Theorem (J. Glimm 1960)

UHF algebras are completely classified in terms of $(r_n)_n$.

The Jiang-Su algebra (1/2)

For relatively prime natural numbers p, q, we call

 $I(p,q) = \{ f \in C([0,1], M_p \otimes M_q) \mid f(0) \in M_p \otimes \mathbb{C}, \ f(1) \in \mathbb{C} \otimes M_q \}$

a prime dimension drop algebra. I(p,q) does not contain non-trivial projections, and $K_0(I(p,q)) \cong \mathbb{Z}$, $K_1(I(p,q)) = 0$.

Let $(p_n)_n, (q_n)_n \subset \mathbb{N}$ be sequences such that p_n and q_n are relatively prime, p_n divides p_{n+1} and q_n divides q_{n+1} . We can construct unital homomorphisms $\varphi_n : I(p_n, q_n) \to I(p_{n+1}, q_{n+1})$ so that the inductive limit C^* -algebra arising from $(I(p_n, q_n), \varphi_n)_n$ is simple and has a unique trace.

We call it the Jiang-Su algebra and write \mathcal{Z} . \mathcal{Z} does not depend on the choice of p_n, q_n, φ_n .

The Jiang-Su algebra (2/2)

Theorem (X. Jiang and H. Su 1999)

- $K_0(\mathcal{Z}) \cong \mathbb{Z}$ and $K_1(\mathcal{Z}) = 0$.
- Z does not contain non-trivial projections.
- Z is unital simple separable and nuclear.
- For any UHF algebra A, we have $A \otimes \mathcal{Z} \cong A$.
- Also, $\mathcal{Z}\otimes\mathcal{Z}\cong\mathcal{Z}$.
- Any automorphism of \mathcal{Z} is approximately inner.

Classification theory of C^* -algebras (1/2)

In 1990's, G. A. Elliott initiated a program to classify nuclear $C^{\ast}\mbox{-algebras}$ via $K\mbox{-}groups.$

Original Conjecture

For unital separable simple nuclear C^* -algebras A and B,

$$A \cong B \quad \iff \quad K_*(A) \cong K_*(B).$$

So far, the conjecture is known to hold for several large classes of C^* -algebras (e.g. Kirchberg algebras, certain AH algebras, certain ASH algebras). However, it is already known that there exist A and B for which the conjecture is not true.

Thus, we need to 'revise' the conjecture above.

Classification theory of C^* -algebras (2/2)

Revised Conjecture

For unital separable simple nuclear and regular A and B,

$$A \cong B \quad \iff \quad K_*(A) \cong K_*(B).$$

What does 'regular' mean? Several regularity conditions have been considered, and one of them is \mathbb{Z} -stability, where A is said to be \mathbb{Z} -stable if $A \cong A \otimes \mathbb{Z}$.

All unital simple separable nuclear C^* -algebras classified by K-theory so far are \mathcal{Z} -stable.

Conversely, known counter examples for the original conjecture are not $\mathcal{Z}\text{-stable}.$

Cocycle actions

Let Γ be a countable discrete group.

Definition

A pair (α, u) of a map $\alpha : \Gamma \to Aut(A)$ and a map $u : \Gamma \times \Gamma \to U(A)$ is called a cocycle action of Γ on A if

 $\alpha_g \circ \alpha_h = \operatorname{Ad} u(g,h) \circ \alpha_{gh}$

and

$$u(g,h)u(gh,k) = \alpha_g(u(h,k))u(g,hk)$$

hold for any $g, h, k \in \Gamma$. We write $(\alpha, u) : \Gamma \curvearrowright A$.

We always assume $\alpha_1 = \operatorname{id}$, u(g, 1) = u(1, g) = 1 for all $g \in \Gamma$. When α_g is not inner for any $g \in \Gamma \setminus \{1\}$, (α, u) is said to be outer. When $u \equiv 1$, $\alpha : \Gamma \curvearrowright A$ is a genuine action.

Cocycle conjugacy

Definition

Two cocycle actions $(\alpha, u) : \Gamma \curvearrowright A$ and $(\beta, v) : \Gamma \curvearrowright B$ are said to be cocycle conjugate if there exist a family of unitaries $(w_g)_{g \in \Gamma}$ in B and an isomorphism $\theta : A \to B$ such that

$$\theta \circ \alpha_g \circ \theta^{-1} = \operatorname{Ad} w_g \circ \beta_g$$

and

$$\theta(u(g,h)) = w_g \beta_g(w_h) v(g,h) w_{gh}^*$$

hold for every $g, h \in \Gamma$.

Our eventual goal is

- to classify the twisted crossed product $A \rtimes_{(\alpha,u)} \Gamma$,
- to classify (α, u) up to cocycle conjugacy and to determine when (α, u) is cocycle conjugate to a genuine action.

Strong outerness

Let T(A) denote the set of tracial states and let π_τ be the GNS representation by $\tau\in T(A).$

Definition

 $\alpha \in \operatorname{Aut}(A)$ is said to be not weakly inner if the extension $\overline{\alpha}$ on $\pi_{\tau}(A)''$ is not inner for any $\tau \in T(A)^{\alpha}$, that is, there does not exist a unitary $U \in \pi_{\tau}(A)''$ such that $\overline{\alpha} = \operatorname{Ad} U$. A cocycle action $(\alpha, u) : \Gamma \curvearrowright A$ is said to be strongly outer if α_q is not weakly inner for every $g \in \Gamma \setminus \{1\}$.

If $T(A) = \{\tau\}$, then

 $\begin{array}{ll} (\alpha, u): \Gamma \curvearrowright A \text{ is strongly outer} \\ \Longleftrightarrow & (\bar{\alpha}, u): \Gamma \curvearrowright \pi_\tau(A)'' \text{ is outer}. \end{array}$

Central sequence algebras

For a unital C^* -algebra A, we let

$$c_0(\mathbb{N}, A) = \{(a_n)_n \in \ell^{\infty}(\mathbb{N}, A) \mid \lim_{n \to \infty} ||a_n|| = 0\}.$$

The limit algebra of A is $A^{\infty} = \ell^{\infty}(\mathbb{N}, A)/c_0(\mathbb{N}, A)$.

A is identified with the subalgebra of A^∞ consisting of equivalence classes of constant sequences.

The central sequence algebra of A is $A_{\infty} = A^{\infty} \cap A'$. We call $(a_n)_n \in \ell^{\infty}(\mathbb{N}, A)$ a central sequence if $[a_n, x] \to 0$ as $n \to \infty$ for every $x \in A$. A central sequence is a representative of an element in A_{∞} .

 $(lpha,u):\Gamma \curvearrowright A$ extends to A^∞ and A_∞ naturally.

\mathcal{Z} -stability of crossed products

Theorem (Y. Sato and M)

Let A be a unital, simple, separable, nuclear, stably finite C^* -algebra with finitely many extremal tracial states. Suppose that A is \mathcal{Z} -stable. Let $(\alpha, u) : \Gamma \curvearrowright A$ be a strongly outer cocycle action of an elementary amenable group Γ . Then (α, u) is cocycle conjugate to $(\alpha \otimes \operatorname{id}, u \otimes 1) : \Gamma \curvearrowright A \otimes \mathcal{Z}$. In particular, the twisted crossed product $A \rtimes_{(\alpha, u)} \Gamma$ is \mathcal{Z} -stable.

This says that (α, u) absorbs the trivial action on \mathcal{Z} up to cocycle conjugacy.

In order to prove this, it suffices to construct a unital embedding of $\mathcal Z$ into the fixed point algebra $(A^\infty\cap A')^\alpha.$

Absorption of non-trivial actions on \mathcal{Z} (1/2)

Let $\mu : \mathbb{Z} \curvearrowright \mathcal{Z}$ be a strongly outer action. Let $\pi_i : \mathbb{Z}^N \to \mathbb{Z}$ be the canonical projection from $\mathbb{Z}^N = \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ to the *i*-th coordinate.

Define a strongly outer action $\gamma: \mathbb{Z}^N \curvearrowright \mathcal{Z} \otimes \mathcal{Z} \otimes \cdots \otimes \mathcal{Z} \cong \mathcal{Z}$ by

$$\gamma_g = \mu_{\pi_1(g)} \otimes \mu_{\pi_2(g)} \otimes \cdots \otimes \mu_{\pi_N(g)} \quad g \in \mathbb{Z}^N$$

When N = 1, 2, strongly outer actions of \mathbb{Z}^N on \mathcal{Z} are known to be unique up to cocycle conjugacy.

Absorption of non-trivial actions on $\mathcal{Z}(2/2)$

Let A be a unital, simple, separable, nuclear, stably finite $C^{\ast}\mbox{-algebra}$ with finitely many extremal tracial states.

Theorem (Y. Sato and M)

Suppose that A is \mathcal{Z} -stable. Let $(\alpha, u) : \mathbb{Z}^N \curvearrowright A$ be a strongly outer cocycle action. Then (α, u) is cocycle conjugate to $(\alpha \otimes \gamma, u \otimes 1) : \mathbb{Z}^N \curvearrowright A \otimes \mathcal{Z}$.

For a UHF algebra B, it is known that $\gamma \otimes id : \mathbb{Z}^N \curvearrowright \mathcal{Z} \otimes B \cong B$ has the Rohlin property. Hence we obtain the following.

Corollary (Y. Sato and M)

Let $(\alpha, u) : \mathbb{Z}^N \curvearrowright A$ be a strongly outer cocycle action and let B be a UHF algebra. Then $(\alpha \otimes id, u \otimes 1) : \mathbb{Z}^N \curvearrowright A \otimes B$ has the Rohlin property.

\mathbb{Z} -actions on UHF algebras (1/2)

Let $A = M_k \otimes M_k \otimes M_k \otimes \cdots$ be a UHF algebra and let $u \in M_k$ be a unitary such that u^n is not a scalar for any $n \in \mathbb{N}$. Define $\alpha \in \operatorname{Aut}(A)$ by $\alpha = \operatorname{Ad} u \otimes \operatorname{Ad} u \otimes \operatorname{Ad} u \otimes \cdots$. Then $\alpha : \mathbb{Z} \curvearrowright A$ is a strongly outer action.

Another typical example is the Bernoulli shift. Regarding A as the two-sided infinite tensor product

 $A = \cdots \otimes M_k \otimes M_k \otimes M_k \otimes \cdots,$

we let $\alpha : \mathbb{Z} \frown A$ be the bilateral shift of the tensor components. It is well-known that α is strongly outer.

\mathbb{Z} -actions on UHF algebras (2/2)

Theorem (A. Kishimoto 1995)

Let A be a UHF algebra and let $\alpha : \mathbb{Z} \curvearrowright A$ be a strongly outer action. Then α has the Rohlin property, i.e. for any $m \in \mathbb{N}$, there exist central sequences of projections $(e_n)_n, (f_n)_n$ in A such that

$$\sum_{i=0}^{m-1} \alpha^{i}(e_{n}) + \sum_{j=0}^{m} \alpha^{j}(f_{n}) \to 1.$$

Theorem (A. Kishimoto 1995)

Let A be a UHF algebra. All strongly outer \mathbb{Z} -actions on A are cocycle conjugate to each other.

$\mathbb Z$ -actions on $\mathcal Z$

Theorem (Y. Sato 2010)

All strongly outer $\mathbb Z\text{-}actions$ on $\mathcal Z$ are cocycle conjugate to each other.

We sketch the proof. Let $\alpha, \beta : \mathbb{Z} \curvearrowright \mathcal{Z}$ be strongly outer.

(1) By the theorem mentioned before, we may replace α, β with $\alpha \otimes \mathrm{id}, \beta \otimes \mathrm{id} : \mathbb{Z} \curvearrowright \mathcal{Z} \otimes \mathcal{Z}$.

(2) $Z = \{f : [0,1] \to M_{2\infty} \otimes M_{3\infty} \mid f(0) \in M_{2\infty}, f(1) \in M_{3\infty}\}$ is a unital subalgebra of \mathcal{Z} (M. Rørdam and W. Winter 2010).

(3) By Kishimoto's result, $\alpha \otimes id$ and $\beta \otimes id$ are cocycle conjugate as actions on $\mathcal{Z} \otimes B$ with B being a UHF algebra.

(4) With some extra effort we get cocycle conjugacy on $\mathcal{Z} \otimes \mathcal{Z}$.

Cocycle actions of \mathbb{Z}^2 on UHF algebras (1/2)

We write
$$\mathbb{Z}^2 = \langle a, b \mid ba = ab \rangle$$
.

Theorem (H. Nakamura 1999, M 2010, Y. Sato and M)

Let A be a unital simple AF algebra with finitely many extremal tracial states and let $(\alpha, u) : \mathbb{Z}^2 \curvearrowright A$ be a strongly outer cocycle action. Suppose that α_a^n and α_b^n are approximately inner for some $n \in \mathbb{N}$. Then (α, u) has the Rohlin property.

For a cocycle action $(\alpha, u) : \mathbb{Z}^2 \frown A$, we have

$$\begin{aligned} \alpha_b \circ \alpha_a &= \operatorname{Ad} u(b, a) \circ \alpha_{ba} \\ &= \operatorname{Ad} u(b, a) \circ \alpha_{ab} = \operatorname{Ad} (u(b, a)u(a, b)^*) \circ \alpha_a \circ \alpha_b \end{aligned}$$

Conversely, two single automorphisms commuting up to an inner automorphism give rise to a cocycle action of \mathbb{Z}^2 .

Cocycle actions of \mathbb{Z}^2 on UHF algebras (2/2)

For a UHF algebra A, we let $\Delta_\tau: U(A) \to \mathbb{R}/K_0(A)$ be the de la Harpe-Skandalis determinant.

Theorem (T. Katsura and M 2008, Y. Sato and M)

Let A be a UHF algebra. There exists a natural bijective correspondence between the following two sets.

• Cocycle conjugacy classes of strongly outer cocycle actions of \mathbb{Z}^2 on A.

 $e Hom(K_0(A), \mathbb{R}/K_0(A)).$

Moreover, $(\alpha, u) : \mathbb{Z}^2 \cap A$ is cocycle conjugate to a genuine action if and only if $\Delta_{\tau}(u(b, a)u(a, b)^*) = 0$ in $\mathbb{R}/K_0(A)$.

Cocycle actions of \mathbb{Z}^2 on \mathcal{Z}

Let
$$(\alpha, u) : \mathbb{Z}^2 \curvearrowright \mathcal{Z}$$
 be a cocycle action.
Put $\check{u} = u(b, a)u(a, b)^*$.

The following theorem says that the de la Harpe-Skandalis determinant $\Delta_{\tau}(\check{u}) \in \mathbb{R}/\mathbb{Z}$ is the complete invariant of (α, u) .

Theorem (Y. Sato and M)

Let $(\alpha, u), (\beta, v) : \mathbb{Z}^2 \curvearrowright \mathcal{Z}$ be strongly outer cocycle actions. Then they are cocycle conjugate if and only if $\Delta_{\tau}(\check{u}) = \Delta_{\tau}(\check{v})$.

The proof uses the same idea as \mathbb{Z} -actions:

- (α, u) is cocycle conjugate to $(\alpha \otimes id, u \otimes 1)$ on $\mathcal{Z} \otimes \mathcal{Z}$.
- We have already classified $(\alpha \otimes id, u \otimes 1)$ on $\mathcal{Z} \otimes B$ with B being a UHF algebra.
- Some extra effort gives the conclusion.

Asymptotic representability

An action $\alpha: \Gamma \curvearrowright A$ is said to be asymptotically representable if there exist continuous paths of unitaries $(v_g(t))_{g\in\Gamma,t\in[0,\infty)}$ in A such that

$$\begin{split} \|v_g(t)v_h(t) - v_{gh}(t)\| &\to 0 \quad \forall g, h \in \Gamma, \\ \|\alpha_g(v_h(t)) - v_{ghg^{-1}}(t)\| &\to 0 \quad \forall g, h \in \Gamma, \\ |v_g(t)av_g(t)^* - \alpha_g(a)\| &\to 0 \quad \forall g \in \Gamma, a \in A. \end{split}$$

\mathbb{Z}^N -actions on UHF algebras of infinite type

A UHF algebra A is said to be of infinite type if $A \otimes A \cong A$.

Theorem (M 2011)

Let A be a UHF algebra of infinite type and let $\alpha : \mathbb{Z}^N \curvearrowright A$ be a strongly outer action. Then α has the Rohlin property.

Theorem (M 2011)

Let A be a UHF algebra of infinite type. Then, all strongly outer actions of \mathbb{Z}^N on A are mutually cocycle conjugate to each other.

Open problems

- Classify strongly outer actions of \mathbb{Z}^N on a general UHF algebra when $N\geq 3.$
- Show the uniqueness of strongly outer Z^N-actions on the Jiang-Su algebra Z when N ≥ 3.

Cocycle actions of the Klein bottle group on UHF algebras

We call $\Gamma = \langle a, b \mid bab^{-1} = a^{-1} \rangle$ the Klein bottle group.

Theorem (Y. Sato and M)

Let A be a UHF algebra and let $(\alpha, u) : \Gamma \curvearrowright A$ be a strongly outer cocycle action. Then for any $m \in \mathbb{N}$, there exist central sequences of projections $(e_n)_n, (f_n)_n$ in A such that

$$\alpha_a(e_n) - e_n \to 0, \quad \alpha_a(f_n) - f_n \to 0,$$
$$\sum_{i=0}^{m-1} \alpha_b^i(e_n) + \sum_{j=0}^m \alpha_b^j(f_n) \to 1.$$

Theorem (Y. Sato and M)

All strongly outer cocycle actions of Γ on a UHF algebra are mutually cocycle conjugate.

Jiang-Su algebra

Cocycle actions of the Klein bottle group on \mathcal{Z}

Theorem (Y. Sato and M)

All strongly outer cocycle actions of Γ on the Jiang-Su algebra \mathcal{Z} are mutually cocycle conjugate.

The proof uses the same idea as \mathbb{Z} -actions and \mathbb{Z}^2 -actions: we know that $(\alpha, u) : \Gamma \curvearrowright \mathcal{Z}$ is cocycle conjugate to $(\alpha \otimes \operatorname{id}, u \otimes 1) : \Gamma \curvearrowright \mathcal{Z} \otimes \mathcal{Z}.$

- References
 - A. Kishimoto, *The Rohlin property for automorphisms of UHF algebras*, J. Reine Angew. Math. 465 (1995), 183–196.
 - T. Katsura and H. Matui, Classification of uniformly outer actions of Z² on UHF algebras, Adv. Math. 218 (2008), 940–968.
 - H. Matui, Z-actions on AH algebras and Z²-actions on AF algebras, Comm. Math. Phys. 297 (2010), 529–551.
 - Y. Sato, *The Rohlin property for automorphisms of the Jiang-Su algebra*, J. Funct. Anal. 259 (2010), 453–476.
 - H. Matui and Y. Sato, *Z-stability of crossed products by strongly outer actions*, to appear in Comm. Math. Phys.
 - H. Matui, Z^N-actions on UHF algebras of infinite type, J. Reine Angew. Math. 657 (2011), 225–244.
 - H. Matui and Y. Sato, in preparation.