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Preliminaries

Cantor minimal systems

A topological space X is called a Cantor set if X is compact,
metrizable, totally disconnected (the closed and open sets form a
base for the topology) and has no isolated points.

Any such X is homeomorphic to {0, 1}%.

A homeomorphism ¢ € Homeo(X) is said to be minimal if for all
x € X the set {¢"(z) | n € Z} is dense in X, or equivalently,
there are no non-trivial closed y-invariant subsets of X.

We call (X, ¢) a Cantor minimal system.

T. Giordano, I. F. Putnam and C. F. Skau gave a complete
classification of (X, ) up to topological orbit equivalence.
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Preliminaries
Topological full groups

For a Cantor minimal system (X, ¢), we set
[[¢]] = {¢ € Homeo(X) | 3¢ € O(X,Z) $(z) = o) ()}

and call it the topological full group. Clearly [[¢]] is infinite

~Y

(. [[¢]] D (p) =2 Z) and countable (.- X has countably many
clopen subsets).

There exists a homomorphism I : [[p]] — Z such that I(¢) =1,
called the index map. We write [[p]]o = Ker I.
Each 1 € [[¢]] gives rise to a unitary uy, € C(X) %, Z satisfying

Wy fy, = foy™! VfeC(X).

Then I(v) is identified with the K-class of the unitary 1.



Preliminaries

The isomorphism theorem

Theorem (T. Giordano, I. F. Putnam and C. F. Skau 1999)

For Cantor minimal systems (X1, 1) and (X2, p2),
the following conditions are equivalent.

Q 1 is conjugate to w3 or gpgl.

Q [[¢1]] is isomorphic to [[¢2]].

@ [[¢1]]o is isomorphic to [[p2]]o-

Q D([[p1]]) is isomorphic to D([[p2]])-

This is a topological analogue of H. Dye's theorem for ergodic
measure-preserving actions on a Lebesgue space.

There exist uncountably many Cantor minimal systems (e.g.
topological entropy distinguishes), and so there exist uncountably
many isomorphism classes of [[¢]], [[¢]]o and D([[¢]]).



Preliminaries
Homology groups

We let H.(¢) denote the homology groups H.(Z,C(X,Z)) with
coefficients in C'(X,Z) for x =0,1, i.e.

Ho(p) = C(X,Z)/{f — few| [ eC(X,2)},

Hi(p) =2 HY(Z,C(X,2)) = C(X,Z)? = 7.

For any countable torsion-free abelian group G # Z,

there exists a Cantor minimal system (X, ¢) such that Hyo(¢) = G.
We can think of the index map I : [[¢]] — Z as a homomorphism
onto Hy(y) = Z.



Examples

Odometers (1/2)

We identify Z,, = Z/mZ with {0,1,... ,m—1}.

Let (my)22, be a sequence of natural numbers such that m,,
divides my,41 and m,, — o0 as n — oco. Let p, : Z — Zm,, be
the homomorphism such that p, (1) = 1.

Mn+41

We let X be the inverse limit of Z,,, under the map py, i.e.

X = {(xn)n € HZmn | pn(@ny1) = xn}

Define ¢ € Homeo(X) by ¢((xn)n) = (zn + 1)n.
(X, p) is called the odometer of type (my,),. It is easy to see

Ho(p) = {I/mn |1 € Z, n € N} C Q.
The crossed product C'(X) x, Z is the Bunce-Deddens algebra.
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Examples

Odometers (2/2)

For ke Nand ! € Zy,, weset U(k,l) ={(zn)n € X |z =1}
Then {U(k,l) |l € Zp, } is a clopen partition of X and
e(U(k, 1)) =U(k,141).

By definition, each 1 € [[]] is written as ¥(z) = ¢°®) (x).

Let T'x, C [[¢]] be the subgroup consisting of all ¢ for which the
function c is constant on each U(k,l), | € Zy,, .

Clearly [[¢]] equals [JT'x. Any 9 € 'y, induces a permutation of
U(k,1), and so there exists a homomorphism from I';, to Sy, .
Its kernel is isomorphic to Z™*.

Proposition

When (X, ¢) is an odometer, [[p]] can be written as an increasing
union of subgroups of the form Z™ x S,,.




Examples

Denjoy systems

Let @ € (0, 1) be an irrational number and let X be the Cantor set
obtained by cutting T = R/Z at the points na, n € Z.

In other words, X is the Gelfand spectrum of the abelian
C*-algebra generated by the characteristic functions of

[na, (n+1)a) C T.

The a-rotation on T induces a minimal homeomorphism ¢ of X.
We call (X, ¢) a Denjoy system.

It is known that Hy(y) is isomorphic to Z @ Z.

Unlike the odometers, it is impossible to write [[¢]] as an
increasing union of some ‘easy’ groups.



Theorems
Theorems

Let (X, ) be a Cantor minimal system.

Theorem (M 2006)

Q@ D([[¢]]) is simple.
@ [[¢llo/D([[¢]]) is isomorphic to Hy(p) @ Zs.
@ D([[y]]) is finitely generated iff ¢ is a subshift.

A\

Theorem (M 2011)

When D([[¢]]) is finitely generated, D([[¢]]) has exponential
growth.

\




Generators

Elements of finite order (1/2)

For a clopen set U C X such that U and ¢(U) are disjoint,
we define oy € [[p]] by

o(z) zelU
ou(z) = Q¢ H(z) )
T otherwise.

For a clopen set U C X such that ¢~ }(U), U and p(U) are
disjoint, we define vy € [[¢]] by

p(x) zep ' (U)UU
(@) ={¢ 2 =epl)

T otherwise.

Since Yy = oy 0 T,-1(1) © TU © Tu-1(yy, Yu belongs to D([[]]).
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Generators

Elements of finite order (1/2)

oy is the transposition between U and ¢(U).

U @ e(U)

@_1

v is the cyclic permutation on =Y (U), U, o(U).

O=(0-C
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Generators

Analogue of symmetric groups and alternating groups

@ D([[¢]]) is simple.
Q [[¢llo/D([[¢]]) is isomorphic to Hy(p) @ Zs.
© D([[¢]]) is finitely generated iff ¢ is a subshift.

In the proof of this theorem, the following proposition plays an
important role.

Proposition

Q [[¢]]o is generated by all the elements oy;.
@ D([[¢]]) is generated by all the elements 7.

Thus [[¢]]o and D([[¢]]) are regarded as analogue of symmetric
groups and alternating groups acting on the Cantor set X.
We write sgn : [[¢]Jo — [[¢llo/ D([[#]]) = Ho(p) @ Zo.
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Generators

Generators of Denjoy systems (1/2)

Let @ € (0,1/6) be an irrational number and let (X, ¢) be
the Denjoy system induced by the a-rotation on T.
We would like to see that [[]] is generated by three elements.

Let U C X be the clopen subset corresponding to [0, ) and
let V' C X be the clopen subset corresponding to [na, 1),
where n = max{k € N | ka < 1}.

0 «o 2 no 1
|

L | | | | | |
r T T T T T T

Hy(p) =2 Z @ Z is generated by 1y and 1y, and so
sgn(oy) and sgn(oy ) generate Hy(p) ® Zo =2 Zo & Zo.

Hence (¢, o0, 0v, D(([[¢]])) = [[«]].
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Generators

Generators of Denjoy systems (2/2)

We shall prove that (p, or7) contains D([[¢]]).
Once this is done, we get [[¢]] = (p, ou, ov).

First, p" ooy 0 ™" = aun(yy is in (p,oy) for any n € Z.
Then, Yon() = Tpn() © Opn—1(1) © Tpn(U) © Tun—1(y) is also in
(p,op) for any n € Z.

Any clopen subset W of X is written as a disjoint union of
clopen subsets O corresponding to intervals [ma, (n+1)a).

"), (n+1)a

m‘a ! Sp’m-i-l(U)‘

Since D([[¢]]) is generated by the elements yo and
YO = Ypm+1(U) © ’7;7}*1(U) o 7;7}1+1(U) O Yon—1(U7)

belongs to (¢, o), D([[¢]]) is contained in {p,or).
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Growth

Growth of finitely generated groups

Let I" be a finitely generated group and let S be a finite subset of
generators of I,

For k € N, we denote by (I, S, k) the number of elements v € I"
such that /g(v) < k.

The group I is said to have polynomial growth if there exist ¢ > 0
and d > 1 such that 8(T, S, k) < ck®.
The group I is said to have exponential growth if there exist ¢ > 0
and v > 1 such that 8(T', S, k) > cv*.

The property of being of exponential growth (resp. polynomial
growth) does not depend on the choice of S.

If I' contains a free semi-group on two generators,
then I' has exponential growth.
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Growth

Lamplighter group

We call the wreath product

L=717 = (@ZQ> x 7.

Z

the lamplighter group, where the semi-direct product is taken with
respect to the shift action.

Let o
a=(..,0,0,0,1,0,0,0,...) e PZC L
Z

and let t € Z C L be a generator of Z. Clearly L = (a,t).
It is easy to see that ¢ and ata generate a free semi-group.

Hence, if a finitely generated group I' contains L,
then I' has exponential growth.
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Growth

Growth of topological full groups (1/2)

Theorem (M 2011)

For a Cantor minimal system (X, ), the following are equivalent.
@ (X, ) is not an odometer.
@ D([[¢]]) contains the lamplighter group L.
© [[]] contains the lamplighter group L.

In particular, if D([[¢]]) is finitely generated (or, equivalently, if
(X, ) is a minimal subshift), then D([[¢]]) has exponential
growth.

As mentioned earlier, when (X, ¢) is an odometer, the topological
full group [[¢]] is an increasing union of subgroups of the form
Z™ x S,,. Hence the third condition implies the first condition.

We sketch a proof of the implication from the first to the third.
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Growth

Growth of topological full groups (2/2)

Suppose that (X, ¢) is not an odometer. Choose a clopen subset
U so that U Np(U) = 0. Let ¢ € [[¢]] be the first return map on
U. Then p oo~ is the first return map on ¢(U).

Set t =1 o (porpopt) e[l

Since (U,%|U) is not an odometer, there exists a clopen set
O C U such that for any finite subset F' C Z

Y looF#£0 in C(X,Zy).

keF

Let a = 00 € [[¢]].
Then

(tfoaot™ [k eZ) = (oy) | k€ L) =P,
Z

and so (a,t) = L.
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7N -actions
Homology of Z"-actions

Let ¢ : ZV ~ X be a free action of Z"¥ on a Cantor set X by
homeomorphisms. We write H,(¢) = H,(ZN,C(X,Z)).

Examples of free minimal actions ¢ : Z¥ ~ X are given by certain
tilings on the Euclidean space.

For ¢ : Z? ~ X arising from the Penrose tiling on R?,

Holp) =28, Hip)=17°, Hlp)=L.
For ¢ : Z3 ~ X arising from the Ammann-Kramer tiling on R3,
Ho(p) 2 Z' @ Zy, Hi(p) 277 & Ly,
Hy(p) =72, Hs(p) = Z.
In general, the Chern character induces
P Honri(p) ©Q = Ki(C(X) %, ZV)@Q i=0,1.
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Z*" -actions
Index map

For a free action ¢ : Z¥ ~ X, the topological full group [[¢]] is
defined in the same way:

[l¢]] = {¢ € Homeo(X) | 3c € C(X,Z") 9(z) = ") (2)}

We can define a homomorphism I from the topological full group
[[¢]] to Hi(p) = Hi(ZN,C(X,Z)).

Let p : ZN ~ X be a free action of ZV on a Cantor set X by
homeomorphisms.

Q I :[[¢]] = Hi(p) is surjective.
Q [[¢]]o = Ker I is generated by transpositions.
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Z*" -actions
Open problems

Let ¢ : ZY ~ X be a free minimal action on a Cantor set X.
o Is D([[¢]]) simple?

o What is [[¢]]o/D([l¢l])?
@ When is D([[¢]]) finitely generated?

e Is [[¢]] amenable?
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