Preliminaries	Examples	Theorems	Generators	Growth	\mathbb{Z}^N -actions

On topological full groups of Cantor minimal systems

Hiroki Matui matui@math.s.chiba-u.ac.jp

Chiba University

December 17, 2011 Kansai Operator Algebra Seminar Kinosaki

 Preliminaries
 Examples
 Theorems
 Generators
 Growth
 \mathbb{Z}^N -actions

 Cantor minimal systems

A topological space X is called a Cantor set if X is compact, metrizable, totally disconnected (the closed and open sets form a base for the topology) and has no isolated points. Any such X is homeomorphic to $\{0,1\}^{\mathbb{Z}}$.

A homeomorphism $\varphi \in \text{Homeo}(X)$ is said to be minimal if for all $x \in X$ the set $\{\varphi^n(x) \mid n \in \mathbb{Z}\}$ is dense in X, or equivalently, there are no non-trivial closed φ -invariant subsets of X.

We call (X, φ) a Cantor minimal system.

T. Giordano, I. F. Putnam and C. F. Skau gave a complete classification of (X, φ) up to topological orbit equivalence.

 Preliminaries
 Examples
 Theorems
 Generators
 Growth
 Z^N-actions

 Topological full groups

For a Cantor minimal system (X, φ) , we set

$$[[\varphi]] = \{ \psi \in \operatorname{Homeo}(X) \mid \exists c \in C(X, \mathbb{Z}) \ \psi(x) = \varphi^{c(x)}(x) \}$$

and call it the topological full group. Clearly $[[\varphi]]$ is infinite ($:: [[\varphi]] \supset \langle \varphi \rangle \cong \mathbb{Z}$) and countable (:: X has countably many clopen subsets).

There exists a homomorphism $I : [[\varphi]] \to \mathbb{Z}$ such that $I(\varphi) = 1$, called the index map. We write $[[\varphi]]_0 = \operatorname{Ker} I$. Each $\psi \in [[\varphi]]$ gives rise to a unitary $u_{\psi} \in C(X) \rtimes_{\varphi} \mathbb{Z}$ satisfying

$$u_{\psi}fu_{\psi}^* = f \circ \psi^{-1} \quad \forall f \in C(X).$$

Then $I(\psi)$ is identified with the K_1 -class of the unitary u_{ψ} .

Generator

Growth

 \mathbb{Z}^N -actions

The isomorphism theorem

Theorem (T. Giordano, I. F. Putnam and C. F. Skau 1999)

For Cantor minimal systems (X_1, φ_1) and (X_2, φ_2) , the following conditions are equivalent.

- φ_1 is conjugate to φ_2 or φ_2^{-1} .
- $\textcircled{0} [[\varphi_1]] \textit{ is isomorphic to } [[\varphi_2]].$
- $\ \, [[\varphi_1]]_0 \ \, \text{is isomorphic to} \ \, [[\varphi_2]]_0.$
- $D([[\varphi_1]])$ is isomorphic to $D([[\varphi_2]])$.

This is a topological analogue of H. Dye's theorem for ergodic measure-preserving actions on a Lebesgue space.

There exist uncountably many Cantor minimal systems (e.g. topological entropy distinguishes), and so there exist uncountably many isomorphism classes of $[[\varphi]]$, $[[\varphi]]_0$ and $D([[\varphi]])$.

We let $H_*(\varphi)$ denote the homology groups $H_*(\mathbb{Z}, C(X, \mathbb{Z}))$ with coefficients in $C(X, \mathbb{Z})$ for * = 0, 1, i.e.

$$H_0(\varphi) = C(X, \mathbb{Z}) / \{ f - f \circ \varphi \mid f \in C(X, \mathbb{Z}) \},$$
$$H_1(\varphi) \cong H^0(\mathbb{Z}, C(X, \mathbb{Z})) = C(X, \mathbb{Z})^{\mathbb{Z}} \cong \mathbb{Z}.$$

For any countable torsion-free abelian group $G \neq \mathbb{Z}$, there exists a Cantor minimal system (X, φ) such that $H_0(\varphi) = G$. We can think of the index map $I : [[\varphi]] \to \mathbb{Z}$ as a homomorphism onto $H_1(\varphi) \cong \mathbb{Z}$.
 Preliminaries
 Examples
 Theorems
 Generators
 Growth
 \mathbb{Z}^N -actions

 Odometers (1/2)

We identify $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$ with $\{0, 1, \ldots, m-1\}$. Let $(m_n)_{n=1}^{\infty}$ be a sequence of natural numbers such that m_n divides m_{n+1} and $m_n \to \infty$ as $n \to \infty$. Let $\rho_n : \mathbb{Z}_{m_{n+1}} \to \mathbb{Z}_{m_n}$ be the homomorphism such that $\rho_n(1) = 1$.

We let X be the inverse limit of \mathbb{Z}_{m_n} under the map ρ_n , i.e.

$$X = \left\{ (x_n)_n \in \prod \mathbb{Z}_{m_n} \mid \rho_n(x_{n+1}) = x_n \right\}.$$

Define $\varphi \in \text{Homeo}(X)$ by $\varphi((x_n)_n) = (x_n + 1)_n$. (X, φ) is called the odometer of type $(m_n)_n$. It is easy to see

$$H_0(\varphi) \cong \{l/m_n \mid l \in \mathbb{Z}, n \in \mathbb{N}\} \subset \mathbb{Q}.$$

The crossed product $C(X) \rtimes_{\varphi} \mathbb{Z}$ is the Bunce-Deddens algebra.

Preliminaries Examples Theorems Generators Growth Z^N-actions Odometers (2/2)

For $k \in \mathbb{N}$ and $l \in \mathbb{Z}_{m_k}$ we set $U(k, l) = \{(x_n)_n \in X \mid x_k = l\}$. Then $\{U(k, l) \mid l \in \mathbb{Z}_{m_k}\}$ is a clopen partition of X and $\varphi(U(k, l)) = U(k, l+1)$.

By definition, each $\psi \in [[\varphi]]$ is written as $\psi(x) = \varphi^{c(x)}(x)$. Let $\Gamma_k \subset [[\varphi]]$ be the subgroup consisting of all ψ for which the function c is constant on each U(k,l), $l \in \mathbb{Z}_{m_k}$. Clearly $[[\varphi]]$ equals $\bigcup \Gamma_k$. Any $\psi \in \Gamma_k$ induces a permutation of U(k,l), and so there exists a homomorphism from Γ_k to S_{m_k} . Its kernel is isomorphic to \mathbb{Z}^{m_k} .

Proposition

When (X, φ) is an odometer, $[[\varphi]]$ can be written as an increasing union of subgroups of the form $\mathbb{Z}^m \rtimes S_m$.

Let $\alpha \in (0,1)$ be an irrational number and let X be the Cantor set obtained by cutting $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ at the points $n\alpha$, $n \in \mathbb{Z}$. In other words, X is the Gelfand spectrum of the abelian C^* -algebra generated by the characteristic functions of $[n\alpha, (n+1)\alpha) \subset \mathbb{T}$.

The α -rotation on \mathbb{T} induces a minimal homeomorphism φ of X. We call (X, φ) a Denjoy system.

It is known that $H_0(\varphi)$ is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$.

Unlike the odometers, it is impossible to write $[[\varphi]]$ as an increasing union of some 'easy' groups.

Let (X,φ) be a Cantor minimal system.

Theorem (M 2006)

- $\ \ \, {\bf @} \ \ \, [[\varphi]]_0/D([[\varphi]]) \ \, {\it is isomorphic to } H_0(\varphi)\otimes \mathbb{Z}_2.$
- **③** $D([[\varphi]])$ is finitely generated iff φ is a subshift.

Theorem (M 2011)

When $D([[\varphi]])$ is finitely generated, $D([[\varphi]])$ has exponential growth.

Preliminaries Examples Theorems Generators Growth \mathbb{Z}^{N} -actions Elements of finite order (1/2)

For a clopen set $U\subset X$ such that U and $\varphi(U)$ are disjoint, we define $\sigma_U\in [[\varphi]]$ by

$$\sigma_U(x) = \begin{cases} \varphi(x) & x \in U \\ \varphi^{-1}(x) & x \in \varphi(U) \\ x & \text{otherwise.} \end{cases}$$

For a clopen set $U \subset X$ such that $\varphi^{-1}(U)$, U and $\varphi(U)$ are disjoint, we define $\gamma_U \in [[\varphi]]$ by

$$\gamma_U(x) = \begin{cases} \varphi(x) & x \in \varphi^{-1}(U) \cup U \\ \varphi^{-2}(x) & x \in \varphi(U) \\ x & \text{otherwise.} \end{cases}$$

Since $\gamma_U = \sigma_U \circ \sigma_{\varphi^{-1}(U)} \circ \sigma_U \circ \sigma_{\varphi^{-1}(U)}$, γ_U belongs to $D([[\varphi]])$.

 Preliminaries
 Examples
 Theorems
 Generators
 Growth
 \mathbb{Z}^N -actions

 Elements of finite order (1/2)

 σ_U is the transposition between U and $\varphi(U)$.

 γ_U is the cyclic permutation on $\varphi^{-1}(U), U, \varphi(U)$.

Theorem

- $\ \ \, {\cal D}([[\varphi]]) \ \, {\rm is \ simple.} \ \ \, {\rm output}$
- $\ \ \, {\bf @} \ \ \, [[\varphi]]_0/D([[\varphi]]) \ \, {\rm is \ isomorphic \ to \ } H_0(\varphi)\otimes \mathbb{Z}_2.$
- **③** $D([[\varphi]])$ is finitely generated iff φ is a subshift.

In the proof of this theorem, the following proposition plays an important role.

Proposition

- **1** $[[\varphi]]_0$ is generated by all the elements σ_U .
- 2 $D([[\varphi]])$ is generated by all the elements γ_U .

Thus $[[\varphi]]_0$ and $D([[\varphi]])$ are regarded as analogue of symmetric groups and alternating groups acting on the Cantor set X. We write $\operatorname{sgn} : [[\varphi]]_0 \to [[\varphi]]_0 / D([[\varphi]]) \cong H_0(\varphi) \otimes \mathbb{Z}_2$. PreliminariesExamplesTheoremsGeneratorsGrowth \mathbb{Z}^N -actionsGenerators of Denjoy systems (1/2)

Let $\alpha \in (0, 1/6)$ be an irrational number and let (X, φ) be the Denjoy system induced by the α -rotation on \mathbb{T} . We would like to see that $[[\varphi]]$ is generated by three elements.

Let $U \subset X$ be the clopen subset corresponding to $[0, \alpha)$ and let $V \subset X$ be the clopen subset corresponding to $[n\alpha, 1)$, where $n = \max\{k \in \mathbb{N} \mid k\alpha < 1\}$.

 $H_0(\varphi) \cong \mathbb{Z} \oplus \mathbb{Z}$ is generated by 1_U and 1_V , and so $\operatorname{sgn}(\sigma_U)$ and $\operatorname{sgn}(\sigma_V)$ generate $H_0(\varphi) \otimes \mathbb{Z}_2 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Hence $\langle \varphi, \sigma_U, \sigma_V, D([[\varphi]]) \rangle = [[\varphi]].$

Preliminaries Examples Theorems Generators Growth Z^N-actions Generators of Denjoy systems (2/2)

We shall prove that $\langle \varphi, \sigma_U \rangle$ contains $D([[\varphi]])$. Once this is done, we get $[[\varphi]] = \langle \varphi, \sigma_U, \sigma_V \rangle$.

First, $\varphi^n \circ \sigma_U \circ \varphi^{-n} = \sigma_{\varphi^n(U)}$ is in $\langle \varphi, \sigma_U \rangle$ for any $n \in \mathbb{Z}$. Then, $\gamma_{\varphi^n(U)} = \sigma_{\varphi^n(U)} \circ \sigma_{\varphi^{n-1}(U)} \circ \sigma_{\varphi^n(U)} \circ \sigma_{\varphi^{n-1}(U)}$ is also in $\langle \varphi, \sigma_U \rangle$ for any $n \in \mathbb{Z}$.

Any clopen subset W of X is written as a disjoint union of clopen subsets O corresponding to intervals $[m\alpha, (n+1)\alpha)$.

$$\begin{array}{c|c} \varphi^{n-1}(U) & (n+1)\alpha \\ \hline m\alpha & \varphi^{m+1}(U) \end{array}$$

Since $D([[\varphi]])$ is generated by the elements γ_O and

$$\gamma_O = \gamma_{\varphi^{m+1}(U)} \circ \gamma_{\varphi^{n-1}(U)}^{-1} \circ \gamma_{\varphi^{m+1}(U)}^{-1} \circ \gamma_{\varphi^{m-1}(U)}^{-1}$$

belongs to $\langle \varphi, \sigma_U \rangle$, $D([[\varphi]])$ is contained in $\langle \varphi, \sigma_U \rangle$.

 $\begin{array}{c|cccc} \mbox{Preliminaries} & \mbox{Examples} & \mbox{Theorems} & \mbox{Generators} & \mbox{Growth} & \mbox{\mathbb{Z}^N-actions} \\ \end{array}$

Let Γ be a finitely generated group and let S be a finite subset of generators of Γ . For $k \in \mathbb{N}$, we denote by $\beta(\Gamma, S, k)$ the number of elements $\gamma \in \Gamma$ such that $\ell_S(\gamma) \leq k$.

The group Γ is said to have polynomial growth if there exist c > 0and $d \ge 1$ such that $\beta(\Gamma, S, k) \le ck^d$. The group Γ is said to have exponential growth if there exist c > 0and v > 1 such that $\beta(\Gamma, S, k) \ge cv^k$.

The property of being of exponential growth (resp. polynomial growth) does not depend on the choice of S.

If Γ contains a free semi-group on two generators, then Γ has exponential growth.

We call the wreath product

$$L = \mathbb{Z}_2 \wr \mathbb{Z} = \left(\bigoplus_{\mathbb{Z}} \mathbb{Z}_2\right) \rtimes \mathbb{Z}$$

the lamplighter group, where the semi-direct product is taken with respect to the shift action.

Let

$$a = (\dots, 0, 0, 0, \overset{0}{\check{1}}, 0, 0, 0, \dots) \in \bigoplus_{\mathbb{Z}} \mathbb{Z}_2 \subset L$$

and let $t \in \mathbb{Z} \subset L$ be a generator of \mathbb{Z} . Clearly $L = \langle a, t \rangle$. It is easy to see that t and ata generate a free semi-group.

Hence, if a finitely generated group Γ contains L, then Γ has exponential growth.

Growth of topological full groups (1/2)

Theorem (M 2011)

For a Cantor minimal system (X, φ) , the following are equivalent.

- **1** (X, φ) is not an odometer.
- $\ \ \, {\cal O}([[\varphi]]) \ {\it contains the lamplighter group } L.$
- $\ensuremath{\textcircled{0}} \ensuremath{\left[\left[\varphi \right] \right] } \ensuremath{\left[contains the \ lamplighter \ group \ L. \ensuremath{\left[\varphi \right] } \ensur$

In particular, if $D([[\varphi]])$ is finitely generated (or, equivalently, if (X, φ) is a minimal subshift), then $D([[\varphi]])$ has exponential growth.

As mentioned earlier, when (X, φ) is an odometer, the topological full group $[[\varphi]]$ is an increasing union of subgroups of the form $\mathbb{Z}^m \rtimes S_m$. Hence the third condition implies the first condition.

We sketch a proof of the implication from the first to the third.

Preliminaries Examples Theorems Generators Growth \mathbb{Z}^N -actions

Growth of topological full groups (2/2)

Suppose that (X, φ) is not an odometer. Choose a clopen subset U so that $U \cap \varphi(U) = \emptyset$. Let $\psi \in [[\varphi]]$ be the first return map on U. Then $\varphi \circ \psi \circ \varphi^{-1}$ is the first return map on $\varphi(U)$. Set $t = \psi \circ (\varphi \circ \psi \circ \varphi^{-1}) \in [[\varphi]]$.

Since $(U, \psi | U)$ is not an odometer, there exists a clopen set $O \subset U$ such that for any finite subset $F \subset \mathbb{Z}$

$$\sum_{k\in F} \mathbf{1}_O \circ \psi^k \neq 0 \quad \text{in} \quad C(X,\mathbb{Z}_2).$$

Let $a = \sigma_O \in [[\varphi]]$. Then

$$\langle t^k \circ a \circ t^{-k} \mid k \in \mathbb{Z} \rangle = \langle \sigma_{\psi^k(O)} \mid k \in \mathbb{Z} \rangle \cong \bigoplus_{\mathbb{Z}} \mathbb{Z}_2,$$

and so $\langle a,t\rangle \cong L$.

Preliminaries Examples Theorems Generators Growth \mathbb{Z}^N -actions Homology of \mathbb{Z}^N -actions

Let $\varphi : \mathbb{Z}^N \curvearrowright X$ be a free action of \mathbb{Z}^N on a Cantor set X by homeomorphisms. We write $H_*(\varphi) \cong H_*(\mathbb{Z}^N, C(X, \mathbb{Z}))$. Examples of free minimal actions $\varphi : \mathbb{Z}^N \curvearrowright X$ are given by certain tilings on the Euclidean space.

For $\varphi:\mathbb{Z}^2 \curvearrowright X$ arising from the Penrose tiling on \mathbb{R}^2 ,

$$H_0(\varphi) \cong \mathbb{Z}^8, \quad H_1(\varphi) \cong \mathbb{Z}^5, \quad H_2(\varphi) \cong \mathbb{Z}.$$

For $\varphi: \mathbb{Z}^3 \curvearrowright X$ arising from the Ammann-Kramer tiling on \mathbb{R}^3 ,

$$H_0(\varphi) \cong \mathbb{Z}^{181} \oplus \mathbb{Z}_2, \quad H_1(\varphi) \cong \mathbb{Z}^{72} \oplus \mathbb{Z}_2,$$

$$H_2(\varphi) \cong \mathbb{Z}^{12}, \quad H_3(\varphi) \cong \mathbb{Z}.$$

In general, the Chern character induces

$$\bigoplus H_{2n+i}(\varphi) \otimes \mathbb{Q} \cong K_i(C(X) \rtimes_{\varphi} \mathbb{Z}^N) \otimes \mathbb{Q} \quad i = 0, 1.$$

For a free action $\varphi : \mathbb{Z}^N \curvearrowright X$, the topological full group $[[\varphi]]$ is defined in the same way:

 $[[\varphi]] = \{ \psi \in \operatorname{Homeo}(X) \mid \exists c \in C(X, \mathbb{Z}^N) \ \psi(x) = \varphi^{c(x)}(x) \}$

We can define a homomorphism I from the topological full group $[[\varphi]]$ to $H_1(\varphi) \cong H_1(\mathbb{Z}^N, C(X, \mathbb{Z})).$

Theorem (M)

Let $\varphi : \mathbb{Z}^N \curvearrowright X$ be a free action of \mathbb{Z}^N on a Cantor set X by homeomorphisms.

•
$$I : [[\varphi]] \to H_1(\varphi)$$
 is surjective.

2 $[[\varphi]]_0 = \text{Ker } I$ is generated by transpositions.

Generato

Open problems

Problems

Let $\varphi : \mathbb{Z}^N \curvearrowright X$ be a free minimal action on a Cantor set X.

- Is $D([[\varphi]])$ simple?
- What is $[[\varphi]]_0/D([[\varphi]])$?
- When is $D([[\varphi]])$ finitely generated?
- Is $[[\varphi]]$ amenable?