
Preliminaries Homology Topological full group Almost finite groupoid

.

.

. ..

.

.

Homology of étale groupoids on Cantor sets

Hiroki Matui
matui@math.s.chiba-u.ac.jp

Chiba University

August 5, 2010
Pingree Park Dynamical Systems Workshop

1 / 20



Preliminaries Homology Topological full group Almost finite groupoid

Outline

topological dynamical systems on Cantor sets

(group actions, equivalence relations, ...)

−→ étale groupoids G

−→


homology group Hn(G), n ≥ 0 (Crainic-Moerdijk 2000)

K-group Ki(C∗
r (G)), i = 0, 1

topological full group [[G]]

Interaction between them?

∃ a homomorphism Φ0 : H0(G) → K0(C∗
r (G)).

∃ a homomorphism I : [[G]] → H1(G), called the index map.

For certain G, ∃ a homomorphism Φ1 : H1(G) → K1(C∗
r (G)).
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Étale groupoids

A groupoid G is a ‘group-like’ algebraic object, in which the
product may not be defined for all pairs in G.

g ∈ G is thought of as an arrow • g←− • .

r : g 7→ gg−1 is called the range map.

s : g 7→ g−1g is called the source map.

G(0) = r(G) = s(G) ⊂ G is called the unit space.

G is an étale groupoid if G is equipped with a locally compact
Hausdorff topology compatible with the groupoid structure and
the range (or source) map is a local homeomorphism.

G is said to be principal if any g satisfying r(g) = s(g) belongs to
G(0). A principal groupoid G is identified with the equivalence
relation {(r(g), s(g)) ∈ G(0) × G(0) | g ∈ G}.
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Examples of étale groupoids (1/3)

Let ϕ : Γ y X be an action of a discrete group Γ on a locally
compact Hausdorff space X by homeomorphisms.
Gϕ = Γ × X is an étale groupoid with

(γ′, x′) · (γ, x) = (γ′γ, x) if x′ = ϕγ(x),

(γ, x)−1 = (γ−1, ϕγ(x)).

Gϕ is called the transformation groupoid.

The unit space G
(0)
ϕ = {e} × X is identified with X.

Gϕ is principal if and only if ϕ is free, and in this case Gϕ is
identified with the étale equivalence relation on X induced by ϕ.

The groupoid C∗-algebra C∗
r (Gϕ) is canonically isomorphic to the

crossed product C∗-algebra C0(X) or Γ.
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Examples of étale groupoids (2/3)

Let G be an étale groupoid whose unit space is a Cantor set.
G is called an elementary groupoid if G is principal and compact.
If G is elementary, then every G-orbit is finite and
∃ clopen set U ⊂ G(0) which meets every G-orbit exactly once.

We say that G is an AF groupoid (or AF equivalence relation) if it
can be written as an increasing union of elementary subgroupoids.

Let A be a finite set. The equivalence relation

{(x, y) ∈ AN × AN | ∃n ∈ N ∀k ≥ n xk = yk}

becomes an AF groupoid with a natural topology.

For an AF groupoid G, C∗
r (G) is known to be an AF C∗-algebra,

i.e. C∗
r (G) is an inductive limit of finite dimensional C∗-algebras.
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Examples of étale groupoids (3/3)

Let σ : X → X be a one-sided SFT.

G = {(x, n, y) ∈ X × Z × X | ∃k, l ∈ N n = k−l σk(x) = σl(y)}

is an étale groupoid with

(x′, n′, y′) · (x, n, y) = (x′, n′+n, y) if y′ = x,

(x, n, y)−1 = (y,−n, x).

We call G an SFT groupoid. G is not principal because σ has
periodic points.

The map ρ : G 3 (x, n, y) 7→ n ∈ Z is a homomorphism and its
kernel K = Ker ρ = {(x, 0, y)} is known to be an AF subgroupoid.

C∗
r (G) is called the Cuntz-Krieger algebra.

6 / 20



Preliminaries Homology Topological full group Almost finite groupoid

Homology of étale groupoids (1/2)

For any local homeomorphism π : X → Y between locally compact
Hausdorff spaces, one can define π∗ : Cc(X, Z) → Cc(Y, Z) by

π∗(f)(y) =
∑

x∈π−1(y)

f(y).

For a (totally disconnected) étale groupoid G, let G(n) be the
space of composable strings of n elements in G.
For each n and i = 0, 1, 2, . . . , n, define di : G(n) → G(n−1) by

di(g1, g2, . . . , gn) =


(g2, g3, . . . , gn) i = 0
(g1, . . . , gigi+1, . . . , gn) 1 ≤ i ≤ n−1
(g1, g2, . . . , gn−1) i = n.

It is easily checked that di is a local homeomorphism.

7 / 20



Preliminaries Homology Topological full group Almost finite groupoid

Homology of étale groupoids (2/2)

The homomorphisms

δ1 = s∗ − r∗, δn =
n∑

i=0

(−1)idi∗ (n ≥ 2)

yield the following chain complex:

0 δ0←− Cc(G(0), Z) δ1←− Cc(G(1), Z) δ2←− Cc(G(2), Z) δ3←− . . . .

We call Hn(G) = Ker δn/ Im δn+1 the homology groups of G with
constant coefficients Z.
For a clopen subset Y ⊂ G(0), we can define the reduction G|Y by

G|Y = {g ∈ G | r(g) ∈ Y, s(g) ∈ Y }.

Suppose that Y is G-full, i.e. G(0) = r(s−1(Y )). Then G and G|Y
are homologically similar, and hence have the isomorphic homology.
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H0(G) and K0(C
∗
r (G))

Cc(G, Z) is generated by 1U ’s for compact open subsets
U ⊂ G such that both r|U and s|U are one-to-one.

For such U , δ1(1U ) = 1s(U) − 1r(U), and so

H0(G) = C(G(0), Z)/ Im δ1 = C(G(0), Z)/〈1s(U) − 1r(U)〉.
On the one hand, 1U is regarded as an element of C∗

r (G).
One has (1U )∗ = 1U−1 , (1U )∗ · 1U = 1s(U), 1U · (1U )∗ = 1r(U).

Thus, the two projections 1s(U) and 1r(U) in C∗
r (G) are

Murray-von Neumann equivalent via the partial isometry 1U ,
and hence [1s(U)] = [1r(U)] in K0(C∗

r (G)).

This observation implies that there exists a natural homomorphism
Φ0 : H0(G) → K0(C∗

r (G)). It is unknown if Φ0 is injective or not
(even for free minimal actions of ZN ).
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Examples of homology groups (1/3)

Let ϕ : Γ y X be an action of a discrete group Γ on a Cantor set
X and let Gϕ = Γ × X be the associated étale groupoid.
Then Hn(Gϕ) is canonically isomorphic to the usual group
homology Hn(Γ, C(X, Z)) of Γ with coefficients C(X, Z).
Especially, H0(Gϕ) is isomorphic to the coinvariants

C(X, Z)/〈f − f ◦ ϕγ | f ∈ C(X, Z)〉.

When Γ = ZN and ϕ is free, the Chern character induces⊕
H2n+i(Gϕ) ⊗ Q ∼= Ki(C∗

r (Gϕ)) ⊗ Q i = 0, 1.

When N = 1, 2, the isomorphisms above hold without ⊗Q.
For ϕ : ZN y X arising from certain aperiodic tiling spaces (e.g.
substitution tiling, projection method tiling), computation of
Hn(Gϕ) is known (Anderson-Putnam, Gähler-Hunton-Kellendonk).
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Examples of homology groups (2/3)

.

Proposition

.

.

.

. ..

.

.

When G is an AF groupoid,

Hn(G) ∼=

{
K0(C∗

r (G)) n = 0
0 n ≥ 1.

.

Proof.

.

.

.

. ..

.

.

H0(G) ∼= K0(C∗
r (G)) is well-known (Elliott, Krieger).

Let n ≥ 1. G is an increasing union of elementary subgroupoids

Gk. Each Gk has a ‘fundamental domain’ Uk ⊂ G
(0)
k . Therefore

Hn(Gk) = Hn(Gk|Uk) = 0, because Gk|Uk is a trivial groupoid.
Hence we obtain Hn(G) = 0.

In particular, one has
⊕

H2n+i(G) ∼= Ki(C∗
r (G)).
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Examples of homology groups (3/3)

.

Proposition

.

.

.

. ..

.

.

When G is the SFT groupoid associated with A ∈ Mk(Z+),

Hn(G) ∼=


Coker(Ik − At) n = 0
Ker(Ik − At) n = 1
0 n ≥ 2.

.

Proof.

.

.

.

. ..

.

.

ρ : G 3 (x, n, y) 7→ n ∈ Z is a homomorphism and K = Ker ρ is
an AF subgroupoid. H0(K) is isomorphic to the dimension group
of At. K is isomorphic to a reduction of the skew product G×ρ Z.
Then the Lindon-Hochschild-Serre spectral sequence applies.

Again one has
⊕

H2n+i(G) ∼= Ki(C∗
r (G)).

12 / 20



Preliminaries Homology Topological full group Almost finite groupoid

Summary

H0 H1 H2 H3

AF torsion free 0 0 0

minimal Z-action torsion free Z 0 0

Penrose Z8 Z5 Z 0

chair Z[1/2]3 Z[1/2]2 Z 0

Ammann-Kramer Z181 ⊕ Z2 Z72 ⊕ Z2 Z12 Z

SFT Coker(Ik − At) Ker(Ik − At) 0 0
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Topological full group

If U ⊂ G is a compact open subset such that both r|U and s|U
are bijections between U and G(0), then α = (r|U) ◦ (s|U)−1 is a
homeomorphism on G(0).
We let [[G]] be the set of all such homeomorphisms and
call it the topological full group of G.

When ϕ : Γ y X is a free action on a Cantor set X,
any α ∈ [[Gϕ]] is of the form

α(x) = ϕc(x)(x) ∀x ∈ X = G(0),

where c : X → Γ is a continuous map.

For α = (r|U) ◦ (s|U)−1 ∈ [[G]], one has

(1U )∗ · 1U = 1U · (1U )∗ = 1G(0) ,

1U · f · (1U )∗ = f ◦ α−1 ∀f ∈ C(G(0)),

i.e. 1U ∈ C∗
r (G) is a unitary normalizing C(G(0)).
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[[G]] for AF groupoids and Z-actions

For an AF groupoid G, the following are known (Krieger).

[[G]] is written as an increasing union of finite direct sums of
symmetric groups (in particular, locally finite).

[[G]] is a complete invariant for the isomorphism class of G.

For minimal actions ϕi : Z y Xi on Cantor sets, the following are
equivalent (Giordano-Putnam-Skau, Boyle-Tomiyama).

.

.

.

1 [[Gϕ1 ]] is isomorphic to [[Gϕ2 ]].

.

.

.

2 Gϕ1 is isomorphic to Gϕ2 .

.

.

.

3 ϕ1 is conjugate to ϕ2 or ϕ−1
2 .

For a minimal action ϕ : Z y X on a Cantor set,

D([[Gϕ]]) is simple and
[[Gϕ]]/D([[Gϕ]]) ∼= Z ⊕ (H0(Gϕ) ⊗ Z2).
D([[Gϕ]]) is finitely generated if and only if ϕ is expansive.
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Almost finite groupoid

.

Definition

.

.

.

. ..

.

.

An étale groupoid G on a Cantor set is said to be almost finite
if for any compact subset C ⊂ G and ε > 0
there exists an elementary subgroupoid K ⊂ G such that

|CKx \ Kx|
|Kx|

< ε ∀x ∈ G(0).

This may remind us of the Følner condition for amenable groups,
but there is no direct relationship between them.
AF groupoids are clearly almost finite (∵ ∀C ∃K C ⊂ K).

.

Lemma (M)

.

.

.

. ..

.

.

When ϕ : ZN y X is free, Gϕ is almost finite.

An almost finite groupoid admits an invariant probability measure
on G(0), and so SFT groupoids are not almost finite.
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H0(G) and [[G]]

.

Theorem (M)

.

.

.

. ..

.

.

Let G be an étale almost finite groupoid. For two G-full clopen
subsets U, V ⊂ G(0), the following are equivalent.

.

.

.

1 [1U ] equals [1V ] in H0(G).

.

.

.

2 There exists α ∈ [[G]] such that α(U) = V .

.

.

.

3 There exists a unitary w ∈ C∗
r (G) normalizing C(G(0))

such that w1Uw∗ = 1V .

.

Theorem (M)

.

.

.

. ..

.

.

Suppose that G is almost finite and minimal. For two clopen
subsets U, V ⊂ G(0), the following are equivalent.

.

.

.

1 µ(U) equals µ(V ) for any invariant measure µ ∈ M(G).

.

.

.

2 There exists α ∈ [G] such that α(U) = V .
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Index map

Let G be an étale essentially principal groupoid on a Cantor set.
For α = (r|U) ◦ (s|U)−1 ∈ [[G]],

δ1(1U ) = s∗(1U ) − r∗(1U ) = 1s(U) − 1r(U) = 0, i.e. 1U ∈ Ker δ1.

We define the index map I : [[G]] → H1(G) by I(α) = [1U ].
It is easy to see that I is a homomorphism.

When ϕ : Z y X is minimal, the index map takes its values in
H1(Gϕ) ∼= Z. For α ∈ [[Gϕ]], we have

I(α) =
∫

G(0)

c(x) dµ(x) ∈ Z,

where α(x) = ϕc(x)(x) and µ ∈ M(G) (Giordano-Putnam-Skau).
In this case, I(α) is also understood as the Fredholm index of
certain Fredholm operators.
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H1(G) and K1(C
∗
r (G))

As mentioned before, for α = (r|U) ◦ (s|U)−1 ∈ [[G]],
1U can be thought of as a unitary of C∗

r (G). Hence one can define
a homomorphism J : [[G]] → K1(C∗

r (G)) by J(α) = [1U ].

.

Theorem (M)

.

.

.

. ..

. .

If G is almost finite, then we have the following.

I : [[G]] → H1(G) is surjective.

Any α ∈ Ker I is written as a product of four elements in
[[G]] of finite order. In particular, Ker I is contained in Ker J .

.

Corollary (M)

.

.

.

. ..

.

.

If G is almost finite, then there exists a homomorphism
Φ1 : H1(G) → K1(C∗

r (G)) such that Φ1 ◦ I = J .
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