Homology of étale groupoids on Cantor sets

Hiroki Matui matui@math.s.chiba-u.ac.jp

Chiba University

August 5, 2010 Pingree Park Dynamical Systems Workshop

Outline

topological dynamical systems on Cantor sets (group actions, equivalence relations, ...)

 \longrightarrow étale groupoids G

 $\longrightarrow \begin{cases} \text{homology group } H_n(G), \ n \ge 0 \text{ (Crainic-Moerdijk 2000)} \\ K\text{-group } K_i(C_r^*(G)), \ i = 0, 1 \\ \text{topological full group } [[G]] \end{cases}$

Interaction between them?

- \exists a homomorphism $\Phi_0: H_0(G) \to K_0(C_r^*(G)).$
- \exists a homomorphism $I : [[G]] \to H_1(G)$, called the index map.
- For certain G, \exists a homomorphism $\Phi_1 : H_1(G) \to K_1(C_r^*(G))$.

Étale groupoids

A groupoid G is a 'group-like' algebraic object, in which the product may not be defined for all pairs in G.

- $g \in G$ is thought of as an arrow \xleftarrow{g} .
- $r: g \mapsto gg^{-1}$ is called the range map.
- $s: g \mapsto g^{-1}g$ is called the source map.
- $G^{(0)} = r(G) = s(G) \subset G$ is called the unit space.

G is an étale groupoid if G is equipped with a locally compact Hausdorff topology compatible with the groupoid structure and the range (or source) map is a local homeomorphism.

G is said to be principal if any g satisfying r(g)=s(g) belongs to $G^{(0)}.$ A principal groupoid G is identified with the equivalence relation $\{(r(g),s(g))\in G^{(0)}\times G^{(0)}\mid g\in G\}.$

Examples of étale groupoids (1/3)

Let $\varphi: \Gamma \curvearrowright X$ be an action of a discrete group Γ on a locally compact Hausdorff space X by homeomorphisms. $G_{\varphi} = \Gamma \times X$ is an étale groupoid with

$$(\gamma',x')\cdot(\gamma,x)=(\gamma'\gamma,x)\quad\text{if}\quad x'=\varphi^\gamma(x),$$

$$(\gamma, x)^{-1} = (\gamma^{-1}, \varphi^{\gamma}(x)).$$

 G_{φ} is called the transformation groupoid. The unit space $G_{\varphi}^{(0)} = \{e\} \times X$ is identified with X.

 G_{φ} is principal if and only if φ is free, and in this case G_{φ} is identified with the étale equivalence relation on X induced by φ .

The groupoid C^* -algebra $C^*_r(G_{\varphi})$ is canonically isomorphic to the crossed product C^* -algebra $C_0(X) \rtimes_r \Gamma$.

Examples of étale groupoids (2/3)

Let G be an étale groupoid whose unit space is a Cantor set. G is called an elementary groupoid if G is principal and compact. If G is elementary, then every G-orbit is finite and \exists clopen set $U \subset G^{(0)}$ which meets every G-orbit exactly once.

We say that G is an AF groupoid (or AF equivalence relation) if it can be written as an increasing union of elementary subgroupoids.

Let \boldsymbol{A} be a finite set. The equivalence relation

 $\{(x,y)\in A^{\mathbb{N}}\times A^{\mathbb{N}}\mid \exists n\in\mathbb{N}\quad\forall k\geq n\quad x_k=y_k\}$

becomes an AF groupoid with a natural topology.

For an AF groupoid G, $C_r^*(G)$ is known to be an AF C^* -algebra, i.e. $C_r^*(G)$ is an inductive limit of finite dimensional C^* -algebras.

Preliminaries

Examples of étale groupoids (3/3)

Let $\sigma: X \to X$ be a one-sided SFT.

$$G = \{(x, n, y) \in X \times \mathbb{Z} \times X \mid \exists k, l \in \mathbb{N} \ n = k - l \ \sigma^k(x) = \sigma^l(y)\}$$

is an étale groupoid with

$$(x', n', y') \cdot (x, n, y) = (x', n'+n, y)$$
 if $y' = x$,
 $(x, n, y)^{-1} = (y, -n, x).$

We call G an SFT groupoid. G is not principal because σ has periodic points.

The map $\rho: G \ni (x, n, y) \mapsto n \in \mathbb{Z}$ is a homomorphism and its kernel $K = \text{Ker } \rho = \{(x, 0, y)\}$ is known to be an AF subgroupoid.

 $C_r^*(G)$ is called the Cuntz-Krieger algebra.

Homology of étale groupoids (1/2)

For any local homeomorphism $\pi: X \to Y$ between locally compact Hausdorff spaces, one can define $\pi_*: C_c(X, \mathbb{Z}) \to C_c(Y, \mathbb{Z})$ by

$$\pi_*(f)(y) = \sum_{x \in \pi^{-1}(y)} f(y).$$

For a (totally disconnected) étale groupoid G, let $G^{(n)}$ be the space of composable strings of n elements in G. For each n and i = 0, 1, 2, ..., n, define $d_i : G^{(n)} \to G^{(n-1)}$ by

$$d_i(g_1, g_2, \dots, g_n) = \begin{cases} (g_2, g_3, \dots, g_n) & i = 0\\ (g_1, \dots, g_i g_{i+1}, \dots, g_n) & 1 \le i \le n-1\\ (g_1, g_2, \dots, g_{n-1}) & i = n. \end{cases}$$

It is easily checked that d_i is a local homeomorphism.

Homology of étale groupoids (2/2)

The homomorphisms

$$\delta_1 = s_* - r_*, \quad \delta_n = \sum_{i=0}^n (-1)^i d_{i*} \quad (n \ge 2)$$

yield the following chain complex:

$$0 \stackrel{\delta_0}{\longleftarrow} C_c(G^{(0)}, \mathbb{Z}) \stackrel{\delta_1}{\longleftarrow} C_c(G^{(1)}, \mathbb{Z}) \stackrel{\delta_2}{\longleftarrow} C_c(G^{(2)}, \mathbb{Z}) \stackrel{\delta_3}{\longleftarrow} \dots$$

We call $H_n(G) = \operatorname{Ker} \delta_n / \operatorname{Im} \delta_{n+1}$ the homology groups of G with constant coefficients \mathbb{Z} .

For a clopen subset $Y \subset G^{(0)}$, we can define the reduction G|Y by

$$G|Y = \{g \in G \mid r(g) \in Y, \ s(g) \in Y\}.$$

Suppose that Y is G-full, i.e. $G^{(0)} = r(s^{-1}(Y))$. Then G and G|Y are homologically similar, and hence have the isomorphic homology.

$\overline{H_0(G)}$ and $\overline{K_0(C^*_r(G))}$

- $C_c(G,\mathbb{Z})$ is generated by 1_U 's for compact open subsets $U \subset G$ such that both r|U and s|U are one-to-one.
- For such U, $\delta_1(1_U) = 1_{s(U)} 1_{r(U)}$, and so $H_0(G) = C(G^{(0)}, \mathbb{Z}) / \operatorname{Im} \delta_1 = C(G^{(0)}, \mathbb{Z}) / \langle 1_{s(U)} - 1_{r(U)} \rangle.$
- On the one hand, 1_U is regarded as an element of $C_r^*(G)$.
- One has $(1_U)^* = 1_{U^{-1}}$, $(1_U)^* \cdot 1_U = 1_{s(U)}$, $1_U \cdot (1_U)^* = 1_{r(U)}$.
- Thus, the two projections $1_{s(U)}$ and $1_{r(U)}$ in $C_r^*(G)$ are Murray-von Neumann equivalent via the partial isometry 1_U , and hence $[1_{s(U)}] = [1_{r(U)}]$ in $K_0(C_r^*(G))$.

This observation implies that there exists a natural homomorphism $\Phi_0: H_0(G) \to K_0(C_r^*(G))$. It is unknown if Φ_0 is injective or not (even for free minimal actions of \mathbb{Z}^N).

Examples of homology groups (1/3)

Let $\varphi: \Gamma \curvearrowright X$ be an action of a discrete group Γ on a Cantor set X and let $G_{\varphi} = \Gamma \times X$ be the associated étale groupoid. Then $H_n(G_{\varphi})$ is canonically isomorphic to the usual group homology $H_n(\Gamma, C(X, \mathbb{Z}))$ of Γ with coefficients $C(X, \mathbb{Z})$. Especially, $H_0(G_{\varphi})$ is isomorphic to the coinvariants

$$C(X,\mathbb{Z})/\langle f - f \circ \varphi_{\gamma} \mid f \in C(X,\mathbb{Z}) \rangle.$$

When $\Gamma = \mathbb{Z}^N$ and φ is free, the Chern character induces

$$\bigoplus H_{2n+i}(G_{\varphi}) \otimes \mathbb{Q} \cong K_i(C_r^*(G_{\varphi})) \otimes \mathbb{Q} \quad i = 0, 1.$$

When N = 1, 2, the isomorphisms above hold without $\otimes \mathbb{Q}$. For $\varphi : \mathbb{Z}^N \curvearrowright X$ arising from certain aperiodic tiling spaces (e.g. substitution tiling, projection method tiling), computation of $H_n(G_{\varphi})$ is known (Anderson-Putnam, Gähler-Hunton-Kellendonk).

Examples of homology groups (2/3)

Proposition

When G is an AF groupoid,

$$H_n(G) \cong \begin{cases} K_0(C_r^*(G)) & n = 0\\ 0 & n \ge 1. \end{cases}$$

Proof.

 $\begin{array}{l} H_0(G)\cong K_0(C_r^*(G)) \text{ is well-known (Elliott, Krieger)}.\\ \text{Let }n\geq 1. \ G \text{ is an increasing union of elementary subgroupoids}\\ G_k. \text{ Each }G_k \text{ has a 'fundamental domain' }U_k\subset G_k^{(0)}. \text{ Therefore}\\ H_n(G_k)=H_n(G_k|U_k)=0, \text{ because }G_k|U_k \text{ is a trivial groupoid.}\\ \text{Hence we obtain }H_n(G)=0. \end{array}$

In particular, one has $\bigoplus H_{2n+i}(G) \cong K_i(C_r^*(G)).$

Examples of homology groups (3/3)

Proposition

When G is the SFT groupoid associated with $A \in M_k(\mathbb{Z}_+)$,

$$H_n(G) \cong \begin{cases} \operatorname{Coker}(I_k - A^t) & n = 0\\ \operatorname{Ker}(I_k - A^t) & n = 1\\ 0 & n \ge 2. \end{cases}$$

Proof.

 $\rho: G \ni (x, n, y) \mapsto n \in \mathbb{Z}$ is a homomorphism and $K = \operatorname{Ker} \rho$ is an AF subgroupoid. $H_0(K)$ is isomorphic to the dimension group of A^t . K is isomorphic to a reduction of the skew product $G \times_{\rho} \mathbb{Z}$. Then the Lindon-Hochschild-Serre spectral sequence applies. \Box

Again one has $\bigoplus H_{2n+i}(G) \cong K_i(C_r^*(G)).$

Summary

	H_0	H_1	H_2	H_3	
AF	torsion free	0	0	0	
minimal \mathbb{Z} -action	torsion free	Z	0	0	
Penrose	\mathbb{Z}^8	\mathbb{Z}^5	\mathbb{Z}	0	
chair	$\mathbb{Z}[1/2]^3$	$\mathbb{Z}[1/2]^2$	\mathbb{Z}	0	
Ammann-Kramer	$\mathbb{Z}^{181}\oplus\mathbb{Z}_2$	$\mathbb{Z}^{72}\oplus\mathbb{Z}_2$	\mathbb{Z}^{12}	\mathbb{Z}	
SFT	$\operatorname{Coker}(I_k - A^t)$	$\operatorname{Ker}(I_k - A^t)$	0	0	

Topological full group

If $U \subset G$ is a compact open subset such that both r|U and s|U are bijections between U and $G^{(0)}$, then $\alpha = (r|U) \circ (s|U)^{-1}$ is a homeomorphism on $G^{(0)}$.

We let [[G]] be the set of all such homeomorphisms and call it the topological full group of G.

When $\varphi:\Gamma \curvearrowright X$ is a free action on a Cantor set X, any $\alpha \in [[G_{\varphi}]]$ is of the form

$$\alpha(x) = \varphi^{c(x)}(x) \quad \forall x \in X = G^{(0)},$$

where $c: X \to \Gamma$ is a continuous map.

For
$$\alpha = (r|U) \circ (s|U)^{-1} \in [[G]]$$
, one has
 $(1_U)^* \cdot 1_U = 1_U \cdot (1_U)^* = 1_{G^{(0)}},$
 $1_U \cdot f \cdot (1_U)^* = f \circ \alpha^{-1} \quad \forall f \in C(G^{(0)}),$
i.e. $1_U \in C_r^*(G)$ is a unitary normalizing $C(G^{(0)}).$

[[G]] for AF groupoids and \mathbb{Z} -actions

For an AF groupoid G, the following are known (Krieger).

- [[G]] is written as an increasing union of finite direct sums of symmetric groups (in particular, locally finite).
- [[G]] is a complete invariant for the isomorphism class of G.

For minimal actions $\varphi_i : \mathbb{Z} \curvearrowright X_i$ on Cantor sets, the following are equivalent (Giordano-Putnam-Skau, Boyle-Tomiyama).

 $\textcircled{\ } [[G_{\varphi_1}]] \text{ is isomorphic to } [[G_{\varphi_2}]].$

2
$$G_{arphi_1}$$
 is isomorphic to G_{arphi_2}

• φ_1 is conjugate to φ_2 or φ_2^{-1} .

For a minimal action $\varphi:\mathbb{Z} \curvearrowright X$ on a Cantor set,

- $D([[G_{\varphi}]])$ is simple and $[[G_{\varphi}]]/D([[G_{\varphi}]]) \cong \mathbb{Z} \oplus (H_0(G_{\varphi}) \otimes \mathbb{Z}_2).$
- $D([[G_{\varphi}]])$ is finitely generated if and only if φ is expansive.

Almost finite groupoid

Definition

An étale groupoid G on a Cantor set is said to be almost finite if for any compact subset $C \subset G$ and $\varepsilon > 0$ there exists an elementary subgroupoid $K \subset G$ such that

$$\frac{|CKx \setminus Kx|}{|Kx|} < \varepsilon \quad \forall x \in G^{(0)}.$$

This may remind us of the Følner condition for amenable groups, but there is no direct relationship between them.

AF groupoids are clearly almost finite (: $\forall C \exists K \ C \subset K$).

Lemma (M)

When $\varphi:\mathbb{Z}^N \curvearrowright X$ is free, G_{φ} is almost finite.

An almost finite groupoid admits an invariant probability measure on ${\cal G}^{(0)},$ and so SFT groupoids are not almost finite.

$H_0(G)$ and [[G]]

Theorem (M)

Let G be an étale almost finite groupoid. For two G-full clopen subsets $U,V\subset G^{(0)}$, the following are equivalent.

- $[1_U]$ equals $[1_V]$ in $H_0(G)$.
- 2 There exists $\alpha \in [[G]]$ such that $\alpha(U) = V$.
- There exists a unitary w ∈ C^{*}_r(G) normalizing C(G⁽⁰⁾) such that w1_Uw^{*} = 1_V.

Theorem (M)

Suppose that G is almost finite and minimal. For two clopen subsets $U, V \subset G^{(0)}$, the following are equivalent.

- $\mu(U)$ equals $\mu(V)$ for any invariant measure $\mu \in M(G)$.
- 2 There exists $\alpha \in [G]$ such that $\alpha(U) = V$.

Index map

Let G be an étale essentially principal groupoid on a Cantor set. For $\alpha=(r|U)\circ(s|U)^{-1}\in[[G]],$

$$\delta_1(1_U) = s_*(1_U) - r_*(1_U) = 1_{s(U)} - 1_{r(U)} = 0$$
, i.e. $1_U \in \operatorname{Ker} \delta_1$.

We define the index map $I : [[G]] \to H_1(G)$ by $I(\alpha) = [1_U]$. It is easy to see that I is a homomorphism.

When $\varphi : \mathbb{Z} \curvearrowright X$ is minimal, the index map takes its values in $H_1(G_{\varphi}) \cong \mathbb{Z}$. For $\alpha \in [[G_{\varphi}]]$, we have

$$I(\alpha) = \int_{G^{(0)}} c(x) \, d\mu(x) \in \mathbb{Z},$$

where $\alpha(x) = \varphi^{c(x)}(x)$ and $\mu \in M(G)$ (Giordano-Putnam-Skau). In this case, $I(\alpha)$ is also understood as the Fredholm index of certain Fredholm operators.

$H_1(G)$ and $K_1(C_r^*(G))$

As mentioned before, for $\alpha = (r|U) \circ (s|U)^{-1} \in [[G]]$, 1_U can be thought of as a unitary of $C_r^*(G)$. Hence one can define a homomorphism $J : [[G]] \to K_1(C_r^*(G))$ by $J(\alpha) = [1_U]$.

Theorem (M)

If G is almost finite, then we have the following.

- $I: [[G]] \to H_1(G)$ is surjective.
- Any $\alpha \in \text{Ker } I$ is written as a product of four elements in [[G]] of finite order. In particular, Ker I is contained in Ker J.

Corollary (M)

If G is almost finite, then there exists a homomorphism $\Phi_1: H_1(G) \to K_1(C_r^*(G))$ such that $\Phi_1 \circ I = J$.

References

- M. Boyle and J. Tomiyama, *Bounded topological orbit equivalence and* C^{*}-algebras, J. Math. Soc. Japan 50 (1998), 317–329.
- M. Crainic and I. Moerdijk, *A homology theory for étale groupoids*, J. Reine Angew. Math. 521 (2000), 25–46.
- T. Giordano, I. F. Putnam and C. F. Skau, *Full groups of Cantor minimal systems*, Israel J. Math. 111 (1999), 285–320.
- W. Krieger, On a dimension for a class of homeomorphism groups, Math. Ann. 252 (1979/80), 87–95.
- H. Matui, Some remarks on topological full groups of Cantor minimal systems, Internat. J. Math. 17 (2006), 231–251.
- H. Matui, Homology and topological full groups of étale groupoids on totally disconnected spaces, preprint. arXiv:0909.1624
- J. Renault, A Groupoid Approach to C*-algebras, Lecture Notes in Mathematics 793, Springer, Berlin, 1980.