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Preliminaries
Outline
topological dynamical systems on Cantor sets

(group actions, equivalence relations, ...)

—  étale groupoids G

homology group H,(G), n > 0 (Crainic-Moerdijk 2000)
— K-group K;(C}(G)), i=0,1
topological full group [[G]]

Interaction between them?
@ 3 a homomorphism @ : Hy(G) — Ko(C}(Q)).
e 3 a homomorphism I : [[G]] — Hi(G), called the index map.
@ For certain G, 3 a homomorphism @1 : H1(G) — K1(C(G)).
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Preliminaries

Etale groupoids

A groupoid G is a ‘group-like’ algebraic object, in which the
product may not be defined for all pairs in G.

e g € G is thought of as an arrow e <~ e
°or:g—gg !
@ s5:g+ g lgis called the source map.

o GO =1(G@) = s(G) C G is called the unit space.

is called the range map.

G is an étale groupoid if G is equipped with a locally compact
Hausdorff topology compatible with the groupoid structure and
the range (or source) map is a local homeomorphism.

G is said to be principal if any g satisfying 7(g) = s(g) belongs to
G A principal groupoid G is identified with the equivalence
relation {(r(g),s(g)) € GO x GO | g € G}.



Preliminaries

Examples of étale groupoids (1/3)

Let ¢ : I' ~ X be an action of a discrete group I on a locally
compact Hausdorff space X by homeomorphisms.
G, =T x X is an étale groupoid with

(s 2) - (v, 2) = (Yy,2) if 2 = (x),

(v 2) ™ = (1 " (@)
G, is called the transformation groupoid.

The unit space Gg]) = {e} x X is identified with X.

G is principal if and only if ¢ is free, and in this case G, is
identified with the étale equivalence relation on X induced by ¢.

The groupoid C*-algebra C}:(G,,) is canonically isomorphic to the
crossed product C*-algebra Cy(X) %, I.



Preliminaries

Examples of étale groupoids (2/3)

Let G be an étale groupoid whose unit space is a Cantor set.

G is called an elementary groupoid if G is principal and compact.
If G is elementary, then every G-orbit is finite and

3 clopen set U € G(© which meets every G-orbit exactly once.

We say that G is an AF groupoid (or AF equivalence relation) if it
can be written as an increasing union of elementary subgroupoids.

Let A be a finite set. The equivalence relation
{(z,y) e ANx AV |IneN Vk>n x, =y}
becomes an AF groupoid with a natural topology.

For an AF groupoid G, C(G) is known to be an AF C*-algebra,
i.e. C¥(G) is an inductive limit of finite dimensional C*-algebras.



Preliminaries

Examples of étale groupoids (3/3)

Let o : X — X be a one-sided SFT.
G={(z,n,y) € X XZxX|3k1eNn=k-lc"z)=0'(y)}
is an étale groupoid with

(2,0, y) - (z,n,y) = (@', n'+n,y) if o =ua,

(l’, n, y)il = (y7 —-n, x)
We call G an SFT groupoid. G is not principal because ¢ has
periodic points.

The map p: G 3 (z,n,y) — n € Z is a homomorphism and its
kernel K = Ker p = {(x,0,y)} is known to be an AF subgroupoid.

C)(G) is called the Cuntz-Krieger algebra.

6/20



Homology

Homology of étale groupoids (1/2)

For any local homeomorphism 7 : X — Y between locally compact
Hausdorff spaces, one can define 7, : Co(X,Z) — C.(Y,Z) by

Z fly

zem—(y)

For a (totally disconnected) étale groupoid G, let G(™ be the
space of composable strings of n elements in G.
Foreach nand i =0,1,2,...,n, define d; : G™ — Gn—1) by

(927937"'7971) 1=0
di(gl’g2""’gn): (917-”79i9i+17---79n) 1§2Sn—1
(91,92, -, gn—1) i =n.

It is easily checked that d; is a local homeomorphism.



Homology

Homology of étale groupoids (2/2)

The homomorphisms
01=5s—7s, On=> (~1du (n>2)

yield the following chain complex:

0% 0. (GO, z) & (6D, z) &2 0GP, z) &

We call H,(G) = Ker 6,,/ Im d,, 41 the homology groups of G with
constant coefficients Z.
For a clopen subset Y € G(©), we can define the reduction G|Y by

GlY={9€eG|r(g) €Y, s(g) eY}.

Suppose that Y is G-full, i.e. G(© = 7(s71(Y)). Then G and G|Y
are homologically similar, and hence have the isomorphic homology.



Homology

Hy(G) and Ky(CH(Q))

o C.(G,Z) is generated by 1y's for compact open subsets
U C G such that both 7|U and s|U are one-to-one.
e For such U, 61(1y) = 1yu) — 1), and so
Hy(G) = C(G",Z)/Im by = C(GV), Z) /(1 L)
@ On the one hand, 1y is regarded as an eIement of C*(G)
@ One has (lU) = 1U—1, (1U) 1U =1 s(U)r 1U (1U) 1 r(U)-
@ Thus, the two projections 14y and 1,y in C(G) are

Murray-von Neumann equivalent via the partial isometry 1y,
and hence [1,)] = [L )] in Ko(Cr (G)).

This observation implies that there exists a natural homomorphism
Oy : Ho(G) — Ko(C}(G)). It is unknown if @ is injective or not
(even for free minimal actions of ZV).



Homology

Examples of homology groups (1/3)

Let ¢ : ' ~ X be an action of a discrete group I" on a Cantor set
X and let G, =T x X be the associated étale groupoid.

Then H,,(G) is canonically isomorphic to the usual group
homology H,, (T, C(X,Z)) of I with coefficients C(X,Z).
Especially, Hy(G) is isomorphic to the coinvariants

CX,Z)/(f = fopy| [ €CX,Z)).

When I' = Z" and ¢ is free, the Chern character induces

D Honti(Gp) ®Q = Ki(CH(Gy))®Q i=0,1.

When N = 1,2, the isomorphisms above hold without ®Q.

For ¢ : ZV ~ X arising from certain aperiodic tiling spaces (e.g.
substitution tiling, projection method tiling), computation of
H,(G,) is known (Anderson-Putnam, Gahler-Hunton-Kellendonk).
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Homology

Examples of homology groups (2/3)

When G is an AF groupoid,

Hy(G) = Ko(C}(Q)) is well-known (Elliott, Krieger).

Let n > 1. G is an increasing union of elementary subgroupoids
Gy. Each G has a ‘fundamental domain’ U, C Gg)). Therefore
H,(Gk) = H,(Gg|Uk) = 0, because G|Uy is a trivial groupoid.
Hence we obtain H,(G) = 0.

Ol

In particular, one has @ Ha,1i(G) = K;(C)(Q)).
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Homology

Examples of homology groups (3/3)

When G is the SFT groupoid associated with A € My(Z.),

Coker(I, — AY) n=0
H,(G) = Ker(l, — AY) n=1
0 n > 2.

Proof.

p:G > (xz,n,y) — n €Zis a homomorphism and K = Kerp is
an AF subgroupoid. Hy(K) is isomorphic to the dimension group
of A*. K is isomorphic to a reduction of the skew product G X p L.
Then the Lindon-Hochschild-Serre spectral sequence applies. D/

Again one has @ Ha,1i(G) = Ki(Cr(GQ)).
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Homology
Summary

Hy Hy Hy | Hs

AF torsion free 0 0 0
minimal Z-action torsion free Z 0 0
Penrose 78 A Z 0
chair Z[1)2)3 Z[1/2]? Z | 0
Ammann-Kramer 7% & 7, Z?®Z, |72 | Z
SFT Coker(I, — A?) | Ker(I, — AY) | 0 0
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Topological full group
Topological full group

If U C G is a compact open subset such that both r|U and s|U
are bijections between U and G(©), then a = (r|U) o (s]U) ' is a
homeomorphism on G(©).

We let [[G]] be the set of all such homeomorphisms and

call it the topological full group of G.

When ¢ : ' ~ X is a free action on a Cantor set X,
any a € [[G,]] is of the form

a(z) = oD (z) VzeX =GO,
where ¢ : X — I' is a continuous map.
For a = (r|U) o (s|U)~! € [[G]], one has
(1v)* 1y =1v - ()" = lgo),
ly-f-(lp)*=foat Vfeo(GO),
i.e. 1y € C#(@) is a unitary normalizing C'(G(©)).
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Topological full group

[[G]] for AF groupoids and Z-actions

For an AF groupoid G, the following are known (Krieger).
e [[G]] is written as an increasing union of finite direct sums of
symmetric groups (in particular, locally finite).
e [[G]] is a complete invariant for the isomorphism class of G.

For minimal actions ¢; : Z ~ X; on Cantor sets, the following are
equivalent (Giordano-Putnam-Skau, Boyle-Tomiyama).

@ [[G,,]] is isomorphic to [[G,]].
@ G, is isomorphic to G, .
© (1 is conjugate to 3 or 9051.

For a minimal action ¢ : Z ~ X on a Cantor set,
e D([[Gy]]) is simple and
[[G/D([GL]]) = Z & (Ho(Gy) © Zs).
o D([[G,]]) is finitely generated if and only if ¢ is expansive.
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Almost finite groupoid

Almost finite groupoid

Definition

An étale groupoid G on a Cantor set is said to be almost finite
if for any compact subset C € G and € > 0
there exists an elementary subgroupoid K C G such that

|CKz\ Kz

(0)
Ka] <e VeeGW.

This may remind us of the Fglner condition for amenable groups,
but there is no direct relationship between them.
AF groupoids are clearly almost finite (.- VC 3K C C K).

When ¢ : 7ZN ~ X is free, G is almost finite.

An almost finite groupoid admits an invariant probability measure

on G, and so SFT groupoids are not almost finite. o



Almost finite groupoid

Hy(G) and [[G]]

Theorem (M)

Let G be an étale almost finite groupoid. For two G-full clopen
subsets U,V C GO, the following are equivalent.

Q [ly] equals [1y] in Hyo(G).
@ There exists a € [[G]] such that «(U) =V.

Q@ There exists a unitary w € C(G) normalizing C(G?)
such that wlyw* = 1y.

Suppose that G is almost finite and minimal. For two clopen
subsets U,V c GO, the following are equivalent.

@ w(U) equals (V') for any invariant measure u € M(G).
@ There exists a € [G] such that a(U) = V.
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Almost finite groupoid
Index map

Let GG be an étale essentially principal groupoid on a Cantor set.
For a = (r|U) o (s|U)~! € [[G]],

51(1(]) = 8*(1U) - 7’*(1(]) = 1s(U) - lr(U) = 0, i.e. 1U S Ker51.

We define the index map I : [[G]] — Hi(G) by I(a) = [1y].
It is easy to see that I is a homomorphism.

When ¢ : Z ~ X is minimal, the index map takes its values in
Hi(G,) = Z. For o € [[G,]], we have

I(a) = /G<0> c(x)du(zx) € Z,

where a(z) = ¢“®)(z) and p € M(G) (Giordano-Putnam-Skau).
In this case, I(«) is also understood as the Fredholm index of

certain Fredholm operators.
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Almost finite groupoid

Hy(G) and K, (C*(Q))

As mentioned before, for a = (r|U) o (s|U)~! € [[G]],
1y can be thought of as a unitary of C¥(G). Hence one can define
a homomorphism J : [[G]] — K1(C}(G)) by J(«a) = [1y].
Theorem (M)
If G is almost finite, then we have the following.

o I:[[G]] — H1(G) is surjective.

@ Any « € Ker I is written as a product of four elements in

[[G]] of finite order. In particular, Ker I is contained in Ker J.

v

Corollary (M)

If G is almost finite, then there exists a homomorphism
P : Hl(G) — Kl(C:(G)) such that &1 01 = J.
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Almost finite groupoid
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