\mathbb{Z}^N -actions on UHF algebras of infinite type

Hiroki Matui matui@math.s.chiba-u.ac.jp

Chiba University

June 29, 2010 Conference on Selected Topics in Non-commutative Geometry University of Victoria

Goal

Goal (too ambitious)

Classify outer actions of discrete amenable groups on simple classifiable C^* -algebras (Kirchberg algebras, UHF, AF, AT, AH algebras, the Jiang-Su alg. etc.) up to cocycle conjugacy.

Outer actions of finite groups on unital simple C^* -algebras do not always have the Rohlin property. In fact, if an action $\alpha:\Gamma\curvearrowright A$ of a finite group Γ on a unital simple C^* -algebra A has the Rohlin property, then $K_0(A)$ and $K_1(A)$ are completely cohomologically trivial as Γ -modules.

Goal (realistic)

Classify outer actions of \mathbb{Z}^N (or "poly-infinite-cyclic" groups) on simple classifiable C^* -algebras up to cocycle conjugacy.

Cocycle conjugacy

Definition

Let $\alpha:\Gamma\curvearrowright A$ be an action of a countable discrete group Γ on a unital $C^*\text{-algebra }A.$

 $(u_g)_{g\in\Gamma}\subset U(A)$ is called an $lpha ext{-cocycle}$ if

$$u_g \alpha_g(u_h) = u_{gh} \quad \forall g, h \in \Gamma.$$

Two actions $\alpha, \beta: \Gamma \curvearrowright A$ are said to be cocycle conjugate, if

$$\exists \gamma \in \operatorname{Aut}(A), \quad \exists (u_q)_q \ \alpha\text{-cocycle}$$

$$\operatorname{Ad} u_g \circ \alpha_g = \gamma \circ \beta_g \circ \gamma^{-1} \quad \forall g \in \Gamma.$$

Strong cocycle conjugacy further requires

$$\exists v_n \in U(A), \quad \|u_q - v_n \alpha_q(v_n^*)\| \to 0.$$

Open problems

Strong outerness

An automorphism of the from Ad u is said to be inner.

An action $\alpha:\Gamma\curvearrowright A$ is said to be outer if α_g is not inner for every $g\in\Gamma\setminus\{e\}.$

Let T(A) denote the set of tracial states and let π_{τ} be the GNS representation by $\tau \in T(A)$.

 $\alpha \in \operatorname{Aut}(A)$ is said to be not weakly inner if the extension $\bar{\alpha}$ on $\pi_{\tau}(A)''$ is not inner for any $\tau \in T(A)^{\alpha}$, that is, there does not exist a unitary $U \in \pi_{\tau}(A)''$ such that $\bar{\alpha} = \operatorname{Ad} U$.

An action $\alpha:\Gamma\curvearrowright A$ is said to be strongly outer if α_g is not weakly inner for every $g\in\Gamma\setminus\{e\}$.

If
$$T(A) = \{\tau\}$$
, then

 $\alpha:\Gamma \curvearrowright A$ is strongly outer $\iff \bar{\alpha}:\Gamma \curvearrowright \pi_{\tau}(A)''$ is outer.

Main result

A UHF algebra A is said to be of infinite type if $A \otimes A \cong A$.

Theorem (M)

Let A be a UHF algebra of infinite type.

For $\alpha: \mathbb{Z}^N \curvearrowright A$, the following are equivalent.

- **1** α is strongly outer.
- $oldsymbol{2}$ lpha has the Rohlin property.

Theorem (M)

Let A be a UHF algebra of infinite type. Any strongly outer actions of \mathbb{Z}^N on A are mutually strongly cocycle conjugate to each other.

\mathbb{Z}^N -actions on simple C^* -algebras

- (A. Kishimoto 1995)
 Uniqueness of strongly outer Z-actions on UHF algebras.
- (A. Kishimoto 1998, M 2010)
 Strongly outer Z-actions on AT or AH algebras.
- (H. Nakamura 2000)
 Outer Z-actions on Kirchberg algebras.
- (T. Katsura and M 2008) Strongly outer \mathbb{Z}^2 -actions on UHF algebras.
- (M. Izumi and M 2010) Outer and locally KK-trivial \mathbb{Z}^2 -actions on Kirchberg alg. Uniqueness of outer \mathbb{Z}^N -actions on \mathcal{O}_2 , \mathcal{O}_∞ etc.
- (Y. Sato, Y. Sato and M) Uniqueness of strongly outer \mathbb{Z} -actions and \mathbb{Z}^2 -actions on the Jiang-Su algebra \mathcal{Z} .

Rohlin property for \mathbb{Z}^N -actions (1)

Let $\xi_1, \xi_2, \dots, \xi_N \in \mathbb{Z}^N$ be the canonical basis. We let $A^{\infty} = \ell^{\infty}(\mathbb{N}, A)/c_0(\mathbb{N}, A)$ and $A_{\infty} = A^{\infty} \cap A'$.

Definition (Nakamura 1999)

 $\alpha:\mathbb{Z}^N \curvearrowright A$ is said to have the Rohlin property, if for any $M\in\mathbb{N}$, there exist $R\in\mathbb{N},\ m_r\in\mathbb{N}^N\ (r=1,2,\ldots,R)$ and

projections
$$e_g^{(r)} \in A_{\infty}$$
 $(r = 1, 2, \dots, R, g \in \mathbb{Z}^N / m_r \mathbb{Z}^N)$

such that

$$\sum_{r,g} e_g^{(r)} = 1, \quad \alpha_{\xi_i}(e_g^{(r)}) = e_{g+\xi_i}^{(r)} \quad (i = 1, 2, \dots, N)$$

and each coordinate of m_r is not less than M.

Open problems

Rohlin property for \mathbb{Z}^N -actions (2)

We can restate the definition of the Rohlin property as follows:

For any $i=1,2,\ldots,N$ and $M\in\mathbb{N}$, there exist $R\in\mathbb{N}$, $m_r\in\mathbb{N}$ $(r=1,2,\ldots,R)$ and

projections
$$e_g^{(r)} \in A_{\infty} \quad (r = 1, 2, \dots, R, \ g \in \mathbb{Z}/m_r\mathbb{Z})$$

such that

$$m_r \ge M$$
, $\sum_{r,g} e_g^{(r)} = 1$

and

$$\alpha_{\xi_i}(e_g^{(r)}) = e_{g+\xi_i}^{(r)}, \quad \alpha_{\xi_j}(e_g^{(r)}) = e_g^{(r)} \quad \forall j \neq i.$$

Thus,

 $\alpha: \mathbb{Z}^N \curvearrowright A$ has the Rohlin property

 \iff \exists Rohlin towers for α_{ξ_i} in $(A_{\infty})^{\alpha_i'}$ for any $i=1,2,\ldots,N.$

Open problems

Asymptotically representable actions

An action $\alpha:\Gamma\curvearrowright A$ of a discrete group Γ is said to be approximately representable if there exists a family of unitaries $(v_g)_{g\in\Gamma}$ in A^∞ such that

$$v_g v_h = v_{gh}, \quad \alpha_g(v_h) = v_{ghg^{-1}}, \quad v_g a v_g^* = \alpha_g(a)$$

for any $g,h\in\Gamma$ and $a\in A.$ Notice that

$$a \mapsto a, \quad \lambda_g^{\alpha} \mapsto v_g$$

induce a homomorphism from $A \rtimes_{\alpha} \Gamma$ to A^{∞} .

An action $\alpha:\Gamma\curvearrowright A$ of a discrete group Γ is said to be asymptotically representable if there exists a family of continuous paths of unitaries $(v_g(t))_{g\in\Gamma,t\in[0,\infty)}$ in A satisfying analogous properties.

Uniqueness of actions with the Rohlin property (1)

Proposition

Let A be a UHF algebra of infinite type and let $\alpha, \beta : \mathbb{Z}^N \curvearrowright A$ be two actions with the Rohlin property. Then α and β are cocycle conjugate.

The proof is by induction on N.

Let $\alpha': \mathbb{Z}^{N-1} \curvearrowright A$ and $\beta': \mathbb{Z}^{N-1} \curvearrowright A$ be the actions of \mathbb{Z}^{N-1} generated by $\xi_1, \xi_2, \dots, \xi_{N-1}$.

By induction hypothesis, α' and β' are cocycle conjugate. In particular, the crossed products $A \rtimes_{\alpha'} \mathbb{Z}^{N-1}$ and $A \rtimes_{\beta'} \mathbb{Z}^{N-1}$ are identified.

The automorphisms $\alpha_{\xi_N}, \beta_{\xi_N}$ of A extend to automorphisms $\tilde{\alpha}_{\xi_N}, \tilde{\beta}_{\xi_N}$ of the crossed products. We would like to compare $\tilde{\alpha}_{\xi_N}$ and $\tilde{\beta}_{\xi_N}$.

Uniqueness of actions with the Rohlin property (2)

- (1) First, we observe that the crossed product $A \rtimes_{\alpha'} \mathbb{Z}^{N-1}$ is a unital simple AT algebra with real rank zero.
- (2) By using Kishimoto-Kumjian's theorem, we can show $\tilde{\alpha}_{\xi_N}$ is asymptotically inner, i.e
- $\exists (u_t)_{t \in [0,\infty)} \text{ in } U(A \rtimes_{\alpha'} \mathbb{Z}^{N-1}) \text{ such that } \tilde{\alpha}_{\xi_N} = \lim \operatorname{Ad} u_t.$
- (3) By induction hypothesis, α' is asymptotically representable. Hence we may assume that $(u_t)_{t\in[0,\infty)}$ is in U(A).
- (4) The same is true for $\tilde{\beta}_{\xi_N}$, and so $\exists (v_t)_{t\in[0,\infty)}$ in U(A) such that $\tilde{\alpha}_{\xi_N}=\lim\operatorname{Ad} v_t\circ\tilde{\beta}_{\xi_N}.$
- (5) α and β have the Rohlin property. Therefore $\tilde{\alpha}_{\xi_N}$ and $\tilde{\beta}_{\xi_N}$ have the Rohlin property (as single automorphisms) and the Rohlin projections can be taken from A.
- (6) These items (together with a homotopy lemma) enables us to carry out the \mathbb{Z}^{N-1} -equivariant Evans-Kishimoto intertwining argument, which completes the proof of the proposition.

Rohlin type theorem (1)

Proposition

Let A be a UHF algebra of infinite type and let $\alpha : \mathbb{Z}^N \curvearrowright A$ be a strongly outer action. Then α has the Rohlin property.

The proof is by induction on N. As before, let $\alpha': \mathbb{Z}^{N-1} \curvearrowright A$ be the action of \mathbb{Z}^{N-1} generated by $\xi_1, \xi_2, \ldots, \xi_{N-1}$.

(1) Since $\bar{\alpha}: \mathbb{Z}^N \curvearrowright \pi_{\tau}(A)''$ is outer, for any $m \in \mathbb{N}$, one can find a Rohlin tower

$$e, \alpha_{\xi_N}(e), \dots, \alpha_{\xi_N}^{m-1}(e) \in (A_\infty)^{\alpha'}$$

such that the 'trace' of

$$1 - (e + \alpha_{\xi_N}(e) + \dots + \alpha_{\xi_N}^{m-1}(e))$$

is very small.

Rohlin type theorem (2)

- (2) We would like to replace e to achieve $\alpha_{\xi_N}^m(e) = e$. To this end it suffices to find a partial isometry $v \in (A_\infty)^{\alpha'}$ such that $v^*v = e$ and $vv^* = \alpha_{\xi_N}(e)$.
- (3) By induction hypothesis, α' has the Rohlin property. Actions with the Rohlin property are already shown to be unique up to cocycle conjugacy. It follows that α' is approximately representable.
- (4) In the same way as before, we can find a sequence $(u_n)_n$ of unitaries of A such that $\tilde{\alpha}_{\xi_N}(x) = \lim u_n x u_n^* \ \forall x \in A \rtimes_{\alpha'} \mathbb{Z}^{N-1}$.
- (5) Then we obtain v and achieve $\alpha_{\xi_N}^m(e)=e$.
- (6) In the same way as the single automorphism case, we can construct two Rohlin towers in $(A_\infty)^{\alpha'}$ whose sum is equal to 1. The same is true for other generators, and so we can conclude that $\alpha:\mathbb{Z}^N\curvearrowright A$ has the Rohlin property.

Open problems

Conclusion (1)

Proposition

Let A be a UHF algebra of infinite type and let $\alpha: \mathbb{Z}^N \curvearrowright A$ be a strongly outer action. For any α -cocycle $(u_g)_{g \in \mathbb{Z}^N}$ in A and $\varepsilon > 0$, there exists a unitary $v \in A$ such that

$$||u_{\xi_i} - v\alpha_{\xi_i}(v^*)|| < \varepsilon \quad \forall i = 1, 2, \dots, N.$$

(1) Consider two homomorphisms $\varphi, \psi: C^*(\mathbb{Z}^N) \to A \rtimes_\alpha \mathbb{Z}^N$ defined by

$$\varphi(\lambda_g) = \lambda_g^{\alpha}, \quad \psi(\lambda_g) = u_g \lambda_g^{\alpha}.$$

- (2) Show $KK(\varphi) = KK(\psi)$ and $\tau \circ \varphi = \tau \circ \psi$.
- (3) From these data, one can conclude that φ and ψ are approximately unitarily equivalent.

Conclusion (2)

- (4) α is already known to be approximately representable, and so there exists $(v_n)_n$ in U(A) such that $\psi = \lim \operatorname{Ad} v_n \circ \varphi$.
- (5) This implies $||u_g v_n \alpha_g(v_n^*)|| \to 0$ for any $g \in \mathbb{Z}^N$.

Combining the three propositions above, we obtain the main result, i.e. any strongly outer actions of \mathbb{Z}^N on a UHF algebra of infinite type are strongly cocycle conjugate to each other.

Remark

In general, strong cocycle conjugacy is strictly stronger than cocycle conjugacy.

Uniqueness of asymptotically representable actions

Let A be a unital simple AH algebra with real rank zero, slow dimension growth and finitely many extremal tracial states.

Theorem (M)

For an approximately representable action $\alpha : \mathbb{Z}^N \curvearrowright A$, the following are equivalent.

- **1** α is strongly outer.
- 2 α has the Rohlin property.

Theorem (M)

Let $\alpha, \beta : \mathbb{Z}^N \curvearrowright A$ be strongly outer, asymptotically representable actions. Then they are cocycle conjugate.

\mathbb{Z}^2 -actions on UHF algebras

Let A be a UHF algebra. For each prime number p, we put

$$\zeta(p) = \sup\{k \mid [1] \text{ is divisible by } p^k \text{ in } K_0(A)\}.$$

For a \mathbb{Z}^2 -action α on A, an invariant $[\alpha]$ is defined as an element in

$$\prod_{p \in P(A)} \mathbb{Z}/p^{\zeta(p)}\mathbb{Z} \cong \pi_1(\operatorname{Aut}(A)),$$

where
$$P(A) = \{p \mid 1 \le \zeta(p) < \infty\}.$$

Theorem (T. Katsura and M 2008)

Let A be a UHF algebra and let $\alpha, \beta : \mathbb{Z}^2 \curvearrowright A$ be strongly outer actions. Then, α and β are strongly cocycle conjugate if and only if $[\alpha] = [\beta]$.

Actions on Kirchberg algebras (1)

Let A be a unital Kirchberg algebra.

An action $\alpha:\Gamma\curvearrowright A$ is said to be locally KK-trivial if $KK(\alpha_g)=1$ for any $g\in\Gamma$.

Two actions $\alpha, \beta: \Gamma \curvearrowright A$ are said to be KK-trivially cocycle conjugate if a cocycle perturbation of α is conjugate to β via $\mu \in \operatorname{Aut}(A)$ such that $KK(\mu) = 1$.

Theorem (M. Izumi and M 2010)

There exists a bijective correspondence between the following two sets.

- KK-trivially cocycle conjugacy classes of locally KK-trivial outer \mathbb{Z}^2 -actions on A.

Actions on Kirchberg algebras (2)

Theorem (M. Izumi and M, in preparation)

Let Γ be a countable discrete amenable group. There exists an asymptotically representable outer action of Γ on \mathcal{O}_{∞} (and hence on any unital Kirchberg algebra).

Theorem (M. Izumi and M, in preparation)

Let $\Gamma = \mathbb{Z} \rtimes \mathbb{Z} \rtimes \cdots \rtimes \mathbb{Z}$ be a poly-infinite-cyclic group. Let $A = \mathcal{O}_2, \mathcal{O}_{\infty}$ or $\mathcal{O}_{\infty} \otimes \mathsf{UHF}_{\infty}$. Then any outer actions of Γ on A are mutually strongly cocycle conjugate.

Remark

When Γ is a finite group, asymptotically representable outer actions of Γ on \mathcal{O}_2 or \mathcal{O}_{∞} are not unique at all.

Strongly self-absorbing C^* -algebras

A C^* -algebra $A \neq \mathbb{C}$ is said to be strongly self-absorbing if there exists an isomorphism $\mu: A \to A \otimes A$ such that μ is approximately unitarily equivalent to $a \mapsto a \otimes 1$.

The known examples are UHF_∞ , the Jiang-Su algebra $\mathcal{Z},\,\mathcal{O}_2,\,\mathcal{O}_\infty$ and $\mathcal{O}_\infty\otimes\mathsf{UHF}_\infty$. Uniqueness of \mathbb{Z}^N -actions on these algebras has been obtained except for $\mathbb{Z}^N\curvearrowright\mathcal{Z}$ with $N\geq 3$.

algebras	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}^N
UHF_∞	Kishimoto '95	Katsura-M '08	М
\mathcal{Z}	Sato	Sato-M	?
Kirchberg	Nakamura '00	Izumi-M '10	

Why unique? — the key is $\pi_n(\operatorname{Aut}(A)) = 0$ for every $n \ge 0$.

Open problems

- Show that strongly outer actions of \mathbb{Z}^N on a (general) UHF algebra have the Rohlin property when $N\geq 3$.
- Classify strongly outer actions of \mathbb{Z}^N on a (general) UHF algebra when $N \geq 3$.
- Show the uniqueness of strongly outer \mathbb{Z}^N -actions on the Jiang-Su algebra $\mathcal Z$ when $N\geq 3$.
- \bullet Classify outer actions of \mathbb{Z}^N (or poly-infinite-cyclic groups) on a unital Kirchberg algebra.
- Classify strongly outer \mathbb{Z}^2 -actions on a unital simple AF algebra (as much as possible).
- ullet Classify strongly outer \mathbb{Z} -actions on a unital simple \mathcal{Z} -stable C^* -algebra A (as much as possible).