C^* 環のK 理論とKK 理論

松井 宏樹 matui@math.s.chiba-u.ac.jp

千葉大学大学院理学研究科

2008年9月12日 空間の代数的・幾何的モデルとその周辺@信州大学

K 群の定義と例 Bott 周期性など KK 理論 分類定理 群作用の分類

作用素環とは?

作用素環

ℂ係数の線形空間であって積を備えており(algebra)

* 演算を備えていて (*-algebra)

 $||xy|| \le ||x||||y|| \ge ||x^*x|| = ||x||^2 (C^* 条件と呼ばれる)を満たす ノルム <math>||\cdot||$ を備えていて、 ノルム位相に関して完備なものを、 C^* 環と呼ぶ。

さらに、「弱い位相」が定まっていてその位相に関して完備であるとき、von Neumann環と呼ぶ。

行列環 $M_n(\mathbb{C})$ は有限次元の C^* 環である。 また、有限次元の C^* 環は有限個の行列環の直和である。

作用素環は、無限次元ヒルベルト空間 H 上の有界線形作用素全体 B(H) の部分環として、具体的に実現される。

可換な作用素環

作用素環

X がコンパクトハウスドルフ空間のとき、X 上の $\mathbb C$ 値連続関数 の全体 C(X) は、(単位元を持つ)可換な C^* 環である。

$$(f \cdot g)(x) = f(x)g(x), \quad ||f|| = \sup_{x \in X} |f(x)|$$

逆に、単位元を持つ可換な C^* 環は C(X) の形に限る。

 (Ω,μ) が測度空間のとき、X 上の $\mathbb C$ 値本質的有界関数の全体 $L^{\infty}(\Omega,\mu)$ は、可換な von Neumann 環である。 逆に、可換な von Neumann 環はこの形に限る。

作用素環 K 群の定義と例 Bott 周期性など KK 理論 分類定理 群作用の分類

C^* 環 vs. von Neumann 環

Connes (1982 年フィールズ賞) の業績

- AFD factor と呼ばれる von Neumann 環の分類
- AFD II₁-factor と呼ばれる von Neumann 環上の、自己同型 (すなわち ℤ 作用)の分類

Theorem (Elliott 1976)

有限次元 C^* 環の帰納極限として書ける C^* 環 (AF 環と呼ばれる) は、その K_0 群で完全分類される。

- AF = Approximately Finite
- AF 環の K₁ 群はゼロ

標語

 C^* 環 = von Neumann 環 + K 理論

K_0 群

作用素環

(単位元を持つ) C^* 環 A の元 p で、 $p=p^*$, $p^2=p$ となるものを<mark>射影</mark>(projection)と呼ぶ。 2 つの射影 $p \in M_n(A)$, $q \in M_m(A)$ に対して、射影 $p \oplus q \in M_{n+m}(A)$ が自然に定まる。 $p \not \in p \oplus 0$ は同一視する。 2 つの射影 $p \in M_n(A)$, $q \in M_n(A)$ に対して、射影 $r \in M_m(A)$ が存在して $p \oplus r$ と $q \oplus r$ が(射影全体の中で)ホモトピー同値になるとき、 $p \sim q$ と書く。

Definition

$$K_0(A)_+ = \{ \text{proj. in } M_n(A) \mid n \in \mathbb{N} \} / \sim$$

 $K_0(A) = \{ [p] - [q] \mid [p], [q] \in K_0(A)_+ \}$

 $K_0(\cdot)$ は C^* 環の圏から加群の圏への共変関手である。

K_1 群

作用素環

(単位元を持つ) C^* 環 A の元 u で、 $1=uu^*=u^*u$ となるものをユニタリー(unitary)と呼ぶ。 $M_n(A)$ のユニタリーの全体を $U_n(A)$ とする。

 $u\in U_n(A)$ を $u\oplus 1\in U_{n+1}(A)$ に送る写像は、 $U_n(A)/\sim$ から $U_{n+1}(A)/\sim$ への準同型を導く。

Definition

$$K_1(A) = \lim_{\longrightarrow} U_n(A) / \sim$$

 $K_1(\cdot)$ は C^* 環の圏から加群の圏への共変関手である。

$$SA = \{f : [0,1] \to A \mid f(0) = f(1) = 0\}$$

とすると、自然に $K_1(A) \cong K_0(SA)$ が成り立つ。

C* 環と K 群の例

作用素環

(例 1) $A = M_n$ のとき

$$(K_0(A), K_0(A)_+, [1], K_1(A)) \cong (\mathbb{Z}, \mathbb{Z}_+, n, 0)$$

(例 2) $x \ge x \otimes 1$ を同一視することにより

$$M_{2^n} \subset M_{2^{n+1}} = M_{2^n} \otimes M_2$$

とみなし、増大和 $\bigcup_n M_{2^n}$ の作用素ノルムによる完備化を M_{2^∞} と書く。その K 群は

$$(\mathbb{Z}[1/2], \mathbb{Z}[1/2]_+, 1, 0)$$

となる。 $M_{n^{\infty}}$ は AF 環の典型例。

C* 環と K 群の例

作用素環

(例 3) $\theta \in (0,1)$ を無理数とする。 $uv = e^{2\pi\sqrt{-1}\theta}vu$ という関係式を満たす 2 つのユニタリー u,v で生成される universal な C^* 環を A_{θ} と書き、非可換トーラス(無理数回転環)と呼ぶ。 A_{θ} の元 x は形式的に

$$x = \sum_{n,m \in \mathbb{Z}} a_{n,m} u^n v^m \qquad a_{n,m} \in \mathbb{C}$$

と表示できる。

$$K_0(A_{ heta})\cong\mathbb{Z}^2$$
, $[1]=(1,0)$, $K_1(A_{ heta})\cong\mathbb{Z}^2$ であり、

$$K_0(A_\theta)_+ = \{(p,q) \in \mathbb{Z}^2 \mid p + q\theta \ge 0\}$$

となる。

 A_{θ} は AT 環と呼ばれるクラスに属する。

C* 環と K 群の例

作用素環

(例 4) $n \ge 2$ とする。

$$\sum_{i=1}^{n} s_i s_i^* = 1, \qquad s_i^* s_j = \delta_{i,j} 1 \quad \forall i, j = 1, 2, \dots, n$$

という関係式を満たす n 個の元 s_1, s_2, \ldots, s_n で生成される universal な C^* 環を \mathcal{O}_n と書く。

$$s_i^* s_j = \delta_{i,j} 1 \quad \forall i, j = 1, 2, \dots$$

という関係式を満たす可算無限個の元 s_1, s_2, \ldots で生成される universal な C^* 環を \mathcal{O}_∞ と書く。

 \mathcal{O}_n や \mathcal{O}_∞ は Cuntz 環と呼ばれる。 Cuntz 環は純無限環の典型例である。

C* 環と K 群の例

作用素環

(例4)の続き

A が純無限環のとき、

$$K_0(A) = K_0(A)_+ = \{ [p] \mid p \in A \}$$

である事が知られている。

Cuntz 環の K 群は、

$$(K_0(\mathcal{O}_n),[1],K_1(\mathcal{O}_n)) \cong (\mathbb{Z}/(n-1)\mathbb{Z},1,0)$$

$$(K_0(\mathcal{O}_\infty), [1], K_1(\mathcal{O}_\infty)) \cong (\mathbb{Z}, 1, 0)$$

となる。特に $K_0(\mathcal{O}_2) = K_1(\mathcal{O}_2) = 0$ である。

単純性

 $I \subset A$ が C^* 環の包含で、

$$\forall a \in A \qquad aI \subset I$$

が成り立つとき、I を A のイデアルと呼ぶ。 A/I には自然に C^* 環の構造が入る。

可換な C^* 環 C(X) のイデアル I は

$$I = \{ f \in C(X) \mid f \mid Y = 0 \}, \quad Y \subset X \text{ closed }$$

という形をしていて、C(X)/I はC(Y) に同型である。

AがOとA以外にイデアルを持たないとき、単純であるという。 先に述べた (例 1) から (例 4) の C* 環は全て単純である。

Bott 周期性

作用素環

Theorem

任意の C^* 環 A に対して、 $K_0(A) \cong K_1(SA)$ が成り立つ。

Theorem

C* 環の短完全列

$$0 \to I \to A \to A/I \to 0$$

に対して、次の6項完全列が成り立つ。

$$K_0(I) \longrightarrow K_0(A) \longrightarrow K_0(A/I)$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(A/I) \longleftarrow K_1(A) \longleftarrow K_1(I)$$

接合積

作用素環

 $lpha:G\curvearrowright A$ が離散群 G の作用のとき、接合積 C^* 環 $A\rtimes_{lpha}G$ が定義される。

$$A \rtimes_{\alpha} G = C^*(A, \{u_g\}_{g \in G} \mid u_g u_h = u_{gh}, \ u_g a u_q^* = \alpha_g(a))$$

 $A
times_{lpha}G$ の元は形式的に $\sum_{g}a_{g}u_{g}$, $(a_{g}\in A)$ と書ける。

Theorem (Pimsner-Voiculescu 1980)

 $\alpha \in \operatorname{Aut}(A)$ に対して次の 6 項完全列が成立する。

$$K_0(A) \xrightarrow{\operatorname{id} -\alpha_*} K_0(A) \xrightarrow{\iota_*} K_0(A \rtimes_{\alpha} \mathbb{Z})$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(A \rtimes_{\alpha} \mathbb{Z}) \xleftarrow{\iota_*} K_1(A) \xleftarrow{\operatorname{id} -\alpha_*} K_1(A)$$

力学系と C* 環

作用素環

arphi:X o X をコンパクトハウスドルフ空間 X 上の自己同相写像とする。C(X) の自己同型 α を $\alpha(f)(x)=f(arphi^{-1}(x))$ で定める。接合積 $C(X) imes_{lpha}\mathbb{Z}$ を $C^*(X,arphi)$ と書き、力学系 C^* 環と呼ぶ。

X が無限集合のとき次が成り立つ:

 $C^*(X,arphi)$ が単純 $\iff arphi$ が極小 (i.e. 任意の arphi-軌道が X で稠密)

(例 5) φ が $\mathbb T$ 上の θ 回転で与えられるとき、 $C^*(\mathbb T,\varphi)$ は非可換トーラス A_{θ} に同型である。

$$C^*(\mathbb{T},\varphi)\ni x=\sum_{n\in\mathbb{T}}f_nu^n$$

$$A_{\theta} \ni x = \sum_{m,n \in \mathbb{Z}} a_{m,n} v^m u^n$$

力学系と C^* 環

作用素環

(例 5) の続き: $A_{\theta}\cong C^*(\mathbb{T},\varphi)$ の K 群は、

$$K_0(C(\mathbb{T})) \xrightarrow{\operatorname{id} -\alpha_*} K_0(C(\mathbb{T})) \xrightarrow{\iota_*} K_0(C^*(\mathbb{T}, \varphi))$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(C^*(\mathbb{T}, \varphi)) \xleftarrow{\iota_*} K_1(C(\mathbb{T})) \xleftarrow{\operatorname{id} -\alpha_*} K_1(C(\mathbb{T}))$$

ح

$$K_0(C(\mathbb{T})) = K_1(C(\mathbb{T})) = \mathbb{Z}, \qquad \alpha_* = \mathrm{id} \text{ on } K_*(C(\mathbb{T}))$$

より、 $K_0(A_{\theta}) = K_1(A_{\theta}) = \mathbb{Z}^2$ と求まる。

作用素環

(例 6) X がカントール集合で φ が X の極小自己同相写像であるとき、 (X,φ) を<mark>カントール極小系</mark>と言う。 $C^*(X,\varphi)$ は単純な AT 環であることが示されている(Putnam 1990)。

$$K_0(C(X)) = C(X, \mathbb{Z}), K_1(C(X)) = 0 \succeq$$

$$K_0(C(X)) \xrightarrow{\operatorname{id} -\alpha_*} K_0(C(X)) \xrightarrow{\iota_*} K_0(C^*(X, \varphi))$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(C^*(X, \varphi)) \xleftarrow{\iota_*} K_1(C(X)) \xleftarrow{\operatorname{id} -\alpha_*} K_1(C(X))$$

より、次が分かる:

$$K_0(C^*(X,\varphi)) = C(X,\mathbb{Z})/\{f - f \circ \varphi \mid f \in C(X,\mathbb{Z})\}$$
$$K_1(C^*(X,\varphi)) = \mathbb{Z}$$

Kasparov 積

作用素環

可分な *C** 環の組 *A*, *B* に対して、

 $KK(A,B) = \{A \text{ から } B \text{ への準同型もどき } \} /$ ホモトピー

が定義される。

KK(A,B) は自然に加群の構造を持つ。 $KK(\mathbb{C},A)\cong K_0(A),\ KK(C_0(\mathbb{R}),A)\cong K_1(A)$ が成り立つ。

Theorem (Kasparov 1981)

双加法的かつ結合的な積

$$KK(A,B) \times KK(B,C) \ni (x,y) \mapsto x \cdot y \in KK(A,C)$$

が存在する。

KK 同値性

作用素環

 C^* 環の準同型 $\rho:A\to B$ は、KK(A,B) の元 $KK(\rho)$ を与える。 準同型 $\rho:A\to B,\ \sigma:B\to C$ に対して、

$$KK(\rho) \cdot KK(\sigma) = KK(\sigma \circ \rho)$$

が成り立つ。

 C^* 環 A, B が KK 同値であるとは、

$$x \cdot y = KK(\mathrm{id}_A), \quad y \cdot x = KK(\mathrm{id}_B)$$

となるような $x \in KK(A,B)$, $y \in KK(B,A)$ が存在することを言う。

UCT 定理

作用素環

可換 C^* 環と KK 同値になるような可分 C^* 環の全体を N と書き、VCT クラスと呼ぶ。

Theorem (Rosenberg-Schochet 1987)

(1) $A \in \mathcal{N}$ のとき、任意の可分 C^* 環 B に対して、次の(分裂する)短完全列が存在する。

$$0 \to \bigoplus_{i=0,1} \operatorname{Ext}(K_i(A), K_{1-i}(B)) \to KK(A, B)$$

$$\rightarrow \bigoplus_{i=0,1} \operatorname{Hom}(K_i(A), K_i(B)) \rightarrow 0$$

(2) $A,B \in \mathcal{N}$ が KK 同値である必要十分条件は、加群として $K_0(A) \cong K_0(B)$ かつ $K_1(A) \cong K_1(B)$ となる事である。

Intertwining argument

Lemma

作用素環

A,B が可分な C^* 環で、 $\varphi:A\to B$, $\psi:B\to A$ が準同型とする。 もし、A の unitary の列 $\{u_n\}_n$ と、B の unitary の列 $\{v_n\}_n$ が存在して、

$$\lim_{n \to \infty} u_n \psi(\varphi(a)) u_n^* = a \qquad \forall a \in A$$
$$\lim_{n \to \infty} v_n \varphi(\psi(b)) v_n^* = b \qquad \forall b \in B$$

となれば、A と B は同型である。

存在の問題: K-theory (あるいは KK-theory)のレベルで A から B への "morphism" が与えられたとき、それを実現するような A から B への準同型は存在するか。

一意性の問題: A から A への準同型が、K-theory (あるいは KK-theory) のレベルで identity であるとき、上の lemma のような uniraty の列が取れるか。

Lin の定理

作用素環

$$T = \{A \in \mathcal{N} \mid A$$
 は可分・単純・核型で、 $TR(A) = 0\}$

AF 環や AT 環はこのクラスに属する。 純無限環はこのクラスには入らない。

Theorem (Lin)

 $A,B \in \mathcal{T}$ が同型であるための必要十分条件は、

$$(K_0(A), K_0(A)_+, [1], K_1(A)) \cong (K_0(B), K_0(B)_+, [1], K_1(B))$$

 $A \in \mathcal{T}$ に対して

$$A$$
 が AF 環 $\iff K_0(A)$ が torsion free で $K_1(A)=0$ A が AT 環 $\iff K_0(A), K_1(A)$ が torsion free

となる。

Kirchberg-Phillips の定理

作用素環

$$\forall x \in A \setminus \{0\} \quad \exists a, b \in A \quad axb = 1$$

となる C^* 環を<mark>純無限</mark>であるという。純無限ならば単純である。 Cuntz 環 \mathcal{O}_n , \mathcal{O}_∞ は純無限環の典型例。

A が純無限のとき、 $K_0(A)=\{[p]\mid p\in A\}$, $K_1(A)\cong U_1(A)/\sim$ が成り立つ。

Theorem (Kirchberg-Phillips 2000)

 C^* 環 A が可分・単純・核型とする。

- (1) $A \otimes \mathcal{O}_2$ は \mathcal{O}_2 に同型。
- (2) さらに A が純無限であれば、 $A\otimes\mathcal{O}_{\infty}$ は A に同型。

この定理は、 \mathcal{O}_2 は 0 と KK 同値であり、 \mathcal{O}_∞ は \mathbb{C} と KK 同値である、という事実と、うまく整合している。

Kirchberg-Phillips の定理

作用素環

Theorem (Phillips 2000)

A, B が可分・核型・純無限のとき、次が成り立つ。

- (1) 任意の $x \in KK(A,B)$ に対して、準同型 $\varphi : A \to B$ が存在して $KK(\varphi) = x$ となる。
- (2) $\varphi, \psi: A \to B$ が準同型のとき、 $KK(\varphi) = KK(\psi)$ となるため の必要十分条件は、

$$\exists \{u_t\}_{t \in [0,\infty)}$$
 path of unitaries in B

$$\lim_{t \to \infty} u_t \varphi(a) u_t^* = \psi(a) \qquad \forall a \in A$$

Corollary

A, B が可分・核型・純無限のとき

 $A \cong B \iff \exists x \in KK(A,B)$ "unital", invertible

Kirchberg-Phillips の定理

$$\mathcal{P} = \{A \in \mathcal{N} \mid A$$
は可分・核型・純無限 $\}$

Theorem

作用素環

(1) $A, B \in \mathcal{P}$ が同型であるための必要十分条件は、

$$(K_0(A), [1], K_1(A)) \cong (K_0(B), [1], K_1(B))$$

(2) 任意の可算加群 G_0, G_1 と任意の元 $g \in G_0$ に対して、

$$(K_0(A), [1], K_1(A)) \cong (G_0, g, G_1)$$

となるような $A \in \mathcal{P}$ が存在する。

von Neumann 環上の群作用の分類

u が A のユニタリーのとき、 $(\mathrm{Ad}\,u)(a) = uau^*$ によって A の自己同型 $\mathrm{Ad}\,u$ が定まる。自己同型 $\alpha \in \mathrm{Aut}(A)$ が $\mathrm{Ad}\,u$ の形に書けないとき、outer であるという。離散群 G の作用 $\alpha:G \curvearrowright A$ は、任意の $g \in G \setminus \{e\}$ に対して α_g が outer であるとき、outer であると言われる。

Theorem (Ocneanu 1985)

作用素環

R を AFD II_1 -factor とし、G を離散従順群とする。2 つの作用 $lpha,eta:G\curvearrowright R$ が outer ならば、

$$\exists \gamma \in \operatorname{Aut}(A), \quad \{u_q\}_{q \in G} \text{ unitaries in } R$$

$$\beta_a = \operatorname{Ad} u_a \circ \gamma \circ \alpha_a \circ \gamma^{-1} \qquad \forall g \in G$$

C* 環上の ℤ 作用の分類

作用素環

Theorem (Kishimoto 1995)

 $A=M_{p^\infty}$ とする。2つの作用 $lpha,eta:\mathbb{Z} \curvearrowright A$ が uniformly outer ならば、

$$\exists \gamma \in \operatorname{Aut}(A), \quad u \text{ unitary in } A$$

$$\beta = \operatorname{Ad} u \circ \gamma \circ \alpha \circ \gamma^{-1}$$

Theorem (Nakamura 2000)

A が可分・核型・純無限であるとする。2 つの作用 $lpha,eta:\mathbb{Z} \curvearrowright A$ が outer であって、KK(lpha)=KK(eta) ならば、

$$\exists \gamma \in \operatorname{Aut}(A), \quad u \text{ unitary in } A$$

$$\beta = \operatorname{Ad} u \circ \gamma \circ \alpha \circ \gamma^{-1}$$

作用素環

C^* 環上の \mathbb{Z}^N 作用の分類

Theorem (Katsura-M 2008)

 $A=M_{p^\infty}$ とする。2つの作用 $lpha,eta:\mathbb{Z}^2 \curvearrowright A$ が uniformly outer ならば、

$$\exists \gamma \in \operatorname{Aut}(A), \quad \{u_g\}_{g \in \mathbb{Z}^2} \text{ unitaries in } A$$

$$\beta_g = \operatorname{Ad} u_g \circ \gamma \circ \alpha_g \circ \gamma^{-1} \qquad \forall g \in \mathbb{Z}^2$$

Theorem (M 2008)

 $A = \mathcal{O}_2$ とする。2つの作用 $lpha, eta: \mathbb{Z}^N \curvearrowright A$ が outer ならば、

$$\exists \gamma \in \operatorname{Aut}(A), \quad \{u_q\}_{q \in \mathbb{Z}^N} \text{ unitaries in } A$$

$$\beta_q = \operatorname{Ad} u_q \circ \gamma \circ \alpha_q \circ \gamma^{-1} \qquad \forall g \in \mathbb{Z}^N$$