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Main result
Preliminaries

X = Cantor set
= compact, metrizable, totally disconnected, perfect

= {a, b}"
For an equivalence relation R C X x X,
Rzl ={y € X | (z,y) € R}

is called the R-orbit of x.
When R[z] is dense in X for all x € X, R is said to be minimal.
For an action ¢ : G ~ X by homeomorphisms, we put

Ry ={(z,¢(2)) |z € X, g€ G}.

¢ is said to be minimal if R, is minimal.
¢ is said to be free if {g € G | p9(z)=x} = {e} for all z € X

)
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Main result

Orbit equivalence

Definition

Let R; C X; x X; (i = 1,2) be equivalence relations.
R; and R, are said to be orbit equivalent if there exists a
homeomorphism h : X7 — X5 such that (h x h)(R;1) = Ro.

Let R be an equivalence relation on X.

A probability measure i on X is said to be R-invariant

if ;v is y-invariant for all v € Homeo(X) satisfying (z,v(z)) € R,
vz e X.

Put M(R) = {R-invariant measures}.

R is said to be uniquely ergodic if M (R) is a singleton.



Main result
Classification

Theorem (Giordano-M-Putnam-Skau)

Let ; : G; ~ X; (i = 1,2) be minimal actions of finitely generated
abelian groups on Cantor sets. Then the following are equivalent.

Q@ R,, and R, are orbit equivalent.

© There exists a homeomorphism h : X1 — X5 such that
h*(M(R%)) = M(RSOQ)-

Corollary
When M(R,,) = {pi} (i = 1,2), the following are equivalent.
Q@ R,, and R, are orbit equivalent.

@ {1 (U)| U C X, clopen subset}
={u2(U) | U C X3 clopen subset}
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History

Background

measurable dynamics (or measurable equivalence relations)
~> von Neumann algebras

Theorem (Krieger, Connes-Feldman-Weiss, etc)
Let @; : Gy ~ (X, i) (i = 1,2) be essentially free ergodic actions
of countable discrete amenable groups on standard probability
spaces. Then the following are equivalent.

Q@ R,, and R, are measurably orbit equivalent.

@ VvN(R,,) is isomorphic to vN(R,,).

(minimal) topological dynamics (or equivalence relations)
~ (simple) C*-algebras
o Classification of these C*-algebras

@ Relationship between dynamical systems and C*-algebras



History
Cantor minimal Z-systems

Theorem (Giordano-Putnam-Skau 1995)

Let p; : Z ~ X; (i = 1,2) be minimal actions on Cantor sets.
Then the following are equivalent.

Q (X1,¢1) and (Xa, 2) are strongly orbit equivalent.
Q@ KO(X1, 1) is isomorphic to K9(Xa, ©3).
©Q C*(X1, 1) is isomorphic to C* (X2, p2).

Theorem (Giordano-Putnam-Skau 1995)

Let p; : Z ~ X; (i = 1,2) be minimal actions on Cantor sets.
Then the following are equivalent.

Q@ R,, and R, are orbit equivalent.

@ There exists a homeomorphism h : X1 — Xs such that
h*(M(R%)) = M(Rs%)-
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Affability

Etale equivalence relations

Definition

An equivalence relation R C X x X with a topology is said to be
étale if R is an r-discrete groupoid in this topology.

(In particular, R > (x,y) — x € X is a local homeomorphism.)

@ R is rarely étale with the relative topology from X x X,
except in the special case that R itself is compact.

@ There may exist a lot of choices of a topology by which R is
étale.

e For a free action ¢ : G ~ X, R, is étale with the topology
obtained by transferring the product topology on X x G.



Affability

AF relations

Lemma
Let R C X x X be a compact étale equivalence relation on a
compact metrizable totally disconnected space X. Then one has
the following.
@ The topology on R is equal to the induced topology from
X x X.

o sup{#Rz] | z € X} is finite.

Definition

An étale equivalence relation R C X x X on a compact metrizable
totally disconnected space X is called an AF relation

if there exists an increasing sequence of compact open subrelations
Ry C Ry C--- C Rsuch that R =J,2 | Ry.
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Affability
Classification of AF relations

Theorem (Giordano-Putnam-Skau 1995)

Let R; C X; x X; (i =1,2) be minimal AF relations on Cantor
sets. Then the following are equivalent.

@ R, and Ry are orbit equivalent.

© There exists a homeomorphism h : X1 — X5 such that
hie(M(R1)) = M(R2).
@ (D(R1), D(R1)*,[1]) = (D(R2), D(Ra)™, [1]).

D(R) = C(X,Z)/{f | p(f) =0 Yp € M(R)}
D(R)" ={[f] € D(R) | f = 0}

When R is a minimal AF relation, the triple (D(R), D(R)™",[1]) is
a unital simple dimension group with no infinitesimal elements.



Affability
Dimension groups

(D, D", u) satisfies the following.

@ D is a countable torsion free abelian group and D 2 Z.
e DT is a positive cone,
ie. DY+ DT c DY, D*¥n(-D") = {0} and
Dt — DT =D.
e uec DT\ {0}.
@ Va; <bj (i, =1,2) in D, 3c € D such that a; < ¢ < b;.
e Va,be DT\ {0} 3n € Ns.t. a < nb.

e For any a € D, there exists a homomorphism p: D — R
such that p(D™) C [0,00) and p(a) # 0.
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Affability

Affability

Definition

We say that an equivalence relation R is affable if it can be given a
topology making it an AF relation. This is the same as to say that
R is orbit equivalent to an AF relation.

A

Theorem (Giordano-M-Putnam-Skau)

When ¢ : ZN ~ X is a free minimal action on a Cantor set X,
R, is affable.

It is known that

{o.e. classes of minimal AF relations}
= {o.e. classes of minimal Z-actions}

> {o.e. classes of minimal Z"-actions}.

We do not know if they agree or not.
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Example (1)

X ={0,1}N = H 7.)27.

= addition by (1 0,0,0,...) with carry-over
e.g. p(1,1,1,1,...) = (0,0,0,0,...).

~ (X, ) Cantor minimal Z-system (called the adding machine)
M(R,) = {p} i.e. uniquely ergodic

p({clopen sets}) = Z[1/2] N [0, 1]
(D,D*,u) = (2[1/2],21/2]",1)
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Example (2)

x={0,1}"=][z/2z
n=1
R, ={(z,y) € X x X | xp =y Vk > n}

~Ri CRyCRgC...
~+ R =J,, R is a minimal AF relation

M(R) = {u} i.e. uniquely ergodic

p({clopen sets}) = Z[1/2] N [0, 1]

(D, D%, u) = (Z[1/2],Z]1/2]",1)
R,[(0,0,0,...)] = R[(0,0,0,...)]UR[(1,1,1,...)]

The identity map induces ‘almost’ orbit equivalence.

13/23



Examples

Tiling spaces

Let C be a finite collection of non-empty polyhedra in RY.

Fort € C and p € RN, t + p is called a tile. A collection T of tiles
is called a tiling if the elements of 7' cover RY with pairwise
disjoint interiors.

We equip the set of tilings with a topology as follows:

Two tilings 7' and T” are close if there exist a small ¢ € RY and a
large R > 0 such that T+ ¢ and T” agree on B(0, R).

We obtain a topological space consisting of tilings and an action of
RY on it by translation.

Let Ty be an aperiodic and repetitive tiling which satisfies the
finite pattern condition.

Let Q be the orbit closure of Ty, namely Q = {Ty +p | p € RN}
Then, it is known that €2 is compact and metrizable.

In addition, the natural RY action w on €} is free and minimal.
Furthermore, we can find a Cantor transversal X C 2 and an
induced equivalence relation R on X.
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Example (4)

Let 6 be the Fibonacci substitution, i.e. 6(a) = ab, 6(b) = a.

O(a) = ab
62(a) = aba
63(a) = abaab
0*(a) = abaababa
0°(a) = abaababaabaab

~ X C {a,b}? shift invariant closed subset, ¢ shift on X
~ (X, ¢) Cantor minimal Z-system

M(R,) = {v} i.e. uniquely ergodic

S

1+

v({clopen sets}) = (Z +ZX) N [0,1], A= 5
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Penrose tiling
uniquely ergodic
v({clopen sets})

(Z +7ZX) nJo,1],
where A = 1+2\/5
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Absorption theorem (1)

Let R be an étale equivalence relation on a Cantor set X.

e For Y C X, we let R|Y denote RN (Y xY).

o We say that a closed subset Y is R-étale
if R|Y is étale with the induced topology from R.

e If Ris AF and Y is R-étale, then R|Y is again AF.

@ We say that a closed subset Y is R-thin
if w(Y)=0 forall pe M(R).
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Absorption theorem (2)

Theorem (M)

Let R be a minimal AF relation on a Cantor set X and let Y C X
be a closed subset which is R-étale and R-thin. Suppose that Q) is
an AF relation on'Y such that R|Y is an open subset of ) and
R|Y — Q@ is continuous.
Then there exists a homeomorphism h : X — X such that

@ (hxh)(RVQ)=R (thus, RV Q is affable).

@ h(Y) is R-étale and R-thin.

@ h|Y X h|Y is a homeomorphism from @Q to R|h(Y').

Strategy

For a given ¢ : ZV ~ X, we find an AF subrelation R C R,

a closed subset Y C X and another AF relation () on Y so that
R, = RV Q. Then apply the theorem above.
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Construction of AF subrelations (1)

Let ¢ : ZV ~ X be a free minimal action.
We want to find a ‘large’ AF subrelation

R=|JR.,, RiCRyC---CRy

in R,. Thus, we must find a ‘large’ compact subrelation 12, in R,,.
For each x € X, R,[x] is partitioned into countably many
R,,-orbits:

Rola) = | Rale).

There exists a canonical bijection between R, [x] and ZN.
So, we are thinking of a partition of Z" into finite subsets.
~ tiling of RV
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Construction of AF subrelations (2)

Take a (small) clopen subset U of X. Fix x € X.
Consider

P={peZ’|¢(x) € U}.
Since ¢ is free, IMy > 0 such that P is My-separated, i.e.
p#q€ P =dpq) > M.

Since ¢ is minimal, 3M; > 0 such that P is M;-syndetic, i.e.

peEP

Such a discrete subset of RY is called a Delone set.
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Construction of AF subrelations (3)

For each p € P, we define

V(p) ={q R | d(q,p) = d(q, P)}

and call it the Voronoi domain.
T ={V(p) | p € P} is called the Voronoi tessellation.
In such a way, we obtain a compact subrelation of R,,.

U1,Us,Us, ... clopen subsets of X getting smaller
~s Py, Py, Py, ... Delone sets of RV getting thinner
~ T1,T5,T5, ... Voronoi tessellations
such that each tile is getting larger
M%RlCRQCR3C"'CR4p
R=\J,R, a'large’ AF subrelation of R,



Proof
Remarks

@ We need to control the difference between R, and R.

@ There are N+1 possibilities: R, [z] may split into & distinct
R-orbits (k=1,2,..., N+1).

@ So, we use the Absorption Theorem N times repeatedly.

@ Furthermore, we must modify the Voronoi tessellations:
For p € P, we set

Vu(p) = {q € R | d(q,p)*~w(p) < d(q.p')*—w(p) ¥p' € P},

where w : P — R is called a weight function.
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