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Abstract. In this article, we study the structure of the cone of semidefinite forms. It is
a closed semialgebraic set but usually is not basic closed semialgebraic set. A discriminant
is a defining equation of an irreducible component of algebraic boundary of this cone. We
calculate discriminants using new tools — characteristic variety and local cones. A charac-
teristic variety is a semialgebraic subset of a real projective variety on which the family of
inequalities is essentially defined as linear functions. Local cone is a subcone of the PSD cone
which corresponds to a maximal ideal. This theory works well for a family of polynomials
which are invariant under an action of a finite group. After we construct an abstract general
theory, we apply it to a family of cyclic homogeneous polynomials of three real variables of
degree d. We calculate some discriminants for d = 3, 4, 5 and 6, and we show that this
theory derives many new results.

Section 0. Introduction.

A study of a PSD cone was derived from Hilbert’s 17th problem. About the history
of the study, please read [7] §6. Recent important results about PSD cones are found in
[2], [8], [22] and [6]. Especially, some studies of algebraic boundaries and discriminants are
explained in [2]. But, it seems that the structure of PSD cones is not yet known so well,
including the classical case P3,4 = Σ3,4. In this article, we study such problem using real and
complex algebraic geometry. For this purpose, we should generalize the definition of PSD
cone. The exact definition will be given in §1, but we present here its idea. Let Hn,d be the
vector space of all the homogeneous polynomials of n variables of degree d, and H ⊂ Hn,d

be a subspace. H is called a linear system. Let A be a closed semialgebraic subset of Pn−1
R .

We call
P = P(A, H) :=

{
f ∈ H

∣∣ f(a) ≥ 0 for all a ∈ A
}

to be the PSD cone on A in H. Originally, Pn,2d := P(Pn−1
R , Hn,2d) is called the convex

cone of positive semidefinite forms, or shortly the PSD cone ([5], [6], [8], [20], [22]). Since P
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is a closed semialgebraic convex cone (Proposition 1.14), P has the algebraic boundary ∂aP.
Let ϕ be a defining polynomial of an irreducible hypersurface component of ∂aP. We call ϕ
to be a discriminant of P (cf. [20], [6] p.172). We don’t assume that ϕ is non-negative on P.
Let’s start from some elementary examples. Ĉırtoaje proved the following theorem in 2006.

Theorem 0.1. ([10]) Let

f(a, b, c) := (a4 + b4 + c4) + p(a3b + b3c + c3a) + q(ab3 + bc3 + ca3)
+ r(a2b2 + b2c2 + c2a2)− (1 + p + q + r)abc(a + b + c).

Then, f(a, b, c) ≥ 0 for all a, b, c ∈ R if and only if p2 + pq + q2 ≤ 3r + 3.

In this case, discc0
4 (p, q, r) := 3(r + 1)− (p2 + pq + q2) is a discriminant, and discc0

4 ≥ 0
determine the PSD cone. This PSD cone is a basic closed semialgebraic set. The second
example is the following theorem which will be proved in §3.

Theorem 0.2. Let

f(a, b, c) := (a3 + b3 + c3) + p(a2b + b2c + c2a) + q(ab2 + bc2 + ca2) + rabc.

Then, f(a, b, c) ≥ 0 for all a ≥ 0, b ≥ 0, c ≥ 0 if and only if one of (1) or (2) holds.
(1) 3 + 3p + 3q + r ≥ 0 and 4p3 + 4q3 + 27 ≥ p2q2 + 18pq.
(2) 3 + 3p + 3q + r ≥ 0 and p ≥ 0 and q ≥ 0.

In this case, discc+
3 (p, q) := 4p3 + 4q3 + 27 − p2q2 − 18pq is a non-trivial discriminant,

and 3 + 3p + 3q + r is a trivial discriminant. Note that P is not a basic closed semialgebraic
set, and the signature of discc+

3 (p, q) is not constant on P (see Fig. 3.1). It was not easy to
calculate discriminants. Schur found the following inequality in the early period of the 20th
century.

(a3 + b3 + c3) + 3abc ≥ (a2b + b2c + c2a) + (ab2 + bc2 + ca2).
But generalization of Theorem 0.2 is completely new.

In §1 and §2, we introduce some tools to obtain discriminants. We use the similar idea
with [6] and [20]. Let X be the image of A by the rational map defined by the linear system
H. X is called the ‘characteristic variety’ of P. Note that P is the dual cone of the convex
set generated by X (Proposition 1.14). In other words, f ∈ P is a linear inequality on X.
We shall show that the structure of ∂P is determined by the critical sets of X (Theorem
1.18). Our method to determine P is summarized in Remark 1.23.

If a finite group G acts on A, and H is a set of G-invariant polynomials, then there exists
the natural dominant rational map A/G · · · → X. This is an isomorphism under a certain
condition (for example Proposition 1.36). This fact helps us to determine the critical sets of
X. If G = Z/nZ, Pn−1

R /G is a real algebraic variety. But for the symmetric group Sn, the
set Pn−1

R /Sn is a proper closed subset of the real weighted projective space PR(1, 2, . . . , n),
and is not a real algebraic variety. To treat critical sets of Pn−1

R /Sn, we introduce a notion
of semialgebraic varieties in §1. It is also convenient to consider X to be a semialgebraic
variety, for we can apply techniques of scheme theory.

We will show that the local cone Pa :=
{
f ∈ ∂P

∣∣ f(a) = 0
} ⊂ ∂P (a ∈ A) is useful

to calculate discriminants and to determine extremal PSD forms. Especially, if BsH = ∅,
then ∂P =

⋃

x∈X

Px (Proposition 1.26). For example, in the case Theorem 0.2, P(0:s:1) is the

ray generated by
fs(a, b, c) := s2(a3 + b3 + c3)− (2s3 − 1)(a2b + b2c + c2a)

(s4 − 2s)(ab2 + bc2 + ca2)− 3(s4 − 2s3 + s2 − 2s + 1)abc.
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This fs is an extremal PSD form of P.
If X has many critical subsets, then P may have many discriminants. The following

two theorems are typical examples.

Theorem 0.3. Let

f(a, b, c) := (a4 + b4 + c4) + p(a3b + b3c + c3a) + q(ab3 + bc3 + ca3)
+ r(a2b2 + b2c2 + c2a2)− (1 + p + q + r)abc(a + b + c),

ϕ(p, q, r) := p2q2r2 − 4p3q3 + 18p3qr + 18pq3r − 4p2r3 − 4q2r3

− 27p4 − 27q4 + 16r4 − 6p2q2 − 80pqr2

+ 144p2r + 144q2r − 192pq − 128r2 + 256.

Then, f(a, b, c) ≥ 0 for all a ≥ 0, b ≥ 0 and c ≥ 0 if and only if one of the following 6
conditions holds.

(1) r ≥ −2, p ≤ −2
√

r + 2, p + q ≥ 0, and ϕ(p, q, r) ≤ 0.

(2) r ≥ −2, q ≤ −2
√

r + 2, p + q ≥ 0, and ϕ(p, q, r) ≤ 0.

(3) r ≥ −2, −√r + 4 ≤ p + q ≤ 0, p ≥ −2
√

r + 2, q ≥ −2
√

r + 2, and ϕ(p, q, r) ≥ 0.

(4) r ≥ −2, p ≥ −2
√

r + 2, q ≥ −2
√

r + 2, and p + q ≥ 0.

(5) r ≥ 0, and p2 + pq + q2 ≤ 3r + 3.

(6) r ≤ −2, p + q ≥ 0 and ϕ(p, q, r) ≤ 0.

In this case, discc+
4 (p, q, r) := ϕ(p, q, r) and discc0

4 (p, q, r) are non-trivial discriminants.
Note that this PSD cone is not a basic closed semialgebraic set. So, we need to decompose
P into basic semialgebraic sets as the above.

Theorem 0.4. Let

f(a, b, c) = (a5 + b5 + c5) + p(a4b + b4c + c4a + ab4 + bc4 + ca4)
+ q(a3b2 + b3c2 + c3a2 + a2b3 + b2c3 + c2a3)
+ rabc(a2 + b2 + c2)− (1 + 2p + 2q + r + 1)abc(ab + bc + ca),

d5(p, q, r) :=
(
4(p + 1)(p− 2)(2p− 1)− 9q(2p− 1)− 9r(p + 1)

)2

−
(
(2p− 1)2 − 3(2q + r + 2)

)3

.

Then, f(a, b, c) ≥ 0 for all a ≥ 0, b ≥ 0 and c ≥ 0 if and only if one of the following 4
conditions holds.

(1) p ≥ −1, p + q + 1 ≥ 0, and 2p + r + 1 > 0.

(2) p ≥ −1, p + q + 1 ≥ 0, 2p + r + 1 ≤ 0, and d5(p, q, r) ≥ 0.

(3) −3 ≤ p < −1, p + q + 1 ≥ 0 and d5(p, q, r) ≥ 0, and (q, r) 6= (−p− 1, −2p− 1).
(4) p ≤ −3, 4q ≥ (p + 1)2 + 4, and d5(p, q, r) ≥ 0.

In this case, d5(p, q, r) and 4q− (p + 1)2 − 4 are non-trivial discriminants. The number
of discriminants will be discussed in §2. After §3, we treat many PSD cones and determine
its discriminants and their extremal forms.

In this article, we only treat three variable polynomials. But it is already known that
our method is applicable many generalized cases (for example see [4]).
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Section 1. Structure of PSD cones.

1.1. Semialgebraic variety.
An abstract generalized definition of semialgebraic (quasi-)varieties is given in [3]. Here

we summarize minimum concepts to study algebraic inequalities.
Usually, the symbol R implies the set of real numbers. But if you regard R to be any

real closed field, all results of this article hold. A definition of real algebraic varieties is given
at Definition 3.2.11 in [7]. But in this article, we call such a variety to be an algebraic quasi-
variety. Note that an algebraic quasi-variety is reduced and has at least one non-singular
point but may not be irreducible. If an algebraic quasi-variety is irreducible, we say it is an
algebraic variety. Note that we can define non-reduced real algebraic quasi-varieties, but we
don’t need them in this article. (cf. [18])

Let V be a complete real algebraic quasi-variety. For a subset A ⊂ V , the minimal
reduced algebraic subset which contain A is called the Zariski closure of A and denoted
by Zar(A) or ZarV (A). We define dimA := dimZar(A). On the other hand, topological
closure of A in V is denoted by ClsV (A) or A. The interior of A is defined by Int(A) :=
ZarV (A) − ClsV (ZarV (A) − A). Int(A) is also written as A◦. The (relative) boundary of
A in V is defined by ∂V A := ClsV (A) − Int(A). ∂A := A − Int(A) is called the absolute
boundary of A. Note that Int(A) and ∂A does not depend on the choice of embedding
A ⊂ V . ZarV (∂V A) is denoted by ∂aA, and is called the algebraic boundary of A (see [25]).

Note. Some real algebraic varieties have lower dimensional connected components
which are subsets of singular locus. Thus definition of Int(A) may not be good in other
theory. But the above definition works well in this article.

Assume that A is a semialgebraic subset of a complete real algebraic quasi-variety V
with Zar(A) = V . See Remark 3.2.15 of [7] for the definition of semialgebraic subsets. The
structure sheaf RV of V is defined in [7] §2 or [3]. Let U be an affine open subset of V
and B ⊂ U be a non-empty subset. There exists an one-to-one correspondence between
the set of maximal ideals of RV (U) and points in U . For a point x ∈ U , we put S(x) :=
RV (U) − mx, here mx is the maximal ideal of RV (U) corresponds to x. S(B) :=

⋂

x∈B

S(x)

is a multiplicatively closed subset of RV (U). We define RV (B) := S(B)−1RV (U). The
sheaf of rings RA on A is defined by RA(W ) = RV (W ) for any Euclidian open subset W of
A ∩ U . Then RA is a coherent sheaf of rings on A (see [3]). A locally ringed space which is
isomorphic to (A, RA) is said to be a semialgebraic quasi-variety.

If A is irreducible, i.e. V is irreducible, (A, RA) is called a semialgebraic variety. In this
case, the field of fractions Q(RA(A)) is denoted by Rat(A). Note that Rat(A) = Rat(V ),
and dimA = tr.degRRat(A).

For a semialgebraic quasi-variety A, Sing(A) :=
{
x ∈ A

∣∣ RA,x is not a regular local ring}
is called the singular locus of A, here RA,x is the stalk of RA at x. We denote Reg(A) :=

A − (
Sing(A) ∪ ∂A

)
. A regular map between semialgebraic quasi-varieties is defined as a

morphism of locally ringed spaces as in [16]. A rational map between semialgebraic varieties
is defined by the similar way as complex algebraic varieties.

Example 1.1. We denote
Pn

+ :=
{
(X0 : · · · : Xn) ∈ Pn

R
∣∣ XiXj ≥ 0 for all 0 ≤ i < j ≤ n

}
.

This is a semialgebraic variety. Usually, any point (X0 : · · · : Xn) ∈ Pn
+ is assumed to be

X0 ≥ 0,. . ., Xn ≥ 0.
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For A = Pn
+ or A = Pn

R, we denote

Hn+1,d :=
{
f

∣∣ f = f(X0, . . . , Xn) is a homogeneous polynomial of deg f = d.
} ∪ {0}.

We usually denote Hd := Hn+1,d when the index n + 1 is clear.

We can use results of complex algebraic geometry by the virtue of the following propo-
sition.

Proposition 1.2. (See [3]) Let A be a semialgebraic variety.
(1) Then, there exists a complete complex algebraic variety X with a conjugate anti-

holomorphic map J :X → X such that dimA = dimX and that A is a semialgebraic
subset of X(R) :=

{
P ∈ X

∣∣ J(P ) = P
}
. This X is called a complex envelope of A.

(2) If X and Y are complex envelopes of A, then X and Y are birational equivalent.
(3) Let B be a semialgebraic variety, ϕ:A → B be a regular map, and X, Y be complex

envelopes of A, B. Then, there exists a rational map ϕ̃:X · · · → Y such that ϕ̃|A = ϕ.

Proposition 1.3. Let A and B be semialgebraic quasi-varieties and ϕ:A → B be
a regular map. Then ϕ(A) is also a semialgebraic quasi-variety. If A is a semialgebraic
variety, then ϕ(A) is also a semialgebraic variety. Here, the structure sheaf of ϕ(A) is
defined similarly as [3]Definition 1.4 (see also [16] II Exercise 3.11(d)).

Proof. This follows from Proposition 2.2.7 of [7]. (See also [3].)

Example 1.4. Let G be a subgroup of the symmetric group Sn+1. Then, Pn
R/G and

Pn
+/G are semialgebraic varieties by the above proposition. (See also [21].)

A semialgebraic quasi-variety can be decomposed into a union of non-singular semial-
gebraic varieties without absolute boundaries as the following way:

Definition 1.5. (Critical decomposition) Let A be a semialgebraic quasi-variety with
dimA = n. We shall define ∆i(A) (i = 0,. . ., n) by induction on n. If dimA = 0, then
A = {P1,. . ., Pm} where Pi are points. In this case we put ∆0(A) = {P1,. . ., Pm}, and put
∆i(A) = ∅ for i 6= 0.

Assume that n = dimA ≥ 1. Let Z1,. . ., Zr be all the irreducible components of A
with dimZi = n. Put Ai := Int(Zi − Sing(A)

)
, and ∆n(A) :=

{
A1,. . ., Ar

}
. Note that

Zi ∩ Zj ∩ Int(A) ⊂ Sing(A) for i 6= j.
Let Y1,. . ., Yk be all the irreducible components of A with dimYj ≤ n − 1, and let

Bj := Yj − (A1 ∪ · · · ∪Ar). Put

B := Sing(A) ∪ ∂A ∪B1 ∪ · · · ∪Bk.

Then, we can regard B as a semialgebraic quasi-subvariety of A with the reduced structure
(see [3]). Note that dim B < dimA. Thus we put ∆i(A) := ∆i(B) for i 6= n.

We denote ∆(A) := ∆0(A)∪∆1(A)∪ · · ·∪∆n(A), and is called a critical decomposition
of A. Each element D ∈ ∆(A) is called a critical set of A. Note that D is a non-singular
semialgebraic variety with ∂D = ∅.

Example 1.6. P2
+ is isomorphic to a triangle as semialgebraic varieties. Thus, ∆0(P2

+)
=

{
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)

}
, ∆2(P2

+) =
{

Int(P2
+)

}
, and ∆1(P2

+) consists of three
open line segments connecting two points in ∆0(P2

+).

In our theory, we have to treat homogeneous polynomials on Pn−1
R , not on Rn, for we

need that A is compact. Thus, we need the following:

5



Definition 1.7.(Signed linear system) Let A be a semialgebraic quasi-variety, Ran
A be

the sheaf the germs of real analytic functions on A. Assume that there exists an invertible
RA-sheaf I and an invertible Ran

A -sheaf J such that I⊗RA
Ran

A = J⊗Ran
A

J. For any point
a ∈ A, we can take an affine open subset a ∈ U ⊂ A such that I|U = RA|U · e2

U by a
certain eU ∈ H0(U , J). Then, for f ∈ H0(A, H), there exists gU ∈ H0(U , RA) such
that f |U = gUe⊗2

U . We define sign(f(a)) ∈ {0, ±1} by sign(f(a)) = sign(gU (a)). A finite
dimensional subspace H ⊂ H0(A, I) is called a linear system on A.

Example 1.8. Let A = Pn
+ ⊂ Pn

R. Then, Hd = Hn+1,d is a signed linear system on
Pn

+. If d is even, Hd is also a signed linear system on Pn
R.

Definition 1.9. Let A be a semialgebraic quasi-variety, and H be a linear system on
A.

Bs H :=
{
x ∈ A

∣∣ f(x) = 0 for all f ∈ H
}

is called to be the base locus of H. Clearly, Bs H is a semialgebraic closed subset of A.
Assume that U := A − Bs H 6= ∅. Let {s0,. . ., sN} be a base of H. Then the linear

system H defines a regular map Φ : U −→ P(H∨) by Φ(x) =
(
s0(x) : · · · : sN (x)

)
for x ∈ U .

We denote this Φ by ΦH : A · · · → P(H∨).
If Bs H = ∅ and ΦH : A −→ ΦH(A) is an isomorphism, we say H is very ample.

Proposition 1.10. Let G ⊂ Sn+1, and π:Pn
R −→ Pn

R/G is the natural surjection. Let
HG

d :=
{
f ∈ Hn+1,d

∣∣ σ(f) = f for all σ ∈ G
}
. Then,

(1) Pn
R/G is a normal semialgebraic variety.

(2) If d ∈ N is a multiple of #G, then π(HG
d ) is a very ample linear system on Pn

R/G.

Proof. (1) follow from Proposition 1.2 and the theorem that if X is non-singular complex
algebraic variety and a finite group G ants on X, then X/G is normal.

(2) Extend π to π:Pn
C → Pn

C/G. Let H be a hyperplane of Pn
C, and D :=

∑

σ∈G

σ(H).

Then π∗D is a very ample divisor in Pn
C/G. Thus, π∗OPn

C
(d)G is a very ample invertible

sheaf on Pn
C/G. So, π(HG

d ) is a very ample linear system on Pn
R/G.

To observe G-invariant polynomials on A, it is useful to consider quotient spaces A/G
(cf. [24]).

1.2. PSD Cone.

Definition 1.11. (PSD cone) Let A be a semialgebraic quasi-variety, and 0 6= H be a
signed linear system on A. A closed convex cone

P(A, H) :=
{
f ∈ H

∣∣ f(a) ≥ 0 for all a ∈ A
}

is called the PSD cone on A in H.
Assume that U := A − Bs H 6= ∅. Note that P(U , H) = P(A, H), since f(a) = 0 for

all f ∈ H and a ∈ Bs H. We denote

X(A, H) := ClsP(H)(ΦH(U))

and we call X(A, H) to be the characteristic variety of P(A, H).
Let R+ :=

{
α ∈ R ∣∣ α ≥ 0

}
, and {s0,. . ., sN} be a base of H. Put

X̃(A, H) :=
⋃

x∈A

R+ ·
(
s0(x), · · · , sN (x)

) ⊂ RN+1,
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and let C(A, H) be the closure of the convex cone generated by X̃(A, H). C(A, H) is called
the characteristic cone of P(A, H).

Example 1.12. Let G ⊂ Sn+1, and d is a positive multiple of #G. Then, X(Pn
+,

HG
d ) ∼= Pn

+/G, and X(Pn
R, HG

d ) ∼= Pn
R/G, by Proposition 1.10.

Proposition 1.13. Let A be a semialgebraic quasi-variety, H be a signed linear system
on A, and A− Bs H 6= ∅. Put X := X(A, H), and let H1 be the set of linear polynomials
on P(H∨) including 0. Then

Φ∗H : P(X, H1)
∼=−→ P(A, H)

is a linear bijective map.

Proof. Φ∗H : H1 −→ H is a linear bijective map as a result of complex algebraic
geometry. Take f ∈ H. There exists a unique linear homogeneous polynomial g on P(H∨)
such that f = Φ∗H(g). f(a) ≥ 0 for all a ∈ A if and only if g(P ) ≥ 0 for all P ∈ X. Thus we
have the conclusion.

Proposition 1.14. (Semialgebraicity Theorem) Let A be a semialgebraic quasi-variety,
and H be a signed linear system on A such that A− Bs H 6= ∅. Then,
(1) P(A, H) is a semialgebraic closed convex cone in the Euclidian space H.
(2) P(A, H) is the dual convex cone of the characteristic cone C(A, H).

Proof. (1) By Proposition 1.13, we may assume A = X ⊂ PN
R and H = H1.

Step 1. We consider the case A is a basic semialgebraic subset: A =
{
x ∈ PN

R
∣∣ fi(x) ≥ 0

for i = 1,. . ., r
}
, where fi ∈ R[x0,. . ., xN ] are homogeneous polynomials of even degrees. Put

B :=
{
(x, y) ∈ PN

R ×RN+1
∣∣ fi(x) ≥ 0 (∀i), and x · y < 0

}
, where x · y = x0y0 + · · ·+ xNyN .

B is also a semialgebraic set. Let π2 : PN
R × RN+1 −→ RN+1 be the second projection

π2(x, y) = y. π2(B) =
{
y ∈ RN+1

∣∣ x · y < 0 for ∃x ∈ A
}

is also semialgebraic by
Tarski-Seidenberg theorem. Thus, P(A, H) = RN+1 − π2(C̃) is semialgebraic.

Step 2. We consider general semialgebraic quasi-variety A ⊂ PN
R . There exists basic

semialgebraic subset B1,. . ., Bk ⊂ PN
R such that A = B1∪· · ·∪Bk. Then, P(A, H) = P(B1,

H) ∩ · · · ∩P(Bk, H). Thus P(A, H) is semialgebraic.
(2) Similar.

Definition 1.15. (Face component) Let C be a semialgebraic closed convex set of RN

or PN
R with dimC = N . Take D ∈ ∆N−1(C) as Definition 1.5. Then D is called a face

component of C or of ∂C. The defining equation of the hypersurface Zar(D) is called a
discriminant of D or of C and denoted by disc(D).

What we should do is to determine all the face components of P(X, H1). The following
proposition clarifies the geometric meaning of equality conditions of algebraic inequalities.
A convex cone C ⊂ RN is said to be non-degenerate if dimC = N .

Proposition 1.16. (Boundary Theorem) Let A be a compact semialgebraic quasi-
variety, and 0 6= H be a signed linear system on A. Assume that P := P(A, H) ⊂ H is
non-degenerate. Let f ∈ P.
(1) If f(a) = 0 for a certain a ∈ A− Bs H, then f ∈ ∂P.
(2) If f ∈ ∂P, then there exists a ∈ A such that f(a) = 0.
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Proof. We can reduce to the case A is irreducible, and H ⊂ Rat(A), since P(A1 ∪ A2,
H) = P(A1, H) ∩P(A2, H).

(1) Since a /∈ Bs H, there exists g ∈ P such that g(a) > 0. Then for all ε > 0,
f(a)− εg(a) < 0. This means f − εg /∈ P. Thus f ∈ ∂P.

(2) Assume that f ∈ P satisfies f(a) > 0 for all a ∈ A. Then, f ± εg ∈ P for any g ∈ P,
and 0 < ε ¿ 1. Thus f /∈ ∂P.

Definition 1.17. (Dual variety) Let P = PN
R and P∨ be the set of all the hyperplanes

in P. Assume that D ⊂ P is a non-singular semialgebraic variety with ∂D = ∅ (i.e. ∆(D) =
{D}). For x ∈ D, let TD,x := TZar(D),x ⊂ P be the tangent space of Zar(D) at x. Then,

D∨ :=
{
H ∈ P∨ ∣∣ H ⊃ TD,x for a certain x ∈ D

}

is called the dual variety of D. Since D is irreducible and non-singular, D∨ is irreducible.
Thus D∨ is a semialgebraic variety. Note that D∨ may have singularities.

Theorem 1.18. Let X ⊂ P = Pn be a closed semialgebraic quasi-variety, P := P(X,
H1), and π : (H1 − {0}) → P(H1) be the natural surjection. Put P(P) := π(P − {0}) ⊂
P(H1). Note that P(H1) = P∨, since P = P(H∨

1 ). Then,

∂P(P) ⊂
⋃

D∈∆(X)

D∨.

Proof. Take 0 6= f ∈ ∂P ⊂ H1. Let Hf ⊂ P = P(H∨
1 ) be the hyperplane corresponds

to f . Since Bs H1 = ∅, f(x) = 0 for a certain x ∈ X. There exists D ∈ ∆(X) such that
x ∈ D. Since f(y) ≥ 0 for all y ∈ D, we conclude that Hf ⊃ TD,x. Thus Hf ∈ D∨.

Note. If D ∈ ∆(X) satisfies X ∩ Int(P(C(X, H1))) 6= ∅, then D∨ 6⊂ P by Proposition
1.14(2).

Definition 1.19. Use the same notation with Theorem 1.18. For D ∈ ∆(X), we denote

F(D) := ClsH1(π
−1(D∨) ∩ ∂P).

Note that F(D) and D∨ have the same discriminants.

Example 1.20. Let d be a positive even integer, Hd := Hn,d, Pn,d := P(Pn−1
R ,

Hd), and Xn,d := X(Pn−1
R , Hd). Since OPn−1

C
(d) is very ample, we have Xn,d

∼= Pn−1
R ,

∆n−1(Xn,d) = {Xn,d}, and ∆i(Xn,d) = ∅ for i 6= n− 1. Thus ∂Pn,d is irreducible. That is,
the defining equation of Zar(∂Pn,d) is irreducible. (Compare with Chapter 4 and 5 of [6].)

Remark 1.21. (1) Under the same assumption with Theorem 1.18, assume that X =
X(A, H), P ∈ A, and x := ΦH(P ) ∈ D ∈ ∆r(X). Let B := Φ−1

H (D) ⊂ A. Assume that
B → D is a finite unramified morphism, and there exists a local coordinate system (t1,. . .,
tr) at a certain neighborhood of P in B.

Let {s0,. . ., sN} be a base of H. Identify p0s0 + · · · + pNsN ∈ H with (p0,. . ., pN ) ∈
RN+1. We take (p0 : · · · : pN ) as a homogeneous coordinate system of P(H). Then,

TD,x :=






· · · : si(P ) +

r∑

j=1

vj
∂si

∂tj
(P ) : · · ·


 ∈ Pn

R

∣∣∣∣∣∣
(v1,. . ., vr) ∈ Rr



 .
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Thus, disc(D) = discD(p0,. . ., pN ) of Zar(D∨) can be obtained eliminating t1,. . ., tr from
the system of equations

N∑

i=0

pisi(P (t1, . . . , tr)) = 0 and
N∑

i=0

pi
∂si

∂tj
(P (t1, . . . , tr)) = 0 (j = 1,. . ., r).

Here P (t1,. . ., tr) is the function which represent the coordinate of P .
(2) Especially, consider the special case dim D = N−1. Then, Zar(D) is a hypersurface

of PN
R defined by a certain irreducible polynomial h(x0,. . ., xN ). Let hi =

∂h

∂xi
. Then

TD,x =
{
(x0 : · · · : xN ) ∈ PN

R
∣∣ h0(P )x0 + · · ·+ hN (P )xN = 0

}
.

Thus, disc(D) = discD(p0,. . ., pN ) of Zar(D∨) can be obtained eliminating x0,. . ., xN from
the system of equations p0x0 + · · ·+ pNxN = 0 and pi = hi(x0,. . ., xN ) (i = 0,. . ., N).

(3) Assume that D ∈ ∆0(X), and x = D = (b0 : · · · : bN ). Then, Zar(P∨) is the hyper
plane defined by b0p0 + · · ·+ bNpN = 0. Thus, disc(D) = b0p0 + · · ·+ bNpN .

Lemma 1.22. Let V be a non-singular complete real algebraic variety, and A be an
open subset of V such that Int(ClsV (A)) = A. If ∂aA is a union of hypersurfaces of V , then
ClsV (A) is a semialgebraic subset of V .

Proof. We regard ∂aA to be a reduced divisor D. There exists a composition of blowing
ups ϕ:Y −→ V such that Sing(Y ) = ∅ and ϕ∗D is a normal crossing divisor. It is enough
to show that ϕ−1(A) is a semialgebraic subset of Y .

Take a point P ∈ Y . Choose an affine open subset P ∈ W ⊂ Y , and take a distance
function d on W . For ε > 0 (∈ R), let Bp(ε) :=

{
Q ∈ W

∣∣ d(P, Q) ≤ ε
}
. Since Y is compact,

it is enough to prove that for any P ∈ ϕ−1(A), there exists ε > 0 such that ϕ−1(A)∩Bp(ε) is
a semialgebraic set. Since D is normal crossing, we can choose an analytic local coordinate
system (x1,. . ., xn) at P ∈ U such that D ∩BP (ε) =

(
V (x1) ∪ · · · ∪ V (xm)

) ∩BP (ε). Note
that xi is not always a polynomial but an analytic function.

Let f be the defining polynomial of (SuppD) ∩ BP (ε). Since D is reduced, we may
assume that f = x1 · · ·xm. Let s = (s1,. . ., sm) ∈ {±1}m, and let Qs be the subset of
BP (ε) defined by s1x1 ≥ 0,. . ., smxm ≥ 0. (∂Y ) ∩BP (ε) is a union of some Qs. Thus, it is
enough to prove every Qs is a semialgebraic set. We may assume f ≥ 0 on Q(1,...,1). Then
s1 · · · smf ≥ 0 on Q(s1,...,sm).

Let (y1,. . ., yn) be an algebraic coordinate system on BP (ε). We may assume xi =
yi + gi(y1,. . ., yn) for 1 ≤ i ≤ m, where gi is a power series with ord gi ≥ 2. Let V ⊂ BP (ε)
be the set defined by x1 = · · · = xm = 0. V is an algebraic variety, since V is defined by
y1 = · · · ym = 0 if ε is sufficiently small. In other word, V is a subvariety of Sing(D)∩Bp(ε).

Since s1 · · · smf ≥ 0 on Q(s1,...,sm), we have

Qs =
{
y ∈ Bp(ε)

∣∣ s1 · · · smf(y) ≥ 0, s1y1 + · · ·+ smym ≥ 0
}
.

Therefore Qs is a basic semialgebraic set.

Remark 1.23. Let A be a semialgebraic quasi-variety, and 0 6= H be a signed linear
system on A. Theoretically, we can determine P = P(A, H) by the following algorithm.

Step 1. Determine X = X(A, H) and ∆(X), using algebraic geometry.
Step 2. For every D ∈ ∆(X), calculate the dual variety Zar(D∨) = Zar(D)∨, according

to Remark 1.21. Usually, we need a computer here.
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Step 3. S :=
⋃

D∈∆(X)

Zar(D)∨ cuts H into blocks B1,. . ., Bk such that ∂Bi ⊂ S and

Int(Bi)∩S = ∅. Find out convex cone P which is a union of some Bi. If there exists f ∈ Bi

such that f(a) < 0 for a certain a ∈ A, then Int(Bi) ∩ P = ∅. Contrary, if there exists
0 6= f ∈ Bi such that f ∈ P, then Bi ⊂ P. Note that each block Bi is semialgebraic by
Lemma 1.22.

Step 4. Obtained P may not be a basic semialgebraic set. In such a case, find out a
nice decomposition of P into basic semialgebraic subsets, since we want to describe P by a
system of inequalities.

1.3. Local cone.
In Remark 1.23, every step is not so easy, when dimH is not small. We need some more

tools to execute the above steps. The following idea is useful to reduce to lower dimensional
case and to find extremal inequalities.

Definition 1.24. (Local Cone) Let A be a semialgebraic quasi-variety, and H be a
signed linear system on A. For a subset I ⊂ A, we put

HI :=
{
f ∈ H

∣∣ f(a) = 0 for all a ∈ I
}
, PI := P ∩HI = P(A, HI).

We call PI to be the local cone at I. If I = {a}, we denote P{a} by Pa.

Proposition 1.25. (1) PI is a semialgebraic closed convex cone in HI .
(2) PI = P(A, HI).
(3) Let I and J be subsets of A. Then (PI)J = P(I∪J).

Proof. Trivial.

Let C ⊂ Rn be a closed convex cone, and 0 6= f ∈ C. We say f is extremal in C if g,
h ∈ C and f = g + h then g and h are multiples of f .

Proposition 1.26. (Local Cone Theorem)
Let A be a compact semialgebraic quasi-variety, and 0 6= H be a signed linear system

on A. Then,

(1) ∂P ⊂
⋃

a∈A

Pa.

(2) If I 6⊂ Bs H, then PI ⊂ ∂P.

(3) Assume that A is irreducible and A−Bs H 6= ∅. Let U :=
⋃

a∈A−Bs H

Pa. Then U = ∂P.

(4) Let 0 6= f ∈ Pa. f is extremal in P if and only if f is extremal in Pa.

Proof. (1) Take 0 6= f ∈ ∂P. Then, f(a) = 0 for a certain a ∈ A by Proposition 1.16.
Thus f ∈ Pa.

(2) Take f ∈ PI . There exists a ∈ I − Bs H such that f(a) = 0, since I 6⊂ Bs H. Then
f ∈ ∂P by Proposition 1.16.

(3) By (2), U contains a non empty open subset of ∂P. Since Bs H is a Zariski closed
subset of A, dim(∂P−U) < dim ∂P. Thus U = ∂P.

(4) If f is extremal in P, it is clear that f is extremal in Pa.
Assume that f ∈ Pa is not extremal in P. Then, there exist g, h ∈ P−R+ ·f such that

f = g + h. Since g(a) ≥ 0, h(a) ≥ 0 and g(a) + h(a) = f(a) = 0, we have g(a) = h(a) = 0.
Thus g, h ∈ Pa. Therefore, f is not extremal in Pa.
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Proposition 1.27. (Face Component Theorem) Let X be a closed semialgebraic subset
of PN

R such that X is not included in any proper linear subspace of PN
R . Assume that

P := P(X, H1) is non-degenerate in H1. Take x ∈ D ∈ ∆r(X).
(1) dim Px ≤ N − r.

(2) F(D) = Cls

( ⋃

x∈D

Px

)
.

Proof. For f ∈ H := H1, let Hf be the hyperplane in P(H) defined by f = 0.
(1) Since P is non-degenerate, dim(U∩P) = N+1 for any Euclidean open neighborhood

U of P . Note that dimTD,x = dim D = r, since D is non-singular. The condition TD,x ⊂ Hf

means that f passes through independent r+1 points. Thus dimPx = dim P−(r+1) ≤ N−r.

(2) ⊃ is clear. We prove ⊂. Take f ∈ D∨ ⊂ Int(F(D)). Then, f(x) = 0 for a certain
x ∈ D. That is, f ∈ Px.

Not that dimHx = dim H− 1 = N . If r ≥ 0, dim Px ≤ N − r. Thus Px is degenerate
in Hx.

Remark 1.28. We provide an algorithm to obtain the base of Zar(PP ). This algorithm
helps us to find extremal inequalities. We use the same symbols as Remark 1.21. Assume
that P = P(A, H) and X = X(A, H) satisfy the condition of Proposition 1.27. Let
D ∈ ∆r(X) and P ∈ B = Φ−1

H (D). Assume that B → D is a finite unramified morphism,
and there exists a local coordinate system (t1,. . ., tr) at a certain neighborhood of P in B.

Take f =
N∑

i=0

pisi ∈ PP . Since f ∈ HP , we have

N∑

i=0

pisi(P (t1, . . . , tr)) = 0. (1.29)

Since (p0,. . ., pN ) is perpendicular to TD,ΦH(P ), we have

N∑

i=0

pi
∂si

∂tj
(P (t1, . . . , tr)) = 0 (1.30)

for j = 1,. . ., r. Consider (1.29), (1.30) as a system of linear equations on (p0,. . ., pN ).
Then, its solution space is just Zar(PP ) if PP 6= 0. Note that (1.29), (1.30) are the same
system of equations with Remark 1.21(1).

1.4. Relative theorems.

Proposition 1.31. (Relative theorem for H) Let A be a compact semialgebraic quasi-
variety, H be signed linear system on A, and P := P(A, H). For a subspace 0 6= H′ ⊂ H,
let P′ := P(A, H′). Then,
(1) P′ = P ∩H′ and ∂P′ ⊂ ∂P ∩H′.
(2) If Bs H′ = ∅ and P is non-degenerate, then P′ is non-degenerate.
(3) P′x = Px ∩H′ for any x ∈ A.
(4) Let 0 6= f ∈ P′. If f is an extremal element of P, then f is an extremal element of P′.

Proof. (1), (3) and (4) are clear.
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(2) If P′ degenerates, then its dual cone C(A, H′) contains a line L. Let ρ : C(A,
H) −→ C(A, H′) be the map induced from the inclusion map H′ ⊂ H. Since ρ is a linear
projection, ρ−1(L) contains a line. This implies that P degenerates.

Proposition 1.32. (Relative theorem for A) Let A be a compact semialgebraic variety,
and B ⊂ A be a closed semialgebraic subvariety such that ZarA(B) = A. Let H be a signed
linear system on A. Let Y := X(B, H), X := X(A, H), DA := Reg(X) ∈ ∆(X), and
DB := Reg(Y ) ∈ ∆(Y ), P := P(A, H), and P′ := P(B, H). Assume that P is non-
degenerate and dimF(DB) = dimP′ − 1. Then Zar(F(DA)) = Zar(F(DB)).

Proof. Since B ⊂ A, we have P′ ⊃ P. Put N := dimH − 1. Since N = dim P ≤
dimP′ = dimF(DB) ≤ dimF(DA) ≤ N , these agree. Since B ⊂ A, we have DB ⊂ DA,
D∨

A ⊂ D∨
B , and F(DA) ⊂ F(DB). Since D∨

A and D∨
B are irreducible, and dimF(DB) =

dimF(DA) = N , we have Zar(F(DA)) = Zar(F(DB)).

Proposition 1.33. (Closure Theorem) Let C ⊂ Rm be a semialgebraic closed convex
cone.
(1) Let F be a face component of C, and let P , Q, R ∈ Rm are distinct points such that Q

is in the interior of the line segment PR. If P ∈ C, P /∈ F and Q ∈ F , then R /∈ C.
(2) Assume that C contains no lines. Let F0, F1,. . ., Fr be face components of C such that

∂C = F0 ∪ F1 ∪ · · · ∪ Fr. Then

∂F0 = (F1 ∪ F2 ∪ · · · ∪ Fr) ∩ F0.

Proof. (1) If R ∈ C, then P , R ∈ F .
(2) Trivial.

1.5. The cases A = Pn
R and A = Pn

+.
Note that a local cone Pa degenerate and Bs Ha 3 a. To apply Proposition 1.16, 1.27

and 1.31, we need the following:

Proposition 1.34.(Non-degeneracy Theorem) Assume that ‘d ∈ N and A = Pn
+’, or,

‘d ∈ 2N and A = Pn
R’. Assume that H ⊂ Hn+1,d, and Bs H = ∅. Then P(A, H) is

non-degenerate.

Proof. (1) First, we consider the case H = Hn+1,d. We denote the coordinate system

of Pn
R by (a0 : · · · : an). Let s0 :=

n∑

i=0

ad
i ∈ H. Note that s0 ∈ P(A, H).

Assume that P is degenerate. Then, its dual cone C(A, H) contains a line L passing
through the origin O. There exists two points P , Q ∈ L∩X̃(A, H) such that O is contained
in a line segment PQ. Let p, q ∈ A be points correspond to P , Q. Then s0(p)s0(q) ≤ 0.
Since s0 ≥ 0, s0(p) = sq(q) = 0. This implies p = q = 0 and P = Q. A contradiction.

(2) The general case follows from Proposition 1.31.

Let A be a non-singular semialgebraic variety. Consider the case a finite group G acts
on A. Let π:A −→ A/G be the natural surjection. We denote

AG :=
{
a ∈ A

∣∣ σ(a) = a for all σ ∈ G
}
.

Note that Sing(A/G) ⊂ π(AG).
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Example 1.35. Let A = Pn
R and G = Z/(n + 1)Z. Then, AG = {1}, where 1 := (1 :

1 : · · · : 1). Sing(Pn
R/G) = {π(1)}.

Proposition 1.36. Let A = Pn
R or A = Pn

+, and G ⊂ Sn+1. Put g := #G, and
XG

d := X(A, HG
d ).

(1) If d = kg + 2m (k ≥ 1, m ≥ 0) and Bs HG
d = ∅, then A/G ∼= XG

d .
(2) If A = Pn

+, d ≥ g and Bs HG
d = ∅, then A/G ∼= XG

d .

Proof. For f ∈ HG
d , we put V (f) :=

{
x ∈ A

∣∣ f(x) = 0
}
. Note that ΦHG

d
: A −→ XG

d

factors as A
π−→ A/G

ΨG
d−→ XG

d .
(1) We may assume that A = Pn

R. If d = kg, then Pn
R/G ∼= XG

d , by Proposition 1.10.
Consider the case d = kg + 2m. Let S2 := a2

0 + · · ·+ a2
n. We define an injection

ι : HG
kg

×Sm
2−→ HG

d

by ι(f) = fSm
2 . Since V (Sm

2 ) = V (S2) = ∅, there exists the regular map ρ : XG
d −→ XG

kg.
Note that ΦHG

kg
= ρ ◦ ΦHG

d
. Since ΨG

kg is an isomorphism, ΨG
d is also an isomorphism.

(2) Consider the case d = n + 1 + l. Let S1 := a0 + · · · + an. We define an injection

ι : HG
g

×Sd−g
1−→ HG

d by ι(f) = fSd−g
1 . Since A ∩ V (Sd−g

1 ) = ∅, there exists the regular map
ρ : XG

d −→ XG
g . The left part is similar as (1).

Section 2. Cyclic and Symmetric inequalities.

2.1. Cyclic inequalities of three variables.

Consider typical problems:
(1) Probe that f(a, b, c) ≥ 0 for all a, b, c ∈ R.
(2) Probe that f(a, b, c) ≥ 0 for all a ≥ 0, b ≥ 0, c ≥ 0.

We shall study the case that f is a cyclic homogeneous polynomial of degree d. Let
G = Z/3Z, and A = P2

R or A = P2
+. We denote the homogeneous coordinate system of A by

(a : b : c). Let
Hc

d := (H3,d)G.
Problem (1) is study of P(P2

R, Hc
d), and (2) is of P(P2

+, Hc
d). We shall denote

Pc
d := P(P2

R, Hc
d), Pc+

d := P(P2
+, Hc

d).

By Proposition 1.34, these are non-degenerate. The following are typical elements of Hc
d.

Si,j,k(a, b, c) := aibjck + bicjak + ciajbk

Si,j(a, b, c) := aibj + bicj + ciaj , Si(a, b, c) := ai + bi + ci, U(a, b, c) := abc,

Ti,j,k(a, b, c) := Si,j,k(a, b, c) + Sj,i,k(a, b, c), Ti,j(a, b, c) := Ti,j,0(a, b, c).

We usually omit (a, b, c) if the variables are a, b, c, e.g. Si = ai + bi + ci, Ti,j = Ti,j(a, b, c).
Take the set Id of indices (i, j, k) such that Bd :=

{
Si,j,k

∣∣ (i, j, k) ∈ Id

}
form a basis of

Hc
d. Let N := dim Hc

d − 1 and

|(i, j, k)| := max{|i− j|, |i− k|, |j − k|}.
Align all the elements of Bd as s0,. . ., sN so that s0 = ad + bd + cd, and that sN = Si,j,k

with the minimum |(i, j, k)|. For example, we can choose I3 = {(3, 0, 0), (2, 1, 0), (1, 2, 0),
(1, 1, 1)}, and I4 = {(4, 0, 0), (3, 1, 0), (1, 3, 0), (2, 2, 0), (2, 1, 1)}.
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Proposition 2.1. (1) dimHc
d = d(d + 1)(d + 2)/6e.

(2) Bs Hc
d = ∅ for d ≥ 3.

Proof. (1) follows from #Id = d(d + 1)(d + 2)/6e.
(2) By Proposition 1.10(2), BsHc

3k = ∅. Bs Hc
4 ⊂ V (S4) = ∅. By ι : Hc

d
×S2−→ Hc

d+2, we
have Bs Hc

d+2 ⊂ Bs Hc
d.

Here, we summarize some results of high school algebra — special cases of Muirhead
inequality (see [19]).

Proposition 2.2. (1) For all a, b, c ∈ R and −1 ≤ k ≤ 2, the following hold:
2S4 ≥ T3,1, S4 ≥ S2,2 ≥ US1,
2S6 ≥ T4,2 ≥ 2US3, T4,2 ≥ UT2,1, T4,2 ≥ 6U2.
S2 + kS1,1 ≥ 0.

(2) For a ≥ 0, b ≥ 0, c ≥ 0, the following hold:
2S3 ≥ T2,1 ≥ 6U ,
3S4 ≥ T3,1 ≥ 2S2,2 ≥ 2US1,
2S5 ≥ T4,1 ≥ T3,2 ≥ 2US2 ≥ 2US1,1,
2S6 ≥ T5,1 ≥ T4,2 ≥ 2US3 ≥ UT2,1 ≥ 6U2,
2S3,3 ≥ UT2,1 ≥ 6U2.

All of the above inequalities f(a, b, c) ≥ 0 satisfy the condition f(a, a, a) = 0. We will
find that this equality condition has special meaning. So, let

Hc0
d :=

{
f ∈ Hc

d

∣∣ f(1, 1, 1) = 0
}
, Pc0

d := P(P2
R, Hc0

d ), Pc0+
d := P(P2

+, Hc0
d ).

For f ∈ Hc
d, we say f is monic if the coefficient of Sd in f is equal to 1. We say f lies on

infinity if the coefficient of Sd in f is equal to 0.

Proposition 2.3. (1) dimHc0
d = d(d + 1)(d + 2)/6e − 1.

(2) Bs Hc0
d = {(1 : 1 : 1)} for d ≥ 3.

Proof. Easy exercise.

Proposition 2.4. Let G = Z/3Z, π:P2
R → P2

R/G be the natural surjection, and
L :=

{
(0 : s : 1) ∈ P2

+

∣∣ s > 0
}
. Then,

(1) P2
R/G is a normal real algebraic surface, and ∆0(P2

R/G) = {π(1 : 1 : 1)}, ∆1(P2
R/G) = ∅,

∆2(P2
R/G) = {Reg(P2

R/G)}.
(2) P2

+/G is a normal semialgebraic surface, and ∆0(P2
+/G) = {π(1 : 1 : 1), π(0 : 0 : 1)},

∆1(P2
+/G) = {π(L)}, ∆2(P2

+/G) = {Reg(P2
+/G)}.

Proof. (1) Through the study of cyclic quotient singularity, it is well known that P2
R/G

is a complete real algebraic variety, and have unique singular point π(1 : 1 : 1). Thus we
obtain (1).

(2) follows from Example 1.4 and (1). Note that Zar(π(L)) has a unique singular point
at π(0 : 0 : 1).

Next we shall study characteristic varieties. Put

Φc
d := ΦHc

d
, Xc

d := X(P2
R, Hc

d), Xc+
d := X(P2

+, Hc
d).

By Proposition 1.36, Xc+
d
∼= P2

+/G for d ≥ 3, and Xc
d
∼= P2

R/G for d = 3 and d ≥ 5. In these
cases, ∆(Xc

d) and ∆(Xc+
d ) are given by the above proposition. We shall study Xc

4 .
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Proposition 2.5. Let P := Φc
4(1 : 1 : 1) ∈ Xc

4 . Then ∆0(Xc
4) = {P}, ∆1(Xc

4) = ∅,
and ∆2(Xc

4) = { (Xc
4 − {P})}.

Proof. Φc
4 : P2

R · · · → Xc
4 can be extended to a rational map ΦC : P2

C · · · → P(Hc
4 ⊗R

C), and π:PR → PR/G can be extended to πC:PC → PC/G, here G = Z/3Z. Let ω =
−1 +

√−3
2

, 1 = (1 : 1 : 1), Q1 := (ω : ω2 : 1) and Q2 := (ω2 : ω : 1) ∈ P2
C. Then

(P2
C)

G = {1, Q1, Q2}, and Bs(Hc
4 ⊗R C) = {Q1, Q2}. Thus the locus of indeterminacy of

ΦC : P2
C · · · → (Xc

4)C is {Q1, Q2}. Let LC :=
{
(a : b : c) ∈ P2

C
∣∣ a + b + c = 1

}
, L :=

LC ∩ P2
R = V (S1), P := π(1), P1 := πC(Q1), P2 := πC(Q2) ∈ P2

C/G, CC := πC(LC) ⊂ P2
C/G

and C := π(L) ⊂ P2
R/G. Note that Q1, Q2 ∈ LC, and Sing(P2

C/G) = {P , P1, P2}. Since
every function in Hc

4 is constant on L, Φc
4(L) is a point. On the other hand, it is easy to see

that Ψc
4 : (P2

R/G−C) −→ (Xc
4−Φc

4(L)) is an isomorphism, as the proof of Proposition 1.36.
Let ψ : X̃ −→ P2

C/G be the blowing up at P1 and P2, and CX̃ be the strict transform of CC.
Then, CX̃ is an exceptional curve of the first kind, and X̃ −→ (Xc

4)C is the contraction of
CX̃ . Regarding P2

R/G ⊂ X̃, we conclude that Ψc
4 : P2

R/G −→ Xc
4 is a smooth contraction of

C. Thus, Xc
4 is a complete real algebraic variety, which has unique isolated singular point

of A1-type.

By the above two propositions, we have:

Proposition 2.6. Assume d ≥ 3. Let P := Φc
d(1 : 1 : 1), O := Φc

d(0 : 0 : 1), and
Cd :=

{
Φc

d(0 : s : 1)
∣∣ s > 0

}
.

(1) The boundary of Pc
d = P(P2

R, Hc
d) consists of two face components Fc

d := F(Reg(Xc
d))

and F(P ). Moreover, F(P ) = Pc0
d .

(2) The boundary of Pc+
d consists of at most four face components Fc+

d := F(Reg(Xc+
d )),

Ec+
d := F(Cd), F(O), and F(P ). Moreover, F(P ) = Pc0+

d .
(3) If dimFc+

d = dim Hc
d − 1, then disc(Reg(Xc

d)) = disc(Reg(Xc+
d )).

Proof. (1) By the definition, F(P ) = Pc0
d . It is a subset of a hyperplane in Hc0

d ⊂ Hc
d

by Remark 1.21(3). Pc
d is non-degenerate by Proposition 1.34. Thus, Fc

d ∪Pc0
d must enclose

a non-degenerate convex cone. Thus Fc
d is a face component of Pc

d.
(2) can be proved similarly.
(3) follows from Proposition 1.32.

Definition 2.7. We say Fc
d is the main component of Pc

d, and disc(Reg(Xc
d)) is the main

discriminant of Pc
d. If dimFc+

d = dim Hc
d−1, then we say Fc+

d is the main component of Pc+
d ,

and disc(Reg(Xc+
d )) is the main discriminant of Pc

d. Otherwise, if dimFc+
d < dimHc

d − 1,
then we say Pc+

d has no main component. Ec+
d is called an edge component of Pc+

d , and
disc(Cd) is called an edge discriminant of Pc+

d .

disc(P ) is the linear polynomial corresponding to f(1, 1, 1) = 0. disc(O) is the linear
polynomial corresponding to f being at infinity, i.e. the coefficient of Sd in f is zero. By
Proposition 1.32 and 1.34, we have:

Proposition 2.8. Assume that Pc+
d has the main component. Then Pc+

d and Pc
d have

the same main discriminant.

Proposition 2.9. (Edge Discriminant Theorem) Assume that d ≥ 3 and Pc0+
d has an

edge discriminant. Then, it agrees with the edge discriminant of Pc+
d .
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Proof. Let {s0,. . ., sN−1} be a base of Hc0
d , and let discc0+

d (p0, . . . , pN−1) be the edge
discriminant of Pc0+

d corresponding s0,. . ., sN−1. Since discc0+
d exists, we have dim Ec0+

d =
N − 2, and dim(Pc0+

d )P ≤ N − 3 for P ∈ Cd. Take sN = Si,j,k ∈ Hc
d−Hc0

d so that |(i, j, k)|
is minimum. Then, sN is a multiple of U = abc. Thus sN (0, s, 1) = 0 and sN ∈ (Pc+

d )P .
Since Zar((Pc+

d )P ) = Zar
(
(Pc0+

d )P + R+ · sN

)
, we conclude that Zar(Ec+

d ) is the cone
with the base Zar(Ec0+

d ) and the vertex sN at infinity. Let discc+
d (p0, . . . , pN ) be the edge

discriminant of Pc+
d corresponding s0,. . ., sN . By the above discussion, discc+

d (p0, . . . , pN ) =
discc0+

d (p0, . . . , pN−1).

This proof implies the following:

Proposition 2.10. (Variables of the edge discriminant) Let d ≥ 3. Choose a basis
s0,. . ., sN of Hc

d so that each si is of the form si = Sj,k,l for some j ≥ k ≥ l ≥ 0. If si is a
multiple of U = abc, i.e. l ≥ 1, then pi does not appear in discc+

d (p0,. . ., pN ).

2.2. Symmetric inequalities of three variables.
To study symmetric inequality, we shall determine ∆(P2

R/G3) and ∆(P2
+/G3).

Let’s start from P2
R/G3. Let π:P2

R → P2
R/S3 be the natural surjection. We can choose

a fundamental domain of π as

AF :=
{
(s : t : 1) ∈ P2

R
∣∣ s + t + 1 ≥ 0, s ≤ t ≤ 1

}
.

π(AF ) = P2
R/G3 and the restriction map π:A◦F −→ π(A◦F ) is an isomorphism as a semialge-

braic variety.
Recall that P2

C/S3
∼= PC(1, 2, 3), since C[a, b, c]S3 = C[S1, S1,1, U ]. So, we usually

take the homogeneous coordinate system (x0 : x1 : x2) corresponding to (S1 : S1,1 : U). The
weighted projective plane PC(1, 2, 3) has isolated singularities at (0 : 1 : 0) and (0 : 0 : 1).
Let πC : P2

C −→ P2
C/S3 be the natural surjection. Since π−1

C (0 : 0 : 1) is imaginal points,
(0 : 0 : 1) /∈ P2

R/S3. Note that π−1
C (0 : 1 : 0) ∩AF = {(−1 : 0 : 1)}.

For (a : b : c) ∈ P2
R,

27U2 − 18S1S1,1U + 4S3
1U + 4S3

1,1 − S2
1S2

1,1 = −(a− b)2(b− c)2(c− a)2 ≤ 0.

Thus P2
R/S3 is the closed semialgebraic subset of PR(1, 2, 3) defined by

27x2
2 − 18x0x1x2 + 4x3

0x2 + 4x3
1 − x2

0x
2
1 ≤ 0. (2.11)

Next we consider ∂(P2
R/S3).

Proposition 2.12. Let Lb
F :=

{
(s : 1 : 1) ∈ P2

R
∣∣ s ∈ R ∪ {∞}, s 6= 1, s 6= −2

}
.

Then ∆2(P2
R/S3) =

{
π(A◦F )

}
, ∆1(P2

R/S3) =
{
π(Lb

F ))
}
, and ∆0(P2

R/S3) =
{
π(1 : 1 : 1),

π(−1 : 0 : 1)
}
.

Proof. Note that the edge
{
(s : s : 1) ∈ AF

∣∣ −1/2 ≤ s ≤ 1
}

is transported to
{
(s : 1 :

1) ∈ P2
R

∣∣ s ≤ −2 or s ≥ 1
}

by a suitable element of S3. It is easy to see that π(Lb
F ) agree

with the algebraic curve on PR(1, 2, 3) defined by 27x2
2−18x0x1x2 +4x3

0x2 +4x3
1−x2

0x
2
1 = 0,

and Sing(π(Lb
F )) = {π(1 : 1 : 1)

}
.

Let L1 :=
{
(s : −s − 1 : 1) ∈ P2

R
∣∣ −2 ≤ s < −1

}
and L2 :=

{
(s : −s − 1 : 1) ∈ P2

R
∣∣

−1 < s ≤ −1/2
}
. Since π(1/s : −1/s− 1 : 1) = π(s : −s− 1 : 1), π(L1) = π(L2) is the open

line segment connecting (0 : 0 : 1) and (0 : −3 : −2). Since Sing(PC(1, 2, 3))∩ π(L1) = ∅, we
have π(L1) ⊂ Reg(P2

R/S3). π(−1 : 0 : 1) = (0 : 0 : 1) ∈ Sing(P2
R/S3), and π(−2 : 1 : 1) =

(0 : −3 : −2) /∈ Sing(∂(P2
R/S3)). Thus, we have the conclusion.

16



Next we study P2
+/G3. One of the fundamental domains of π:P2

+ → P2
+/S3 is

AF+ :=
{
(s : t : 1) ∈ P2

+

∣∣ 0 ≤ s ≤ t ≤ 1
}
.

P2
+/S3 is the semialgebraic subset of PR(1, 2, 3) defined by (2.11) and x1/x2

0 ≥ 0, x2/x3
0 ≥ 0.

Thus we have the following proposition (cf. Fig.2.1).

-

U

S3
1

6
S1,1

S2
1

1
27

1
3

π(1 : 1 : 1)

π(0 : 1 : 1)

π(0 : 0 : 1)

π(Lb
F+), s > 1

π(Lb
F+), s < 1

P2
+/S3

π(L0
F+)

Fig.2.1. Graph of P2
+/S3

Proposition 2.13. Let

Lb
F+ :=

{
(s : 1 : 1) ∈ P2

R
∣∣ 0 < s < 1 or 1 < s < ∞}

,

L0
F+ :=

{
(0 : s : 1) ∈ P2

R
∣∣ 0 < s < 1

}
.

Then ∆2(P2
+/S3) =

{
π(A◦F+)

}
, ∆1(P2

+/S3) =
{
π(Lb

F+)), π(L0
F+)

}
, ∆0(P2

+/S3) =
{
π(0 :

0 : 1), π(0 : 1 : 1), π(1 : 1 : 1)
}
.

We also study Bs Hs
d and Bs Hs0

d where

Hs
d :=

{
f ∈ Hd

∣∣ f is symmetric.
}
,

Hs0
d :=

{
f ∈ Hd

∣∣ f(1, 1, 1) = 0 and f is symmetric.
}
.

Proposition 2.14. (1) If d ≥ 4 is even, then Bs Hs
d = ∅ and Bs Hs0

d = {(1 : 1 : 1)}.
(2) If d ≥ 3 is odd, then Bs Hs

d ∩ AF = {(−1 : 0 : 1)}. If d ≥ 5 is odd, then
Bs Hs0

d ∩AF = {(1 : 1 : 1), (−1 : 0 : 1)}.
(3) Let L =

{
(a : b : c) ∈ P2

R
∣∣ a + b + c = 0

}
. For d ≥ 3, Φs

d(L) is a point if and only if
d = 3, 4, 5 or 7.

Proof. (1), (2) Consider an injection Hs
d
×S2−→ Hs

d+2. Then Bs Hs
d+2 ⊂ Bs Hs

d∪V (S2) =
Bs Hs

d. Since Bs Hs
4 = ∅, we have Bs Hs

d = ∅ for even d ≥ 4. The proof of BsHs0
d = {(1 :

1 : 1)} is similar.
If d ≥ 5 is odd, then BsHs

d ⊂ Bs Hs
3 and Bs Hs0

d ⊂ Bs Hs0
5 . It is easy to see Bs Hs

3 ∩
AF = {(−1 : 0 : 1)}, and Bs Hs0

5 ∩AF = {(1 : 1 : 1), (−1 : 0 : 1)}.
Take fundamental symmetric polynomials σ1 := S1, σ2 := S1,1 and σ3 := U . Note that

Hs
d = (R[σ1, σ2, σ3])d and S1(−1 : 0 : 1) = 0, U(−1 : 0 : 1) = 0, S1,1(−1 : 0 : 1) = −1. If d
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is odd, then any monomials σk
1σl

2σ
m
3 with k + 2l + 3m = d are multiple of σ1 or σ3. Thus

f(−1, 0, 1) = 0 for any f ∈ Hs
d.

(3) In
{
σk

1σl
2σ

m
3

∣∣ k + 2l + 3m = d
}
, the number of elements of the form σl

2σ
m
3 is at

most one if and only if d = 3, 4, 5 or 7.

Section 3. Cubic cyclic inequalities.

3.1. The PSD cone Pc+
3 .

Cubic cyclic inequalities are studied in [1] and [2]. Let A := P2
+ with the homogeneous

coordinate system (a : b : c), G := Z/3Z, Hc
d := (H3,d)G, and Pc+

d := P(A, Hc
d). Note that

Pc+
d is non-degenerate by Proposition 1.34.

Consider the case d = 3. We choose a base s0,. . ., s3 of Hc
3 as s0 := S3 − 3U , s1 :=

S2,1 − 3U , s2 := S1,2 − 3U , s3 := U = abc. Note that {s0, s1, s2} is a base of Hc0
3 . We

execute the algorithm of Remark 1.23.
Step 1: Eliminate a, b, c from xi = si(a, b, s). Then, we obtain that Xc+

3 := Φc
3(P2

+) ∼=
P2

+/G is a cubic semialgebraic surface in P3
R : (x0 : · · · : x3) defined by

F3 := x3
1 − x0x1x2 + x3

2 + x2
0x3 − 3x0x1x3 + 9x2

1x3 − 3x0x2x3 − 9x1x2x3 + 9x2
2x3 = 0

and xix3 ≥ 0 (0 ≤ i ≤ 2). Let P3 := (0 : 0 : 0 : 1), O3 := (1 : 0 : 0 : 0), and C3 :=(
Xc+

3 ∩ {x3 = 0}) − {P}. Then, ∆0(Xc+
3 ) = {P3, O3}, ∆1(Xc+

3 ) = {C3}, and ∆2(Xc+
3 ) =

{Reg(Xc+
3 )}.

On the other hand, Xc0+
3 := X(P2

+, Hc0
3 ) is the domain on P2

R enclosed by C3 ∪ {O3},
and ∆0(Xc0+

3 ) = {O3}, ∆1(Xc0+
3 ) = {C3}, ∆2(Xc0+

3 ) = {Reg(Xc0+
3 )}.

Step 2: Identify p0s0 + · · · + p3s3 ∈ Hc
3 with (p0,. . ., p3) ∈ R4. By Remark 1.21(3),

disc(O3) = p0, disc(P3) = p0 + p1 + p2 + 3p3. Let’s calculate Zar(C∨3 ) by the algorithm
in Remark 1.21(2). Zar(C3) is defined by x3 = 0 and x3

1 + x3
2 − x0x1x2 = 0. Thus,

disc(C3) = 4p0p
3
1 + 4p0p

3
2 + 27p4

0 − p2
1p

2
2 − 18p2

0p1p2.
We denote local cones of Pc+

3 , Pc0+
3 at the point (0 : s : 1) ∈ P2

+ by Lc+
0,s, Lc0+

0,s . Note
that if they are not 0, then dimLc+

0,s ≤ 2, and dimLc0+
0,s = 1 by Proposition 1.27(1). By the

algorithm of Remark 1.28, we know that Lc0+
0,s is generated by

fs(a, b, c) := s2S3 − (2s3 − 1)S2,1 + (s4 − 2s)S1,2 − 3(s4 − 2s3 + s2 − 2s + 1)U.

This is extremal in Pc+
3 by Proposition 1.26(4). As a limit s → +∞, we put f∞(a, b, c) :=

s′2 = S1,2 − 3U.

Theorem 3.1. (Structure of Pc+
3 )

(1) Pc+
3 has no main component.

(2) Lc+
0,s = R+ · fs + R+ · U for s > 0.

(3) F(O3) = R+ · U + R+ · (S2,1 − 3U) + R+ · (S1,2 − 3U).

Proof. (1) Let Y be the cone whose vertex is P3 and whose base is C3 ∪O3. Since Xc
3

is a cubic surface with an A1-singular point P3, it is easy to see that Reg(Xc+
3 ) ⊂ Int(Y ).

Thus, Reg(Xc+
3 )∨ is included the exterior of Pc+

3 . Thus Fc+
3 is not a face component.

(2) f = αfs + βU satisfies f(0, s, 1) = 0. Thus f ∈ Lc+
0,s if α ≥ 0 and β ≥ 0.

Note that dimLc+
0,s = 2. Contrary, assume f ∈ Lc+

0,s. Then β = f(1, 1, 1) ≥ 0 and
α = (1/s2)f(0, 0, 1) ≥ 0.
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(3) Put F = F(O3) = Lc+
0,0. Then ∂F =

(
Ec+

3 ∪Pc0+
3

)∩F by Proposition 1.33(2). Since

Ec+
3 ∩F =

(
R+ · f0 + R+ · U

) ∪ (
R+ · f∞ + R+ · U

)
,

Pc0+
3 ∩F = Lc0+

0,0 = R+ · f0 ∪ R+ · f∞,

we have F = R+ · U + R+ · (S2,1 − 3U) + R+ · (S1,2 − 3U).

Remark 3.2. (1) Let Ψc
3:X

c+
3 → Xc0+

3 be the projection defined by Ψc
3(x0 : x1 : x2 :

x3) = (x0 : x1 : x2). Then Ψc
3 is a birational map and is continuous, since degx3

F3 = 1.
But Ψc

3 is not regular at P3. In fact, Φc
3(P3) = (3 : 1 : 1) /∈ Sing(Xc0+

3 ).
(2) We have an analytic poof of fs ∈ Pc+

3 as

fs(a, b, c) = fs(a, 1− k(1− a), 1)

= (1− a)2
{

a(1− ks)2(k + s2) +
(
1 + (1− k)s2

)
(1− k − s)2

}
≥ 0.

But we don’t need such a proof.

We don’t need Step 3 of Remark 1.23, since the convex set is unique. Step 4 is easy.
Thus we have:

Proof of Theorem 0.2. Let discc+
3 (p, q, r) = discc0+

3 (p, q) := disc(C3)(1, p, q, r) = 4p3 +
4q3 + 27− p2q2 − 18pq. Figure 3.1 is the graph of discc0+

3 (p, q) = 0.

-
p

6
q

(3, 3)

−

+

−

Fig. 3.1. Graph of discc0+
3 (p, q) = 0

Thus Pc+
3 stands over the union of the following (1’) and (2’).

(1’) 4p3 + 4q3 + 27 ≥ p2q2 + 18pq.
(2’) p ≥ 0 and q ≥ 0.

Take f = S3 + pS2,1 + qS1,2 + rU ∈ Hc
3. Note that f /∈ F(O). 3 + 3p + 3q + r =

f(1, 1, 1) ≥ 0 for f ∈ Pc+
3 .

It is easy to see that if (1) or (2) holds, then f ∈ Pc+
3 .

Corollary 3.3. An extremal element of Pc+
3 is of the form αfs (α > 0, s ∈ [0, ∞]) or

βU (β > 0).

Corollary 3.4. Let G = S3, Hs
3 := HG

3 and Ps+
3 := P(P3

+, Hs
3). Then, Ps+

3 is a three
dimensional triangular cone whose three edges are R+ · (T2,1 − 6U), R+ · (S3 + 3U − T2,1),
and R+ · U .
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Proof. This follows from Ps+
3 = Pc+

3 ∩HG
3 .

Corollary 3.5. Let G = S3, Hs0
3 := (Hc0

3 )G, Ps0+
3 := P(P3

+, Hs0
3 ). Then, Ps0+

3 is the
fan on R with two edges R+ ·

(
S3 + 3U − T2,1) and R+ · (T2,1 − 6U).

Note that S3 + 3U ≥ T2,1 is Shur’s inequality of degree 3.

3.2. Structure of Xc0
d and Xc0+

d .

Let Φc0
d := ΦHc0

d
, Xc0

d := Φc0
d (P2

R), and Xc0+
d := Φc0

d (P2
+).

Proposition 3.6. If d ≥ 3, then Φc0
d (1 : 1 : 1) is a point. In other word, the rational

map Φc0
d : P2

R · · · → Xc0
d can be extended to (1 : 1 : 1) as a continuous map. Moreover,

Φc0
d (1 : 1 : 1) is a non-singular point of Xc0

d .

Proof. We consider on the ground field C. Let ρ1 : Y ′ −→ P2
C be the blowing up at

(1 : 1 : 1), and let E′
1 := ρ−1

1 (1 : 1 : 1).
To begin with, we study the case d = 3. We take s0 := S3 − 3U , s1 := S2,1 − 3U ,

s2 := S1,2 − 3U as a base of Hc0
3 ⊗R C. Note that

s0(1 + t, 1 + ut + vt2, 1) = 3(u2 − u + 1)t2 + (3(2u− 1)v + (u3 + 1))t3 + O(t4),
s1(1 + t, 1 + ut + vt2, 1) = (u2 − u + 1)t2 + ((2u− 1)v + u)t3 + O(t4),
s2(1 + t, 1 + ut + vt2, 1) = (u2 − u + 1)t2 + ((2u− 1)v + u2)t3 + O(t4),

here O(t4) is a sum of terms whose degree of t is not less than 4. Let ζ6 = (1+
√−3)/2. For

roots u = ζ6, ζ5
6 of u2−u+1 = 0, let y2, y3 be the points on E′

1 corresponding to the vector
(1 : u : 1) at the point (1 : 1 : 1). Note that Bs(ρ∗1H

c0
3 ⊗R C) = {y2, y3}. Let ρ2 : P̃2

C −→ Y ′

be the blowing up at y2, y3, and let E2 := ρ−1
2 (y2), E3 := ρ−1

2 (y3), and E1 be the strict
transform of E′

1, and ρ := ρ2 ◦ ρ1.
Then Bs(ρ∗Hc0

3 ⊗R C) = ∅. Let Φ̃c0
3 = Φρ∗Hc0

3 ⊗RC : P̃2
C −→ P2

C. Note that Φ̃c0
3 (E1) =

(3 : 1 : 1) =: Q. For u = ζ6 and ζ5
6 , let L2, L3 be the line passing through Q and

((u3 + 1) : u : u2). Then, Φ̃c0
3 (E2) = L2 and Φ̃c0

3 (E2) = L3. Since L2 ∩ P2
R = {Q} and

L3 ∩ P2
R = {Q}, we conclude that Φc0

3 (1 : 1 : 1) = Q over the field R. Thus Φc0
3 : P2

R −→ P2
R

can be extended to (1 : 1 : 1) as a continuous map.
Consider the case d ≥ 4. We define the injection ι : Hc0

3 −→ Hc0
d by ιh(f) = Ss−3

1 f .
Then Bs(ρ∗Hc0

d ⊗R C) ⊂ Bs(ρ∗Hc0
3 ⊗R C) ∪ V (S1). Since Bs(Hc0

d ⊗R C) = {(1 : 1 : 1)},
we have Bs(ρ∗Hc0

d ⊗R C) = ∅. Let Φ̃c0
d := Φρ∗Hc0

d
⊗RC : P̃2

C −→ P((Hc0
d )∨ ⊗R C), and

(Xc0
d )C := Φ̃c0

d (P̃2
C).

For s = S4 − US1, S3,1 − US1, S2,2 − US1, S1,3 − US1 ∈ Hc0
4 and s = S5 − US1,1,

S4,1 − US1,1, S3,2 − US1,1, S2,3 − US1,1, S1,4 − US1,1, US1 − US1,1 ∈ Hc0
5 , the following

holds:
s(1 + t, 1 + ut, 1) = c0(u2 − u + 1)t2 +

∑

i≥3

hi(u)ti. (3.7)

We denote d = 3k + e, here e ∈ {3, 4, 5}. Then Hc0
d = Hc

3k ·Hc0
e . Thus, (3.7) holds for any

s ∈ Hc0
d . Therefore, Φ̃c0

d (E1) is a point.
Since Bs(ρ∗Hc0

3 ⊗RC) = ∅, there exists the natural regular map ψ : (Xc0
d )C −→ (Xc0

d )C.
Let Q′ := Φ̃c0

d (E1) and L′i := Φ̃c0
d (Ei) (i = 2, 3). Then, ψ(L′i) = Li. Since Li ∩Xc0

3 = {Q},
we have L′i ∩Xc0

d = {Q′}. Thus Φc0
d (1 : 1 : 1) = Q.
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Since Q is a non-singular point of (Xc0
3 )C = P2

C, Q′ is also a non-singular point of
(Xc0

d )C.

Proposition 3.8. Let G := Z/3Z and let π : P2
R → P2

R/G be the natural surjection.
Decompose Φc

d and Φc0
d as

Φc
d : P2

R
π−→ P2

R/G
Ψc

d−→ Xc
d, Φc0

d : P2
R

π−→ P2
R/G

Ψc0
d−→ Xc0

d .

Let ϕd : Xc
d · · · → Xc0

d be the rational map induced by the inclusion Hc0
3,d

⊂−→ Hc
3,d.

(1) If d = 3 or d ≥ 5, then Ψc0
d : P2

R/G −→ Xc0
d and ϕd : Xc

d −→ Xc0
d are birational bijective

continuous map.
(2) If d ≥ 3, then Φc0

d (1 : 1 : 1) is an interior point of Xc0
d .

Proof. Let A = P2
R−{(1 : 1 : 1)}, W c

d := Φc
d(A), and W c0

d := Φc0
d (A). We have observed

that (1) and (2) hold for d = 3. Moreover, Ψc0
3 : A/G −→ W c0

3 and ϕ3 : W c
3 −→ W c0

3 are
isomorphisms.

Consider the case d = 6. Since Hc0
6 = Hc

3 · Hc0
3 , we have Bs Hc0

6 = ∅. A birational

bijective continuous map Ψc0
3 factors as Φc0

3 : P2
R/G

Ψc0
6−→ Xc0

6 −→ Xc0
3 . Thus ϕ6 : W c

6 −→
W c0

6 is an isomorphism, and ϕ6 : Xc
6 · · · → Xc0

6 is a bijective continuous map.
Consider the cases d = 5 and d ≥ 7. By Hc

d−2
×S2−→ Hc

d, we have Bs Hc0
d = ∅. For

e = 3 or 6, there exists a birational continuous bijection Φc0
e : P2

R/G
Ψc0

d−→ Xc0
d −→ Xc0

e .
Thus ϕd : W c

d −→ W c0
d is an isomorphism, and ϕd : Xc

d · · · → Xc0
d is a birational bijective

continuous map.
(2) Since Ψc0

3 : P2
+/G −→ Xc0+

3 is a composition of Ψc0
d : P2

+/G −→ Xc0+
d and Xc0+

d →
Xc0+

3 , we know that Φc0
d (1 : 1 : 1) lies interior of Xc0

d .

Corollary 3.9. Let Od := Φc0
d (0 : 0 : 1), L :=

{
(0 : s : 1) ∈ P2

+

∣∣ s > 0
}
, and

Cd := Φc0
d (L). Then,

(1) If d ≥ 3, then Xc0+
d

∼= Xc0+
3 , and ∆0(Xc0+

d ) = {Od}, ∆1(Xc0+
d ) = {Cd}, ∆2(Xc0+

d ) =
{Reg(Xc0+

d )}.
(2) If d ≥ 3 is odd, then Xc0

d
∼= P2

R, and ∆0(Xc0
d ) = ∆1(Xc0

d ) = ∅, ∆2(Xc0
d ) = {Xc0

d }.

Section 4. Quartic cyclic inequalities.

4.1. The PSD cone Pc0
4 .

Hilbert proved that every element in P4 := P(PR, H4) can be presented as a sum of
squares of quadric polynomials in [17], and this is the source of Hilbert’s 17th problem (see
also [22]). Quartic cyclic inequalities ware studied in [8], [10], [12] and [2]. Ĉırtoaje proved
that every element f(a, b, c) ∈ ∂Pc0

4 is of the form

f(a, b, c) = λ
∑

cyclic

(2a2 − b2 − c2 + pab− (p + q)bc + qca)2 (λ ≥ 0).

In this section, we solve some open problems presented in above articles.
We want to study Pc

4. But it is hard because of Conjecture 4.8. So, we start from
Pc0

4 = P(P2
R, Hc0

4 ), and Pc0+
4 = P(P2

R, Hc0
4 ), here Hc0

4 :=
{
f ∈ Hc

4

∣∣ f(1, 1, 1) = 0
}
.

We execute Step 1 of Remark 1.23. We choose s0 := S4 − US1, s1 := S3,1 − US1,
s2 := S1,3 − US1, s3 := S2,2 − US1 as a base of Hc0

4 , and s0,. . ., s3, s4 := US1 as a base of
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Hc
4. Eliminate a, b, c from the above using the computer software Mathematica. Then we

have:

Proposition 4.1. (1) Xc0
4 is a quadric surface in P3

R defined by

F c0
4 := (x1 + x2)2 + 3(x1 − x2)2 + (x0 − 2x3)2 − x2

0.

Thus ∆0(Xc0
4 ) = ∆1(Xc0

4 ) = ∅, ∆2(Xc0
4 ) = {Xc0

4 }, and ∂Pc0
4 has the unique face component

F(Xc0
4 ).
(2) Xc

4 is the semialgebraic subset of P4
R defined by F c0

4 and

F c
4 := (x1 + x2 + 3x4)2 − (x0 + 2x3 + 3x4)(x3 + 3x4).

(3) The inclusion Hc0
4

⊂−→ Hc
4 induce a rational map ϕc

4 : Xc
4 −→ Xc0

4 which is a
continuous map and a bijection.

Fig 4.1. Projection of Xc
4

∂Xc+
4

Xc
4

Xc+
4

P4 = (1 : 1 : 1 : 1 : 1)

Proof. (1) and (2) are easy. Remember Proposition 2.5.
(3) ϕc

4 is defined by ϕ(x0 : x1 : x2 : x3 : x4) = (x0 : x1 : x2 : x3). Since degx4

(
(x1 +

x2 + 3x4)2 − (x0 + 2x3 + 3x4)(x3 + 3x4)
)

= 1, ϕc
4 : Xc

4 −→ Xc0
4 is a bijective continuous

map.

Next we execute Step 2 of Remark 1.23. Let Lc
s,t and Lc0

s,t be the local cones of Pc
4 and

Pc0
d at the point (s : t : 1) ∈ P2

R. Then dimLc
s,t ≤ 2 and dimLc0

s,t = 1 for any (s, t) ∈ P2
R

by Proposition 1.27(1). Execute the calculation of Remark 1.21(2) and Remark 1.28 using
computer. Then we have that ∂Pc0

4 is the quadric surface defined by

discc0
4 = 3(p0p3 + p2

0)− (p2
1 + p1p2 + p2

2),

and that the generator of Lc0
s,t is the following gA

s,t. Definition of gA
s,t is somewhat compli-

cated:

gX
p,q(a, b, c) := S4 + pS3,1 + qS1,3

+
(

p2 + pq + q2

3
− 1

)
S2,2 −

(
p + q +

p2 + pq + q2

3

)
US1

gX
∞(a, b, c) := S2,2 − US1,

p(s, t) := − 2S3,1(s, t, 1)− S1,3(s, t, 1)− S2,1,1(s, t, 1)
S2,2(s, t, 1)− S2,1,1(s, t, 1)

gA
s,t(a, b, c) := gX

p(s,t),p(t,s)(a, b, c)
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where p(1, 1) := −2, p(0, 0) = ∞ ∈ P1
R, and gA

0,0 := gX
∞. Note that p(s, t) = p(1/t, s/t) =

p(t/s, 1/s). We don’t need Step 3 and 4 for Pc0
4 , and we have:

Theorem 4.2. (Structure of Pc0
4 , cf. [2], [10]) The four dimensional convex cone Pc0

4

has the following structure:
(1) For f = p0S4 + p1S3,1 + p2S1,3 + p3S2,2 − 3(p0 + p1 + p2 + P3)US1 ∈ Hc0

4 , f ∈ Pc0
4 if

and only if discc0
4 (p0, p1, p2, p3) ≥ 0.

(2) Lc0
s,t = R+ · gA

s,t.
(3) An extremal element in Pc0

4 is of the form αgX
p,q or αgX

∞ (∃α > 0).

4.2. The PSD cone Pc0+
4 .

Study Xc0+
4 := X(P2

+, Hc0
4 ) ⊂ Xc0

4 . Let O4 := Φc0
4 (0 : 0 : 1) = (1 : 0 : 0 : 0), and

C4 :=
{
Φc0

4 (0 : s : 1)
∣∣ s > 0

}
. By Corollary 3.9, ∆0(Xc0+

4 ) = {O4}, ∆1(Xc0+
4 ) = {Cd},

and ∆2(Xc0+
4 ) = {Reg(Xc0+

4 )}. The main discriminant of Pc0+
4 is discc0

4 by Proposition 2.8.
disc(O4) = p0 by Remark 1.21(3).

Let’s calculate the edge discriminant. By Remark 1.21(2), Zar(C∨4 ) can obtained by
eliminating s from

3∑

i=0

pisi(0, s, 1) = 0 and
3∑

i=0

pi
∂si

∂s
(0, s, 1) = 0. (4.3)

A computer gives a solution
discc+

4 = 256p6
0 − 27p2

0p
4
1 − 192p4

0p1p2 − 6p2
0p

2
1p

2
2 − 4p3

1p
3
2 − 27p2

0p
4
2

+ 144p3
0p

2
1p3 + 18p0p

3
1p2p3 + 144p3

0p
2
2p3 + 18p0p1p

3
2p3 − 128p4

0p
2
3

− 80p2
0p1p2p

2
3 + p2

1p
2
2p

2
3 − 4p0p

2
1p

3
3 − 4p0p

2
2p

3
3 + 16p2

0p
4
3.

Note that this agree with the edge discriminant of Pc+
4 , by Proposition 2.9. If we solve (4.3)

as Remark 1.28, we find the following hs:
hs := S3,1 + s2S1,3 − 2sS2,2 − (s− 1)2US1,

h∞ := S1,3 − US1.

Note that h0 = S3,1 − US1, and gA
0,0 = gX

∞ = S2,2 − US1. Put gA
0,+∞ := gX

∞ formally. We
denote the local cones of Pc+

4 and Pc0+
d at (s : t : 1) ∈ P2

R by Lc+
s,t and Lc0+

s,t .

Theorem 4.4. (Structure of Pc0+
4 , cf. [2]) The four dimensional convex cone Pc0+

4 has
the following structure:
(1) Lc0+

s,t = Lc0
s,t = R+ · gA

s,t for s > 0, t > 0, and

Fc0+
4 = R+ ·

({
gX

p,q

∣∣ 9(p + q)2 − (p− q)2 ≥ 62, p + q ≤ 0
} ∪ {

gX
∞

})
.

(2) For s > 0, Lc0+
0,s = R+ · gA

0,s + R · hs.

(3) An extremal element in Pc0+
4 is one of the forms αgA

s,t (s, t ∈ R+) or αhs (s ∈ [0,∞],
α > 0).

Proof. (1) Since dimLc0+
s,t = 1 and Lc0+

s,t ⊃ Lc0
s,t 6= 0, we have Lc0+

s,t = Lc0
s,t for s > 0,

t > 0. Especially, gA
s,t is extremal in Pc0+

4 .
(2) Note that dimLc0+

0,s ≤ 2 for s > 0. Let a, b, c ∈ R+，and s > 0. Then

hs(a, b, c) = s2(S1,3 − US1)− 2s(S2,2 − US1) + (S3,1 − US1)

= (S1,3 − US1)
(

s− S2,2 − US1

S1,3 − US1

)2

+
US1(S2 − S1,1)2

S1,3 − US1
≥ 0.
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A computation using Mathematica shows us hs(1, 1, 1) = hs(0, s, 1) = hs(0, 0, 1) = 0. Thus,
hs ∈ Lc0+

0,s ∩Lc0+
0,0 ⊂ ∂Pc0+

4 . Since dim
(
Lc0+

0,s ∩Lc0+
0,0

) ≤ 1, we have Lc0+
0,s ∩Lc0+

0,0 = R+ · hs.
Thus, hs is extremal in Pc0+

4 . Since gA
s,t is also extremal, we have Lc0+

0,s = R+ · gA
0,s +R · hs.

(3) follows from (1) and (2).

Now, we can prove Theorem 0.3. We should perform Step 3 and 4 of Remark 1.23.

Proof of Theorem 0.3. For each vector subspace V ⊂ Hc0
4 , let V̆ be the set of all

the monic polynomials in V . Note that ϕ(p, q, r) = discc+
4 (1, p, q, r). Let (x, y, z) be the

coordinate system of H̆c0
4 = R3. By Theorem 4.4,

F̆c0+
4 =

{
(x, y, z) ∈ H̆c0

4

∣∣∣∣
x2 + xy + y2 = 3z + 3,
9(x + y)2 − (x− y)2 ≥ 62, x + y ≤ 0

}
.

Ĕc0+
4 is a subset of the sextic rational surface S :=

{
(x, y, z) ∈ H̆c0

4

∣∣ ϕ(x, y, z) = 0
}
. To

observe the surfaces ∂P̆c0+
4 , we draw the section of it by the surface Vr :=

{
(x, y, z) ∈ H̆c0

4∣∣ z = r
}
. Let Pr := Pc0+

4 ∩ Vr, Cr := (∂Pc0+
4 ) ∩ Vr, Fr := Fc0

4 ∩ Vr, F+
r := Fc0+

4 ∩ Vr, and
Er := S ∩ Vr. Note that Fr is an ellipse defined by 3(x + y)2 + (x− y)2 = 12(r + 1). F+

r is
an arc of the ellipse Fr with the ends

(x, y) =

(
±3
√

r −√r + 4
2

,
∓3
√

r −√r + 4
2

)
, (4.5)

since 9(x + y)2 − (x − y)2 ≥ 62. Er is an irreducible sextic rational curve which does not
depend on r. The rational curve Er has a parametrization

x =
1
2

(
1
s3 − r

s
− 3s

)
, y =

1
2

(
s3 − rs− 3

s

)
s ∈ R− {0}

If r > 0, Er tangents to Fr at the points given by (4.5). In the case r > 6, we obtain the
graph as in Figure 4.2.

Fig.4.2. r > 6
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6
y

Fr

F+
r

Cr

Er

Er

Er
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+
+
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−

+

+
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−
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+

−

−

+

+

−
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The curve Er has two branches which are symmetric with respect to the origin and

the line x + y = 0. Each branch has two cusps at s = ±
√

r ±
√

r2 − 36
6

, and a node at

x = y = ±2
√

r − 2. The intersections of two branches (x, y) = (±2
√

r + 2, ∓2
√

r + 2 ) are
also nodes of Er. The boundary Cr of Pr is displayed by thick curve in Figure 4.2. Thus, in
the case r > 6, we conclude that Cr can be represented as the union of the domain defined
by (1), (2), (3), (4) and (5) of Theorem.

In the case 0 ≤ r ≤ 6, the graph becomes as in Figure 4.3. Er does not have cusps if
r < 6. By the similar observation as the above case, we conclude that Pr can be represented
as the union of the domain defined by (1), (2), (3), (4) and (5).

Fig.4.3. 0 ≤ r ≤ 6

-x

6
y

Er

Er

Fr

F+
r

Cr
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Pr+

+−

−

+
+ −
−

Fig.4.4. −1 ≤ r < 0
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6
y

Cr

Pr

Er

−

−+
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In the case −1 ≤ r < 0 (Fig.4.4), the ellipse Fr does not touch to Er. Thus Cr agrees
to one of the branches of Er, and Pr can be represented as the union of the domain defined
by (1), (2), (3) and (4).

In the case −2 ≤ r < −1 (Fig.4.5), the ellipse Fr does not appear. Thus, Pr can be
represented as the union of the domain defined by (1), (2), (3) and (4).

Fig.4.5. −2 < r < −1
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Fig.4.6. r < −2

-x

6
y

−

+

+

−
Pr

Cr
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In the case r < −2 (Fig.4.6), Er has no singularities. Thus, Pr is the domain defined
by (6).

Remark 4.6. Since discc+
4 (1, p, p, q) = (4r− p2− 8)2(r + 2p + 2)(r− 2p + 2), the curve

p = q, 4r = p2 + 8 is also a zero locus of discc+
4 in Pc0+

4 . Points on this curve correspond to
inequalities (S2 − tS1,1)2 ≥ 0.

4.3. The PSD cone Pc
4.

By Proposition 2.6, ∂Pc
4 has just two face components. One is the main component

Fc
4, and the other is Pc0

4 . As a base of Hc
4, we choose s0 = S4 − US1, s1 := S3,1 − US1,

s2 := S1,3−US1, s3 := S2,2−US1, s4 := US1. The main discriminant is more complicated.
So, we present it in inhomogeneous form for f = s0 + ps1 + qs2 + rs3 + vs4 ∈ Hc

4.

discc
4(1, p, q, r, v) =

(
3(r + 1)− (p2 + pq + q2)

)
(2p + 2q + r + 5)3

− v
(
p4 + q4 + 34p3q + 34pq3 + 39p2q2

+ 2(p + q)(5p2 + 7pq + 5q2)r − (2p2 + pq + 2q2)r2

+ 86p3 + 86q3 − 12(v − 16)(p2q + pq2)− (v − 84)(p2 + q2)r
+ (v + 18)pqr − 22(p + q)r2 + 8r3 − 57(v − 2)(p2 + q2)
+ (v2 − 63v + 51)pq − 2(13v + 126)(p + q)r + 2(3v − 106)r2

+ 2(7v2 + 3v − 139)(p + q) + 8(19v − 70)r

− (v3 + 20v2 − 162v + 388)
)

We shall complete Step 1 and 2 of Remark 1.23.

Theorem 4.7. (Structure of Pc
4) For −1/2 ≤ k ≤ 1, let

eX
k (a, b, c) :=

(
k(a2 + b2 + c2)− (ab + bc + ca)

)2

= k2S4 − 2kT3,1 + (2k2 + 1)S2,2 − (2k − 2)US1,

k(s, t) =
S1,1(s, t, 1)
S2(s, t, 1)

=
st + s + t

s2 + t2 + 1
∈ [−1/2, 1],

eA
s,t(a, b, c) := eX

k(s,t)(a, b, c).

(1) For (s, t) ∈ R2 − {(1, 1)}, Lc
s,t =

{
αgA

s,t + βeA
s,t

∣∣ α, β ∈ R+.
}

(2) If s > 0, t > 0, and (s, t) 6= (1, 1), then Lc+
s,t := Lc

s,t.
(3) An extremal element in Pc

4 is of the form αgX
p,q (α > 0) or αgX

∞ (α > 0) or αeX
k

(−1/2 ≤ k ≤ 1, α > 0).

Proof. (1), (2) By Proposition 1.27, dimLc
s,t = N − 2 ≤ 2 if (s, t) 6= (1, 1). If s > 0

and t > 0, then dimLc+
s,t = 2 and Lc

s,t ⊂ Lc+
s,t . Let fs,t,α,β := αgA

s,t +βeA
s,t. Since gA

s,t ∈ Lc
s,t,

and eA
s,t ∈ Lc

s,t, we have fs,t,α,β ∈ Lc
s,t, if α ≥ 0 and β ≥ 0.

Since fs,t,α,0 ∈ ∂Pc
4, we have fs,t,α,−β /∈ Pc

4 by Proposition 1.33(1). If s > 0 and t > 0,
then fs,t,α,−β /∈ Pc+

4 .
Assume that α < 0. There exists (s′, t′) 6= (s, t) such that k(s′, t′) = k(s, t) and

gA
s,t(s

′, t′, 1) > 0. Since eA
s,t(s

′, t′, 1) = 0, fs,t,α,1(s′, t′, 1) < 0. Thus fs,t,α,1 /∈ Pc
4. If s > 0

and t > 0, then fs,t,α,1 /∈ Pc+
4 .

Thus Lc
s,t and Lc+

s.t are generated by gA
s,t and eA

s,t.
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(3) follows from (1).

We now complete Steps 1, 2, and 3 of Remark 1.23 for Pc
4. Regretfully, we can’t give

complete proof for Step 4. But graphical observation leads to the following:

Conjecture 4.8. For f = S4 + pS3,1 + qS1,3 + rS2,2 + (v − 1 − 2p − r)US1 ∈ Hc
4,

f(a, b, c) ≥ 0 for all a, b, c ∈ R, if and only if v ≥ 0 and one of the following hold:
(1) v = 0 and discc0

4 (1, p, q, r) ≥ 0.
(2) 0 < v ≤ 27 and discc

4(1, p, q, r, v) ≥ 0 and 4r + 4(u + 2
√

3u + 1) ≥ (p + q)2.

(3) v > 27 and discc
4(1, p, p, r, v) ≥ 0 and r ≥ (p + q)2

16
+ 2.

The domain discc
4 ≥ 0 consists of some blocks. Sing(V (discc

4)) is complicated. What
we should prove is that 4r + 4(u + 2

√
3u + 1) ≥ (p + q)2 and r ≥ (p + q)2/16 + 2 with

discc0
4 (1, p, q, r) ≥ 0 cut off the correct Pc

4. These two inequalities are not determinants.
By the way, Theorem 4.7 resolves the following conjecture. The sufficiency part was

proved by Ĉırtoaje and Zhou in [13]. The necessity part was their conjecture.

Theorem 4.9. (Ĉırtoaje-Zhou Conjecture) For f = S4 +pS3,1 +qS1,3 +rS2,2 +vUS1 ∈
Hc

4, let

αf := 1 + p + q + r + v =
1
3

f(1, 1, 1),

βf := 6 + 3p + 3q + 2r + v,

γf := 2(1 + p + q),
δf := 2 + 2r − v − (p2 + pq + q2 + p + q),
ϕf (x) := 2

√
αfx3 − βfx2 + γf

√
αfx + δf .

Then, f(a, b, c) ≥ 0 for all a, b, c ∈ R, if and only if one of (1) and (2) holds.
(1) αf ≥ 0 and there exists a x ∈ (−√3,

√
3 ) such that ϕf (x) ≥ 0.

(2) f is of the form f = (S2 − κS1,1)2 (∃κ ∈ R). That is, f satisfies p = q, p2 − 4p = 4r
and p2 + 2p = 2v.

Moreover, f which does not satisfies (2) belongs to Pc0
4 if and only if the solution of

ϕf (x) ≥ 0 in x ∈ (−√3,
√

3 ) is unique.

Proof. (If part) It is clear that if f satisfies (2) then f ∈ Pc
4. We assume that f satisfies

(1). Fix an x0 ∈ (−√3,
√

3 ) with ϕf (x0) ≥ 0, and let

p1 :=
3p− 2

√
αfx0 + 2x2

0

3− x2
0

, q1 :=
3q − 2

√
αfx0 + 2x2

0

3− x2
0

,

r1 :=
3r − αf + 2

√
αfx0 − 3x2

0

3− x2
0

, v1 :=
3v − 2αf + 2

√
αfx0

3− x2
0

,

f1(a, b, c) := S4 + p1S3,1 + q1S1,3 + r1S2,2 + v1US1,

e1(a, b, c) := eX
x0/(x0−√αf )(a, b, c).

It is easy to see that

3f = (3− x2
0)f1 + (x0 −√αf )2e1 ≥ (3− x2

0)f1,

f1(1, 1, 1) = 1 + p1 + q1 + r1 + v1 = 0,

p2
1 + p1q1 + q2

1

3
− 1− r1 = − 3ϕf (x0)

(3− x2
0)

2 ≤ 0.
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Note that f1 ∈ Pc0
4 . Since gX

p1,q1
, gX
∞, e1 ∈ Pc

4, we have

f =
3− x2

0

3
gX

p1,q1
+

ϕf (x0)
3− x2

0

gX
∞ +

(x0 −√αf )2

3
e1 ∈ Pc

4.

(Only if part) We shall prove that if f ∈ Pc
4 does not satisfy (2) then f satisfies (1).

Since f ∈ Pc
4, we have 1 + p + q + r + v =

1
3

f(1, 1, 1) ≥ 0, Note that

ϕf (
√

3 ) = −4

(
√

αf −
√

3
4

(p + q + 4)

)2

− (p− q)2

4
≤ 0,

ϕf (−
√

3 ) = −4

(
√

αf +

√
3

4
(p + q + 4)

)2

− (p− q)2

4
≤ 0.

Case 1: We treat the case f ∈ Lc
s,t.

Let p2 := p(s, t), q2 := p(t, s), r2 :=
p2
2 + p2q2 + q2

2

3
− 1, and v2 := −p2 − q2 −

p2
2 + p2q2 + q2

2

3
. We assume that −1/2 ≤ k < 1, and f = (α2g

X
p2,q2

+ β2e
X
k )/(α2 + β2k

2)

(Not always f ∈ Lc
s,t). Then

p =
α2p2 − 2β2k

α2 + β2k
2 , q =

α2q2 − 2β2k

α2 + β2k
2 ,

r =
α2r2 + β2(2k2 + 1)

α2 + β2k
2 , v =

α2v2 − β2(2k − 2)
α2 + β2k

2 .

Using Mathematica, very complicated calculation show us that

ϕf

( √
αfk

k − 1

)
= 0, and

∣∣∣∣
√

αfk

k − 1

∣∣∣∣ =

∣∣∣∣∣−
√

3β2k√
α2 + β2k2

∣∣∣∣∣ <
√

3.

Moreover, if k =
S1,1(s, t, 1)
S2(s, t, 1)

, that is, if f ∈ Lc
s,t, then x =

√
αfk

k − 1
is a multiple root of the

cubic equation ϕf (x) = 0. Since ϕf (
√

3 ) ≤ 0 and ϕf (−√3 ) ≤ 0, we have
{
x ∈ (−

√
3,
√

3 )
∣∣ ϕf (x) ≥ 0

}
=

{ √
αfk

k − 1

}
.

Case 2: Consider the case f ∈ Pc0
4 .

In this case, 3αf = f(1, 1, 1) = 0, and ϕf (x) = −(5+2p+2q+r)x2+(3+3r−p2−pq−q2).
Since ϕf (0) = discc0

4 (1, p, q, r) ≥ 0 and ϕf (
√

3 ) < 0, there exists 0 ≤ x1 <
√

3 such that
ϕf (x1) = 0. Note that if f /∈ ∂Pc0

4 , then ϕf (0) > 0.

Case 3: Consider the general case f ∈ Pc
4.

In the convex cone Pc
4, we take a line ` which passes through a point f and a point on

the half line R+ · gX
∞. Consider the intersection of ` and ∂Pc

4. Then there exists the unique
δ ≥ 0 such that f0 := f − δgX

∞ ∈ ∂Pc
4. Equivalently

f0 = S4 + pS3,1 + qS1,3 + (r − δ)S2,2 + (v + δ)US1.

Thus ϕf0(x) = ϕf (x)− δ(3− x2). By Proposition 2.6, f0 ∈ Ls,t or f0 ∈ Pc0
4 .

Case 3-1: Consider the case f0 ∈ Lc
s,t.
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Then, there exists the unique x0 ∈ (−√3,
√

3 ) such that, ϕf0(x0) = 0 by the result of
the Case 1. Then ϕf (x0) = ϕf0(x0) + δ(3− x2

0) ≥ 0. Thus (1) holds. Note that if f /∈ ∂Pc
4

then ϕf (x0) > 0. Thus there exists many x ∈ (−√3,
√

3 ) such that ϕf (x) ≥ 0.
Case 3-2: Consider the case f0 ∈ Pc0

4 and f0 /∈ Fc0
4 .

Then, by the result of the Case 2, we have ϕf (0) ≥ ϕf0(0) > 0.

4.4. The PSD cone Pc+
4 .

By Proposition 2.6, Pc+
4 = P(P2

+, Hc
4) has at most four face components: the main

component Fc+
4 +, the edge component Ec+

4 , Pc0+
4 and F(O4). All these four exist as the

following theorem.

Theorem 4.10. The five dimensional cone Pc+
4 satisfies the following:

(1) Fc+
4 = Cls


 ⋃

(s,t)∈R2
+−{(1,1)}

Lc
s,t


 is a face component.

(2) Ec+
4 =

{
α1e

A
0,s + α2g

A
0,s + α3hs + α4US1

∣∣ s ≥ 0, αi ≥ 0
}

is a face component.

(3) The main discriminant of Fc+
4 is discc

4, and the edge discriminant is discc+
4 .

(4) An extremal element of Pc+
4 is of the form αgX

p,q (9(p + q)2 − (p− q)2 ≥ 62, p + q ≤ 0,
α > 0) or αgX

∞ (α > 0) or αhs (s ∈ [0,∞], α > 0) or αeX
k (0 ≤ k ≤ 1, α > 0) or αUS1

(α > 0).

Proof. (1) follows from Theorem 4.7(2).
(2) Since f = α1e

A
0,s + α2g

A
0,s + α3hs + α4US1 satisfies f(0, s, 1) = 0, we have f ∈ Lc+

0,s

for s ≥ 0, αi ≥ 0.
We shall prove the converse. Since dimLc+

0,s = 3 for s > 0, any element f ∈ Lc+
0,s can

be represented as f = α1e
A
0,s + α2g

A
0,s + α3hs + α4US1 by certain α1, α2, α3, α4 ∈ R. We

shall show that we can choose α1, α2, α3, α4 ∈ R+. Since

(s2 + 1)2eA
0,s + 3shs = s2gA

0,s + 3(s2 − s + 1)2US1,

we can assume that (i)“α2 ≥ 0 and α4 = 0” or (ii) “α2 = 0 and α4 ≥ 0”.
Consider the case (i). Assume that f = α1e

A
0,s + α2g0,s + α3hs ∈ Pc+

4 , and α2 ≥ 0.
Since f(1, 1, 1) = α1e

A
0,s(1, 1, 1), we have α1 ≥ 0. Since

eA
0,s(x, s, 1) =

x2(s3 + s2 + s + 1− sx)2

(s2 + 1)2
,

gA
0,s(x, s, 1) =

x2
(
s6 − s5 + s3 − s + 1− (2s4 − s3 − s2 + 2s)x + s2x2

)

s2 ,

hs(x, s, 1) = x
(
s5 − s4 + s3 + s2 − s + 1− (3s3 − 2s2 + 3s)x + (s2 + s)x2

)
,

we have lim
x→0

eA
0,s(x, s, 1)
hs(x, s, 1)

= 0 and lim
x→0

gA
0,s(x, s, 1)
hs(x, s, 1)

= 0. Thus 0 ≤ lim
x→0

f(x, s, 1)
hs(x, s, 1)

= α3.

Consider the case (ii). Assume that f = α1e
A
0,s + α3hs + α4US1 ∈ Pc+

4 and α4 ≥ 0.
Since f(0, 0, 1) = α1e

A
0,s(0, 0, 1), we have α1 ≥ 0. Since eA

0,s(0, 1/s, 1) = 0, US1(0, 1/s, 1) = 0,

hs(0, 1/s, 1) =
(s− 1)2(s + 1)2

s3 > 0, and f(0, 1/s, 1) = α3hs(0, 1/s, 1), we have α3 ≥ 0.

Thus we have

Lc+
0,s =

{
α1e

A
0,s + α2g

A
0,s + α3hs + α4US1

∣∣ αi ≥ 0
}
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for s > 0. The left part is easy.
(3) The main discriminant is discc

4 by Proposition 2.8, and the edge discriminant is
discc+

4 by Proposition 2.9.
(4) is clear.

Thus, we complete Step 1 and 2 of Remark 1.23, and we determined all the extremal
inequalities. We don’t yet succeed in Step 3 and 4.

4.5. The PSD cones Ps
4.

Let Hs
d and Hs0

d be the same with Proposition 2.14. The aim of this subsection is to
prove the following theorem.

Theorem 4.11. Take f = S4 + pT3,1 + rS2,2 + (v − 1 − 2p − r)US1 ∈ Hs
4. Then,

f(a, b, c) ≥ 0 for all a, b, c ∈ R, if and only if v ≥ 0 and one of the (1), (2) and (3) holds.
(1) v = 0 and r ≥ p2 − 1.
(2) 0 < v ≤ 27, discc

4(1, p, p, r, v) ≥ 0, and r ≥ p2 − (v + 2
√

3v + 1).

(3) v > 27, discc
4(1, p, p, r, v) ≥ 0, and r ≥ p2

4
+ 2.

Put G := S3, Φs
d = ΦHs

d
, Φs0

d = ΦHs0
d

, Ps
d = P(P2

R, Hs
d), and Ps0

d = P(P2
R, Hs0

d ). We
have to study of Ps0

4 before Ps
4. We choose s0 = S4−US1, s1 = T3,1−2US1, s2 = S2,2−US1

as a base of Hs0
4 , and we choose s0, s1, s2 and s3 = US1 as a base of Hs

4. We shall execute
Step 1 of Remark 1.23. Let Xs

4 = X(P2
R, Hs

4), and Xs0
4 = X(P2

R, Hs0
4 ). As a result of

elimination, we obtain
Xs0

4 =
{
(x0 : x1 : x2) ∈ P2

R
∣∣ F s0

4 (x0, x1, x2) ≤ 0
}
,

Xs
4 =

{
(x0 : x1 : x2 : x3) ∈ P3

R
∣∣ F s0

4 (x0, x1, x2) ≤ 0 and F s
4 (x0, x1, x2, x3) = 0

}
,

here
F s0

4 (x0, x1, x2) := x2
1 + (x0 − 2x2)2 − x2

0,

F s
4 (x0, x1, x2, x3) := (x1 + 3x3)2 − (x0 + 2x2 + 3x3)(x2 + 3x3) = 0.

Using Proposition 2.13, 2.14, and the above, we obtain the following:

∆0(Xs0
4 ) = ∅, ∆1(Xs0

4 ) = {Φs0
4 (Lb

F )}, ∆2(Xs0
4 ) = {Φs0

4 (A◦)},
∆0(Xs

4) = {Φs0
4 (1)}, ∆1(Xs

4) = {Φs
4(L

b
F )}, ∆2(Xs

4) = {Φs
4(A

◦
F )},

where 1 = (1 : 1 : 1), Lb
F :=

{
(s : 1 : 1) ∈ P2

R
∣∣ s 6= 1

}
, and A◦F :=

{
(s : t : 1) ∈ P2

R∣∣ s + t + 1 > 0, s < t < 1
}
. Since Xs0

4 lies on a plane and Zar(Xs
4) is a ruled surface

(conic cone), their dual varieties have lower dimensions. Thus, Ps0
4 and Ps

4 have no main
component. Note that F(Φs0

4 (1)) = Ps0
4 . Since Ps0

4 has only one face component, we
immediately have the following proposition.

Proposition 4.12. (cf. [2], [10]) (1) For f = pS4+qT3,1+rS2,2−(p+2q+r)US1 ∈ Hs0
4 ,

f(a, b, c) ≥ 0 for all a, b, c ∈ R if and only if p ≥ 0 and p(r + q) ≥ r2.
(2) The extremal elements of Ps0

4 is a positive multiple of gX
p,p (∃p ∈ R) or S2,2−US1.

We shall study the dual variety of Φs
4(L

b
F ). Put Fs

4 := F(Φs
4(L

b
F )). By the algorithm of

Remark 1.21(1), we obtain that the discriminant of Fs
4 agrees with discc

4(p0, p1, p1, p2, p3).
The dual variety of Zar(Xs

4) is defined by 8p2
0+p2

1−4p1p2 = 0 and 3p0−3p1−3p2+p3 = 0.
Its extremal inequality at (s : t : 1) ∈ A = P2

R is eA
s,t. Thus we can determine all the extremal

inequalities of Ps
4 as the following:
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Proposition 4.13. Let Ls
s,t be the local cone of Ps

4 at (s : t : 1) ∈ A = P2
R.

(1) If s 6= 1, t 6= 1, s 6= t and s + t + 1 6= 0, then Ls
s,t = R · eA

s,t.

(2) If s = 1 or t = 1 or s = t or s + t + 1 = 0, then Ls
s,t = R · gA

s,t + R · eA
s,t.

We now have completed Step 1 and 2 of Remark 1.23 for Ps
4. We need an elementary

lemma to proceed Step 3 and 4.

Lemma 4.14. Let

g(x, t) := 108
√

3t3 + 36(10− 3x)t2 −
√

3(x + 2)2(4x + 47)t + 6(x + 2)4,
h(x, v) := (4v + x2 − 44x + 52)2 + 128(x− 4)3.

(1) g(x, t) > 0 for 0 < t < 3
√

3 and x < 12.
(2) h(x, v) > 0 for v > 27 and x ∈ R.

Proof. (1) Consider g(x, t) as a cubic function on t. The greater solution of

∂g(x, t)
∂t

= 324
√

3t2 + 72(10− 3x)t−
√

3(x + 2)2(4x + 47) = 0

is t1(x) :=

√
g1(x)− 2(10− 3x)

18
√

3
, where g1(x) := 12x3 + 225x2 + 372x + 964.

Case 1: Consider the case g1(x) < 0. Since the coefficient of t3 in g(x, t) is positive, we
have g(x, t) > g(x, 0) = (x + 2)4 ≥ 0 for t ≥ 0.

Case 2: Consider the case g1(x) ≥ 0 and x < 12. Note that g(x, 0) = (x + 2)4 ≥ 0,
and g(x, t) ≥ max{g(x, t1(x)), g(x, 0)} for t ≥ 0. Thus, it is enough to show g(x, t1(x)) ≥ 0.
Using Mathematica, we have

g(x, t1(x)) =
1
81

(
g2(x)− g1(x)3/2

)
,

here g2(x) = 378x4 + 2331x3 + 13986x2 + 21636x + 32696.

Since g2(x)2 − g1(x)3 = 108(12 − x)3(x + 2)4(16x2 + 25x + 58), we have g(x, t1) > 0 for
x < 12.

Case 3: Consider the case 0 < t < 3
√

3 and x ≥ 12. Since t1(x) is increasing for x ≥ −2,

we have t1(x) ≥ t1(12) = 49
√

3
9 > 3

√
3 for x ≥ 12. It is easy to see

g(x,
√

3) = 3(2x4 + 4x3 − 141x2 − 1520x + 11456) > 0.

Since g(x, 0) > 0, we have g(x, t) > 0 for x > 12 and 0 < t < 3
√

3.

(2) If x > 4, then (x− 4)3 > 0 and h(x, v) > 0. If x ≤ 4,

h(x, y) = (x− 4)2
(
(x + 24)2 + 512

)
+ 8(v − 27)

(
2(v − 27) + (x− 4)(x− 40)

)

≥ 16(v − 27)2 > 0.

Proof of Theorem 4.11. For each vector subspace V ⊂ Hs
4, let V̆ be the set of all the

monic polynomials in V .
Since f(1, 1, 1) = 3v, f ∈ Ps

4 satisfies v ≥ 0. If v = 0, f ∈ Ps
4 if and only if r ≥ p2 − 1,

by Proposition 4.12. Now we assume v > 0.
We use the symbol (x, y, z) instead of (p, r, v) as the coordinate system of H̆s

4. Fix a
constant v > 0, and let Hv be the plane z = v in H̆s

4. Let Tv := Ps
4 ∩Hv, Fv := Fs

4 ∩Hv,
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and let Cv be the curve defined by discc
4(1, x, x, y, v) = 0 on Hv. Note that Fv ⊂ Cv. The

curve Cv is a rational curve with a parameterization

x = t +
v(2t + 1)
(t + 2)3

, y = t2 − 1 +
v(−t3 + 2t2 + 3t + 2)

(t + 2)3

(t ∈ P1
R − {−2}). We can draw the graph of Cv using the above parameterization. The

boundary Fv of Tv is displayed by thick lines in Fig 4.7 and 4.8.

-

6

x

y

Pv

Qv

Tv

Fv Fv

Fv

Fig.4.7. v > 27

-

6

Pv

Tv

Fv Fv

x

y

Fig.4.8. 0 < v < 27

When v > 0, the curve Cv has a node at

Pv : (x, y) =

(
−2

√
v

3
− 2,

v + 2
√

3v + 9
3

)
.

If v > 27, the following Qv is also a node of Cv.

Qv : (x, y) =

(
2
√

v

3
− 2,

v − 2
√

3v + 9
3

)
.

Note that Qv is an isolated zero in Tv if 0 < v < 27. These nodes Pv, Qv correspond to
polynomials eX

k .
(2) Consider the case 0 < v ≤ 27. Let t :=

√
v > 0. Substitute y = −(t2 + 2

√
3t + 1) to

discc
4(1, x, x, y, t2) = 0, then we have

discc
4

(
1, x, x,

(
x2 − (t2 + 2

√
3t + 1)

)
, t2

)
= −

√
3t

(
x +

2
√

3
3

t + 2

)2

g(x, t) = 0,

here g(x, t) := 108
√

3t3 + 36(10− 3x)t2 −
√

3(x + 2)2(4x + 47)t + 6(x + 2)4.
Since g(x, t) > 0 for 0 < t < 3

√
3 and x < 12 by the previous lemma, we conclude that the

curve Cv and the parabola y = x2− (v+2
√

3v+1) intersect at only Pv. Thus, this parabola
cut off extra domain which does not belong to Tv, from the domain discc

4(1, x, x, y, v) ≥ 0.
(3) Consider the case v > 27. The parabola y = x2/4 + 1 passes through Pv and Qv.

Note that

discc
4

(
1, x, x,

x2

4
+ 2, v

)
= −

(
3(x + 2)2 − 4v

)2
h(x, v)

256
,

here h(x, v) is a polynomial of the previous lemma. Since h(x, v) > 0, the roots of the

equation discc
4(1, x, x, x2/4 + 2, v) = 0 are x = ±2

√
v

3
− 2. Thus Cv and the parabola

intersect only at Pv and Qv. Thus, this parabola cut of extra domain which does not belong
to Tv, from the domain discc

4(1, x, x, y, v) ≥ 0.
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Section 5. Quintic inequalities.

5.1. The PSD cone Ps0+
5 .

Since dim Hs0
5 = 4, it will not be so hard to determine Ps0+

5 . Before the Step 1 of
Remark 1.23, we introduce some elementary propositions.

Proposition 5.1. ([13] Theorem 2.1. See also the proof of Theorem 6.1.) Let f(x, y,
z) be symmetric homogeneous polynomial with 3 ≤ deg f ≤ 5. Then f(x, y, z) ≥ 0 for all
x ≥ 0, y ≥ 0, z ≥ 0, if and only if f(s, 1, 1) ≥ 0 and f(0, s, 1) ≥ 0 for all s ≥ 0.

For a generalization of the above proposition, see [23] Theorem 4.5 and [26] I Theorem
2.2.

Proposition 5.2. Let f(a, b, c) := S5 +pT4,1 + qT3,2 + rUS2− (1+2p+2q + r)US1,1 ∈
H̆s0

5 . Then, f(0, s, 1) ≥ 0 for all s ≥ 0 if and only if one of (1) and (2) holds.
(1) p ≥ −3 and p + q + 1 ≥ 0.
(2) p < −3 and 4q ≥ (p + 1)2 + 4.

Proof. Since f(0, 1, 1) = 2(p + q + 1), p + q + 1 ≥ 0 is a necessary. Note that

f(0, x, 1) = (x5 + 1) + p(x4 + 1) + q(x3 + x2)
= (1 + x)(1 + (p− 1)x + (1− p + q)x2 + (p− 1)x3 + x4).

Thus, let α := p− 1, β := 1− p + q, and

g(x) := (1 + (p− 1)x + (1− p + q)x2 + (p− 1)x3 + x4)
= x4 + αx3 + βx2 + αx + 1

= x2

((
x +

1
x

)2

+ α

(
x +

1
x

)2

+ (β − 2)

)
.

Again, let y := x + 1/x and h(y) := y2 + py + (q − 2). Then

f(x, 1, 0) ≥ 0 (∀x ≥ 0) ⇐⇒ g(x) ≥ 0 (∀x ≥ 0)
⇐⇒ h(y) := y2 + αy + (β − 2) ≥ 0 (∀y ≥ 2).

Note that h(2) = f(1, 1, 0) = p + q + 1 and h(y) = (y + α/2)2 + (4β − 8− α2)/4.
If α ≥ −4, i.e. if p ≥ −3, then h(2) = 2α+β +2 = p+q+1 = f(1, 1, 0) is the minimum

of h. This is the condition (1).
If α < −4, i.e. if p < −3, then h(−α/2) = (4β − 8 − α2)/4 = (4q − (p + 1)2 − 4)/4 is

the minimum of h. This is the condition (2).

Proposition 5.3. For f(a, b, c) := S5 +pT4,1 + qT3,2 + rUS2− (1+2p+2q + r)US1,1 ∈
H̆s0

5 , let

d̃5(p, q, r) := 4(p+1)(p− 2)(2p− 1)− 9(q(2p− 1)+ r(p+1))− (
(2p− 1)2− 3(2q + r +2)

)3/2
.

Then f(s, 1, 1) ≥ 0 for all s ≥ 0 if and only if one of (1), (2), (3) or (4) holds.
(1) p ≥ −1 and 4p + 2q + r + 3 ≥ 0.
(2) p < −1 and (2p− 1)2 < 3(2q + r + 2).
(3) 4p + 2q + r + 3 < 0 and d̃5(p, q, r) ≥ 0.
(4) p < −1, (2p− 1)2 ≥ 3(2q + r + 2) and d̃5(p, q, r) ≥ 0.
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Proof. Since f(0, 1, 1) = 2(p + q + 1), it is necessary that p + q + 1 ≥ 0. Note that

f(x, 1, 1) = (x− 1)2
(
x3 + 2(p + 1)x2 + (4p + 2q + r + 3)x + 2(p + q + 1)

)
.

Thus, let g(x) := x3 + 2(p + 1)x2 + (4p + 2q + r + 3)x + 2(p + q + 1).
Then g′(x) = 3x2 + 4(p + 1)x + (4p + 2q + r + 3). We consider the roots of g′(x) = 0.

Case 1: We treat the case that the quadric equation g′(x) = 0 has no positive roots.
In this case, g(x) > 0 on (0, ∞) if and only if g(0) > 0. The axis of the parabola

y = g′(x) is x = − 2(p + 1)
3

, and

g′
(
− 2(p + 1)

3

)
=

3(2q + r + 2)− (2p− 1)2

3
.

g′(x) = 0 has no positive roots if and only if “p + 1 ≥ 0 and g′(0) ≥ 0” or “p + 1 < 0 and
g′(−2(p + 1)/3) > 0”. These correspond with the conditions (1) and (2).

Case 2: We treat the case g′(0) ≥ 0 and the quadric equation g′(x) = 0 has a positive
root x0.

In this case, g(x) ≥ 0 on [0, ∞) if and only if g(x0) ≥ 0 and g(0) ≥ 0. g′(x) = 0 has a
positive root x0 if and only if p + 1 < 0 and g′(−2(p + 1)/3) ≤ 0. Since

x0 =

√
(2p− 1)2 − 3(2q + r + 2)− 2(p + 1)

3
, (5.4)

and 27g(x0) = 2d̃5(p, q, r), we have the condition (4).
Case 3: We treat the case g′(0) < 0.
In this case, x0 defined by (5.4) is a positive, and g′(x0) = 0. g(x) ≥ 0 on [0, ∞) if and

only if g(x0) ≥ 0 and g(0) ≥ 0. This corresponds with the condition (3).

In (3) and (4), d̃5 ≥ 0 is equivalent to d5 ≥ 0. Thus, Theorem 0.4 is proved. But we
want to obtain extremal inequalities and to determine which are discriminants. We choose
s0 = S5−US1,1, s1 = T4,1− 2US1,1, s2 = T3,2−US1,1, s3 = US2−US1,1 as a base of Hs0

5 .
For Step 1 of Remark 1.23, we execute Remark 1.21(2). Then we know that Xs0+

5 := X(P2
+,

Hs0
5 ) is defined by

F50(x0, x1, x2, x3) := x2
1 − x0x2 + x1x2 − x2

2 − 2x0x3 − 5x1x3 + 2x2x3 = 0,

F51(x0, x1, x2, x3) := x2
1 + x2

2 − 2x0x2 − 2x1x3 ≤ 0.

Note that F51(s0, s1, s2, s3) = −(a−b)2(b−c)2(c−a)2(a+b+c)4 ≤ 0. Using Proposition 2.12,
2.13, 2.14, and the above, we obtain ∆2(Xs0+

5 ) =
{

Reg(Xs0+
5 )

}
, ∆1(Xs0+

5 ) =
{
Φs0

5 (Lb
F+),

Φs0
5 (L0

F+)
}
, and ∆0(Xs0+

5 ) =
{
Φs0

5 (0 : 0 : 1), Φs0
5 (0 : 1 : 1)

}
. Next execute Step 2 of Remark

1.23. Since Φs0
5 (0 : 0 : 1) = (1 : 0 : 0), F(Φs0

5 (0 : 0 : 1)) is the set of all the polynomials at
infinity in Ps0

5 . This can be determined using Proposition 1.33.

Proposition 5.5. Ps0+
5 and Ps+

5 have no main components.

Proof. We prove Fs+
5 ⊂ Ps+

5 is not a face component. Assume 0 6= ∃f ∈ Int(Fs+
5 ). We

may assume f ∈ Ls+
s,t for 0 < ∃s < ∃t < 1, and f /∈ Ls+

0,u for any u ≥ 0, and f /∈ Ls+
v,1 for

any v ≥ 0. For g ∈ Hs
5, we denote

M(g) := max
{
g(a)

∣∣ a ∈ ∂AF

}
, m(g) := min

{
g(a)

∣∣ a ∈ ∂AF

}
,

here ∂AF :=
{
(u, 1, 1)

∣∣ 0 ≤ u ≤ 1
} ∪ {

(1, 1, u)
∣∣ u ≥ 1

} ∪ {
(0, u, 1)

∣∣ 0 ≤ u ≤ 1
}
. Since

f /∈ Ls+
0,u and f /∈ Ls+

v,1, we have m(g) > 0. Since M(S5) < +∞, there exists 0 < ε ¿ 1 such
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that m(f − εS5) > 0. By Proposition 5.1, f − εS5 ∈ Ps0+
5 . But f(s, t, 1)− εS5(s, t, 1) < 0.

Thus Fs+
5 is not a face component.

We prove Fs0+
5 ⊂ Ps0+

5 is not a face component. Otherwise, we can take 0 6= f ,
g ∈ Int(Fs0+

5 ) such that:
(a) There exists 0 < s1 < t1 < 1 and 0 < s2 < t2 < 1 such that (s1, t1) 6= (s2, t2),

f ∈ Ls0+
s1,t1 , g /∈ Ls0+

s1,t1 , f /∈ Ls0+
s2,t2 , and g ∈ Ls0+

s2,t2 .
(b) f , g /∈ Ls0+

0,u for any u ≥ 0.
(c) f , g /∈ Ls0+

v,1 for any v ≥ 0, v 6= 1.
Then, at least one of m(f/g) > 0 or m(g/f) > 0 holds. We may assume m(f/g) > 0.

Take 0 < ε < m(f/g). Then f −mg ∈ Ps0+
5 . But f(s1, t1, 1)− εg(s1, t1, 1) < 0. Thus Fs0+

5

is not a face component.

It is complicated to write the conditions in homogeneous form. So, for f ∈ Hs0
5 which

does not lie on infinity, we normalize it in monic form. Let p := p1/p0, q := p2/p0 and
r := p3/p0, that is

f = S5 + pT4,1 + qT3,2 + rUS2 − (1 + 2p + 2q + r)US1,1 ∈ Hs0
5 .

For each vector subspace V ⊂ Hs0
5 , let V̆ be the set of all the monic polynomials in V .

Theorem 5.6. We use the same symbols as above.
(1) Let P = Φs0

5 (0 : 1 : 1) = (1 : 1 : 1 : 0), and O = Φs0
5 (0 : 0 : 1) = (1 : 0 : 0 : 0). Then the

dual of P is described as F̆(P ) = A′
1 ∪A′

2, where

A′
1 :=

{
(p, q, r) ∈ H̆s0

5

∣∣ p + q + 1 = 0, −3 ≤ p ≤ −1, r ≥ p2
}

A′
2 :=

{
(p, q, r) ∈ H̆s0

5

∣∣ p + q + 1 = 0, −1 ≤ p, 2p + r + 1 ≥ 0
}
.

(2) Let C1 = Φs0
5 (Lb

F+) =
{
Φs0

5 (s : 1 : 1)
∣∣ s > 0

}
. Then

F̆(C1) =
{

(p, q, r) ∈ H̆s0
5

∣∣ 4q = (p + 1)2 + 4, p ≤ −3, d5(p, q, r) ≥ 0
}
.

(3) Let C2 = Φs0
5 (L0

F+) =
{
Φs0

5 (0 : s : 1)
∣∣ s > 0

}
. Then F̆(C2) = B′

1 ∪B′
2 ∪B′

3, where

B′
1 :=

{
(p, q, r) ∈ H̆s0

5

∣∣ d5(p, q, r) = 0, p < −3, 4q ≥ (p + 1)2 + 4
}
,

B′
2 :=

{
(p, q, r) ∈ H̆s0

5

∣∣∣∣
d5(p, q, r) = 0, −3 ≤ p ≤ −1,
p + q + 1 ≥ 0, (q, r) 6= (−p− 1, −2p− 1)

}
,

B′
3 :=

{
(p, q, r) ∈ H̆s0

5

∣∣ d5(p, q, r) = 0, −1 ≤ p, p + q + 1 ≥ 0, 2p + r + 1 ≤ 0
}
.

Especially, d5(p, q, r) = disc(C1), 4q − (p + 1)2 − 4 = disc(C2). p + q + 1 = disc(P ) and
p0 = disc(O).

Proof. Fix p ∈ R, and observe the plane section Vp =
{
(q, r) ∈ R2

∣∣ (1, p, q, r) ∈ Hs0+
5

}
.

Let Cp be the curve defined by d5(p, q, r) = 0 on the (q, r)-plane Vp. Cp is a rational cubic
curve with the parameterization

q =
1

27(2t + 1)3
·
(
− 36t3 + (p + 1)

(
4(8p2 − 65p + 116)t3

+ 6(8p2 − 38p− 19)t2 + 3(8p2 − 11p− 73)t + (4p2 + 8p− 23)
))

,

r =
1

27(2t + 1)3
·
(
− 8(2p− 1)3t3 − 3(2p− 1)2(8p + 23)t2

− 6(2p− 1)(p + 4)(4p + 7)t− (p + 4)2(8p + 5)
)
.
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Cp has a cusp at Pp = (q, r) =
(

4p3 + 12p2 − 15p− 23
27

, − (2p− 1)3

27

)
. The cusp Pp lies

on a line 3(2q + r + 2) = (2p − 1)2. The vertical line p + q + 1 = 0 tangents to Cp at
(q, r) = (−p− 1, −2p− 1), and intersects with Cp at (q, r) = (−p− 1, p2). The graph of Cp

in the case p > −1 is as in Figure 5.1.

Fig 5.1. Case: p > −1
p + q + 1 = 0 d5(p, q, r) = 0

4p + 2q + r + 3 = 0

(2p− 1)2 = 3(2q + r + 2)
(−p− 1,−2p− 1)

Pp
Cp

Cp

Cp

(q, r)-plane Vp

Fig 5.2. Case: p = −1

p + q + 1 = 0 d5(p, q, r) = 0

4p + 2q + r + 3 = 0

(2p− 1)2 = 3(2q + r + 2)

Pp
Cp

Cp

(q, r)-plane Vp

∂Ps0+
5 ∩ Vp is shown by the thick curve. The graph of Cp in the case p = −1 is as in

Figure 5.2. In this case, the line 4p+2q + r +3 = 0 coincides with 3(2q + r +2) = (2p− 1)2,
and these lines intersect to p + q + 1 = 0 at the cusp Pp.

The graph of Cp in the case p < −1 is as in Figure 5.3. In this case (−p−1, −2p−1) /∈ Vp,
by the condition 4(p + 1)(p− 2)(2p− 1)− 9(q(2p− 1) + r(p + 1)) ≥ 0.

Fig.5.3. Case: p < −1

p + q + 1 = 0 4q = (p + 1)2 + 4

d5(p, q, r) = 0
4p + 2q + r + 3 = 0

(2p− 1)2 = 3(2q + r + 2)

Pp

Cp Cp

(q, r)-plane Vp

By the above observation, we complete the proof.

Corollary 5.7. Let

fA
p (a, b, c) := s0 + ps1 − (p + 1)s2 + p2s3,

`(t) := 2− t2 + t
√

(t− 1)(t + 2),

sm(t) := (1/2)(`(t)−
√

`(t)2 − 4,
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fB
t (a, b, c) := s0 + (1− 2`(t))s1 + (t3 + 2t2 − 2− 2(t2 − 1)`(t))s2

− ((t + 1)2(2t + 3)− 4(t + 1)2`(t))s3,

gt(a, b, c) := s1 + (t2 − 1)s2 − 2(s + 1)2s3.

(1) For all t ≥ 0, gt is an extrelal element of Ps0+
5 , and gt ∈ Ls0+

t,1 ∩Ls0+
0,0 .

(2) Let t ≥ 2, and put s := sm(t). Then 0 < s ≤ 1, and fB
t ∈ Ls0+

t,1 ∩ Ls0+
0,s . fB

t is an

extrelal element of Ps0+
5 .

(3) Let 0 ≤ t ≤ 2, and put p := −t − 1. Then fA
p ∈ Ls0+

t,1 ∩Ls0+
0,1 , and fA

p is an extremal

element of Ps0+
5 .

(4) All the extremal elements of Ps0+
5 are positive multiples of fA

p (−3 ≤ p ≤ −1), fB
t

(t ≥ 2), gt (t ≥ 0), s2 and s3.

Proof. (1) f ∈ Ls0+
0,0 implies the cofficient of s0 in f is equal to zero. Since,

gt(s, 1, 1) = 2(s− 1)2(s− t)2,
gt(0, s, 1) = s(s + 1)((s− 1)2 + t2),

we have gt ∈ Ls0+
t,1 by Proposition 5.1.

(2) It is easy exercise to veryfy that sm(t) varies (0, 1] when t ≥ 2. Since

fB
t (s, 1, 1) = (s− t)2(s− 1)2(s + 2(t−

√
(t− 1)(t + 2))2),

fB
t (0, s, 1) = (s + 1)(s2 − (2− t2 − t

√
(t− 1)(t + 2))s + 1)2,

we have fB
t ∈ Ls0+

t,1 ∩Ls0+
0,s .

(3) follow from

fA
p (t, 1, 1) = t(t− 1)2(t + p + 1)2,

fp(0, t, 1) = (t + 1)(t− 1)2(t2 + (p + 1)t + 1).

(4) All the extremal elements of Ls0+
0,0 are positive multiples of gt (0 ≥ 0) and g∞ := s2.

Ls0+
0,s ∩Ls0+

0,0 = R+ · s3. Thus we obtain (4).

5.2. Edge discriminant of Pc+
5 .

We cannot yet obtain the main discriminant of Pc0+
5 and Pc+

5 . It will be extraordinary
long polynomial. But we determined the edge discriminant of Pc+

5 .
We choose s0 = S5 − US2, s1 = S4,1 − US2, s2 = S3,2 − US2, s3 = S2,3 − US2,

s4 = S1,4−US2, s5 = US2−US1,1 as a base of Hc0
5 , and we choose s0,. . ., s5 and s6 = US1,1

as a base of Hc
5. Let

Lemma 5.8. Let Lc0+
s be the local cone of Pc0+

5 at the point (0 : s : 1) ∈ P2
+. Note

that dimLc0+
s = 6 − 2 ≤ 4 by Proposition 1.27(1). The following F1,s, F2,s, F3,s, F4,s are

linearly independent elements in Lc0+
0,s .

Hc0
0,s :=

{
f ∈ Hc0

5

∣∣ f(0, s, 1) = 0
}
,

F1,s(a, b, c) := 3s4s0 − (4s5 − 1)s1 + (s8 − 4s3)s4,

F2,s(a, b, c) := 2s1 − 3ss2 + s3s4,

F3,s(a, b, c) := s1 − 3s2s3 + 2s3s4,

F4,s(a, b, c) := s5.
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Proof. It is easy to check Fi,s(0, s, 1) = 0, Fi,s = (1, 1, 1) = 0 for 1 ≤ i ≤ 4, and
Fj,s(0, 0, 1) = 0 for 2 ≤ j ≤ 4. Since dimHc0

0,s = dim Hc0
5 − 2 = 4, F1,s,. . ., F1,s is a base

of Hc0
0,s. We need long analytic argument to prove F1,s, F2,s ∈ Lc0+

0,s . Thus, I will publish
this proof in an other article. F3,s ≥ 0 follows from F3,s(a, b, c) = s3F2,s(b, a, c, 1/s) ≥ 0.
F4,s ≥ 0 follows from S2 ≥ S1,1.

Theorem 5.9. For H̆c
5 3 f = S5 +xS4,1 +yS1,4 +zS3,2 +wS2,3 +uUS2 +vUS1,1 ∈ Hc

5,
the edge discriminant of Pc+

5 is the following discc+
5 .

discc+
5 (x, y, z, w)

:= − 27x4y4 − 4x3y2w3 − 4x2y3z3 + 18x3y3zw + x2y2z2w2

+ 144x4y2w + 144x2y4z − 6x3y2z2 − 6x2y3w2 + 16x3w4 + 16y3z4

− 80x3yzw2 − 80xy3z2w + 18x2yz3w + 18xy2zw3 − 4x2z2w3 − 4y2z3w2

− 36x3y3 − 192x4yz − 192xy4w − 128x4w2 − 128y4z2

+ 24x2yw3 + 24xy2z3 − 27x2z4 − 27y2w4 − 746x2y2zw

+ 144x3z2w + 144y3zw2 − 72xzw4 − 72yz4w + 356xyz2w2 + 16z3w3

+ 256x5 + 256y5 + 160x3yw + 160xy3z + 1020x2yz2 + 1020xy2w2

+ 560x2zw2 + 560y2z2w − 630xz3w − 630yzw3 + 108z5 + 108w5

− 50x2y2 − 1600x3z − 1600y3w − 900xw3 − 900yz3 − 2050xyzw + 825z2w2

+ 2000x2w + 2000y2z + 2250xz2 + 2250yw2 − 2500xy − 3750zw + 3125.

Proof. By Proposition 2.8, the edge discriminants of Pc+
5 and Pc0+

5 agrees. Thus we
shall calculate that of Pc0+

5 . Eliminate α2, α3 and s from

x =
−(4s5 − 1)

3s4 + 2α2 + α3, y =
s8 − 4s3

3s4 + s3α2 + 2s3α3, z = −3sα2, w = −3s2α3,

we obtain discc+
5 = 0.

If f is symmetric, then

discc+
5 (p, p, q, q) = (p + q + 1)(5− 3p + q)3(4q − (p + 1)2 − 4)2.

Recall that 4q− (p+1)2−4 is a discriminant of Ps0+
5 . Since discc+

5 (p, p, q, q) is a multiple of
(4q− (p+1)2− 4)2, we know that Es+

5 ⊂ Sing(Ec+
5 ). The following is an example of Lemma

5.8.

Example 5.10. For any a, b, c ∈ R+, the following inequalities hold:

S5 +

(
5 5
√

4
4

− 1

)
US2 ≥ 5 5

√
4

4
S4,1, 2S4,1 + S1,4 ≥ 3S3,2.

Proof. The first is F1, 5√4(a, b, c) ≥ 0. The last is F2,1(a, b, c) ≥ 0.
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Section 6. Sextic inequalities.

6.1. Convex analysis.

Choi, Lam and Rezenick studied some sextic inequalities in [9]. Ĉırtoaje presented a
nice theorem in [11] Theorem 2.4. But, its proof has error, and its statement is not correct.
Example 6.10(5) gives a counterexample for Theorem 2.4 of [11]. Some corrected versions
are published in [13] and [14]. Here, we provide a corrected and extended version.

Theorem 6.1. Let f(x, y, z) be a homogeneous symmetric polynomial with 6 ≤
deg f ≤ 8. Let p := x + y + z, q := xy + yz + zx, r := xyz, and denote

f(x, y, z) = g0(p, q)r2 + g1(p, q) r + g2(p, q) (g0, g1, g2 ∈ R[p, q]).

We also fix the following symbols.

D(p, q) := g1(p, q)2 − 4g0(p, q)g2(p, q),
h1(s) := 2sg0(s + 2, 2s + 1) + g1(s + 2, 2s + 1),
h2(t) := 2t2g0(2t + 1, t2 + 2t) + g1(2t + 1, t2 + 2t),
I1 :=

{
s ∈ R ∣∣ −2 ≤ s ≤ 1, g0(s + 2,2s + 1) > 0, and D(s + 2, 2s + 1) > 0

}
,

I2 :=
{

s ∈ I1

∣∣ −1/2 ≤ s ≤ 1
}
.

(I) Assume deg f = 6 or 8. Then, f(x, y, z) ≥ 0 for all x, y, z ∈ R, if and only if the
following condition (1) holds, and for every s ∈ I1 (depending on s), one of (2) or (3) holds.

(1) f(0, 0, 1) ≥ 0 and f(x, 1, 1) ≥ 0 for all x ∈ R.
(2) h1(s) ≥ 0.
(3) h2((1 + 2s)/(4− s)) ≤ 0.

(II) Assume 6 ≤ deg f ≤ 8. Then, f(x, y, z) ≥ 0 for all x, y, z ∈ R+, if and only if the
following condition (4) holds, and for every s ∈ I2 (depending on s), one of (5) or (3) holds.

(4) f(0, x, 1) ≥ 0 and f(x, 1, 1) ≥ 0 for all x ∈ R+.
(5) h1(s) ≥ 0 or g1(s + 2, 2s + 1) ≥ 0,

Proof. Step 0: For p, q ∈ R with p2 − 3q ≥ 0, let

Xp,q :=
{
(x, y, z) ∈ R3

∣∣ x ≤ y ≤ z, x + y + z = p, xy + yz + zx = q
}
,

α1(p, q) :=
p− 2

√
p2 − 3q

3
, α2(p, q) :=

p + 2
√

p2 − 3q

3
,

β1(p, q) :=
p−

√
p2 − 3q

3
, β2(p, q) :=

p +
√

p2 − 3q

3
,

r1(p, q) := α1(p, q)β2(p, q)2, r2(p, q) := β1(p, q)2α2(p, q).

Note that Xp,q 6= ∅. For r := xyz,

27r2 − 2(9pq − 2p3)r + (4q3 − p2q2) = −(x− y)2(y − z)2(z − x)2 ≤ 0.

The solution of the above inequality on r is

r1(p, q) =
9pq − 2p3 − 4(p2 − 3q)3/2

27
≤ r ≤ 9pq − 2p3 + 4(p2 − 3q)3/2

27
= r2(p, q).

Moreover, if r = r1(p, q) or r = r2(p, q), then −(x− y)2(y − z)2(z − x)2 = 0. Thus we have:
(0-a) min

(x,y,z)∈Xp,q

xyz = r1(p, q). The equality holds if and only if x = α1(p, q) and

y = z = β2(p, q).
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(0-b) max
(x,y,z)∈Xp,q

xyz = r2(p, q). The equality holds if and only if x = y = β1(p, q) and

y = z = α2(p, q).

We shall prove sufficiency of (I) and (II).
Assume that (1) holds in the case (I) or (4) holds in the case (II), and assume that f(a,

b, c) < 0 for certain a, b, c. In the case (II), we assume a ≥ 0, b ≥ 0, c ≥ 0. It is enough to
show that (2), (3) and (5) cannot hold.

Let P := a+b+c, Q := ab+bc+ca. We may assume P > 0, since f(−a, −b, −c) = f(a,
b, c) in case (I). Let α1 := α1(P, Q), α2 := α2(P, Q), β1 := β1(P, Q), β2 := β2(P, Q),
r1 := r1(P, Q) and r2 := r2(P, Q). Since P 2 − 3Q =

(
(a− b)2 + (b− c)2 + (c− a)2

)
/2 ≥ 0,

we have α2 ≥ 0 and β2 ≥ 0. If α2 = (P + 2
√

P 2 − 3Q )/3 = 0, then P = Q = 0 and
a = b = c = 0. This contradicts to f(a, b, c) < 0. Thus α2 > 0. Similarly, we have β2 > 0.
In the case (II), since Q ≥ 0, we have β1 ≥ 0. Let

g(r) := g0(P, Q)r2 + g1(P, Q) r + g2(P, Q).

Note that g(abc) = f(a, b, c) < 0. Let S := α1/β2 and T := β1/α2. Since ST +2S−4T +1 =
0, we have T = (1 + 2S)/(4− S) and S = (4T − 1)/(T + 2).

Since α1 + 2β2 = P ≥ 0, β2 > 0, and α1 ≤ β2, we have −2 ≤ S ≤ 1. In the case (II),
since β1 ≥ 0, we have T ≥ 0. Thus −1/2 ≤ S ≤ 1. Note that the following relations:

P = α1 + 2β2 = (S + 2)β2 = α2 + 2β1 = (1 + 2T )α2,

Q = 2α1β2 + β2
2 = (2S + 1)β2

2 = β2
1 + 2α2β1 = (T 2 + 2T )α2

2,

g0(P, Q) = βd−6
2 g0(S + 2, 2S + 1) = αd−6

2 g0(2T + 1, T 2 + 2T ), (6.2)
g1(P, Q) = βd−3

2 g1(S + 2, 2S + 1) = αd−3
2 g1(2T + 1, T 2 + 2T ), (6.3)

g2(P, Q) = βd
2g2(S + 2, 2S + 1) = αd

2g2(2T + 1, T 2 + 2T ),
D(P, Q) = βd

2D(S + 2, 2S + 1) = αd
2D(2T + 1, T 2 + 2T ), (6.4)

r1 = βd−3
2 S, r2 = αd−3

2 T 2,

h1(S) = β3−d
2

(
2r1g0(P, Q) + g1(P, Q)

)
, h2(T ) = α3−d

2

(
2r2g0(P, Q) + g1(P, Q)

)
. (6.5)

Step 1: We shall show g0(S + 2, 2S + 1) > 0.
Assume that g0(S + 2, 2S + 1) ≤ 0. Then g0(P , Q) ≤ 0 by (6.2), and g(r) is a concave

function or a linear function. Let r′1 := r1 in the case (I), and r′1 := max{r1, 0} in the case
(II). Since g(abc) < 0, we have g(r′1) < 0 or g(r2) < 0.

If g(r2) < 0, then there exists (x, y, z) ∈ XP,Q such that xyz = r2 and f(x, y, z) < 0.
Then (x, y, z) = (β1, β1, α2) by Step 0. Thus

0 > g(r2) = f(β1, β1, α2) = βd
1f(α2/β1, 1, 1) ≥ 0.

If g(r1) < 0, then we can derive similar contradiction.
If g(0) < 0 in the case (II), then there exists (x, y, z) ∈ XP,Q such that xyz = 0 and

f(x, y, z) < 0. Since 0 ≤ x ≤ y ≤ z, we have x = 0. Then 0 > g(0) = f(0, 1, y/z) ≥ 0.
Thus we have g0(S + 2, 2S + 1) > 0.

Since g0(S + 2, 2S + 1) > 0, we have g0(P , Q) > 0 by (6.2). Thus, g(r) is a convex
function. Since g(abc) < 0, we have D(P, Q) > 0. This implies D(S + 2, 2S + 1) > 0 by
(6.4). Thus S ∈ I1. In the case (II), since −1/2 ≤ S ≤ 1, we have S ∈ I2.

Step 2. We shall show h2((1 + 2S)/(4− S)) = h2(T ) > 0, i.e. (3) cannot hold.
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Assume that h2(T ) ≤ 0. Then −g1(P, Q)/2g0(P, Q) ≥ r2. That is, the axis of quadratic
function g(r) exists in the right side of r2. Thus

0 > f(a, b, c) = g(abc) ≥ g(r2) = f(β1, β1, α2) = βd
1f(α2/β1, 1, 1) ≥ 0.

A contradiction. Thus, (3) cannot hold.
Step 3. We shall show that h1(S) < 0, i.e. (2) cannot hold.
Assume that h1(S) ≥ 0. Then −g1(P, Q)/2g0(P, Q) ≤ r1. The axis of g(r) exists in the

left side of r1. Thus

0 > f(a, b, c) = g(abc) ≥ g(r1) = f(α1, β2, β2) = βd
2f(α1/β2, 1, 1) ≥ 0.

A contradiction. Thus, (2) cannot hold.
Step 4. We shall show that if S ∈ I2 then g1(S + 2, 2S + 1) < 0. i.e. (5) cannot hold.
Assume that g1(S + 2, 2S + 1) ≥ 0. Then g1(P , Q) ≥ 0 by (6.3).
If S ≥ 0, then r1 = βd−3

2 S ≥ 0 and by (6.5). This derives a contradiction:

0 > βd−3
2 h1(S) = 2r1g0(P, Q) + g1(P, Q) ≥ 0.

If S < 0, then r1 < 0, and 0 > βd−3
2 h1(s) ≥ g1(P , Q). Thus, the axis of g(r) exists in r ≤ 0.

Thus
0 > f(a, b, c) = g(abc) ≥ g(0) ≥ 0.

A contradiction. Thus, (5) cannot hold.
Here we complete the proof of the sufficiency part.

Step 5. We shall prove the necessity part of (I) and (II).
For x, y, z ∈ R, let p := x + y + z, q := xy + xz + zx, and

A1(x, y, z) :=
p− 2

√
p2 − 3q

3
, B2(x, y, z) :=

p +
√

p2 − 3q

3
.

Assume that f(x, y, z) ≥ 0 for all x, y, z ∈ R in the case (I), or for all x, y, z ∈ R+ in the
case (II). Then (1) holds in the case (I), and (4) holds in the case (II).

Let s ∈ I1. There exists a, b, c ∈ R such that A1(a, b, c)/B2(a, b, c) = s. If s ∈ I2, we
can choose a ≥ 0, b ≥ 0 and c ≥ 0. Let P := a + b + c, Q := ab + bc + ca. Using this P ,
Q, we define XP,Q, α1, α2, β1, β2, r1, r′1, r2, S and T same as the proof of sufficiency part.
Note that α1 = A1(a, b, c), β2 = B2(a, b, c), and s = S.

Since S = s ∈ I1, we have D(S + 2, 2S + 1) > 0 and g0(S + 2, 2S + 1) > 0. Thus
D(P , Q) > 0 and g0(P , Q) > 0, by (6.2) and (6.4). This implies that the quadric equation
g(r) = 0 has two real roots r = r3, r4, here r3 < r4. Since g(r) is convex and g(r) ≥ 0 for
all r′1 ≤ r ≤ r2, then we have r3 ≥ r2 or r4 ≤ r′1 . This implies that the axis of g(r) satisfies
−g1(P, Q)/2g0(P, Q) ≥ r2 or −g1(P, Q)/2g0(P, Q) ≤ r′1.

Consider the case (I). If −g1(P, Q)/2g0(P, Q) ≥ r2, then by (6.5), we have

h2((1 + 2s)/(4− s)) = h2(T ) = α3−d
2

(
2r2g0(P, Q) + g1(P, Q)

) ≤ 0.

Thus (3) holds. If −g1(P, Q)/2g0(P, Q) ≤ r1, then

h1(s) = h1(S) = β3−d
2

(
2r1g0(P, Q) + g1(P, Q)

) ≥ 0.

Thus (2) holds.
Consider the case (II). In this case, S = s ∈ I2 ⊂ I1. As the above arguments, if

−g1(P, Q)/2g0(P, Q) ≥ r2 then (3) holds. Consider the case −g1(P, Q)/2g0(P, Q) ≤ r′1. If
r1 ≥ 0, i.e. if r′1 = r1, as the above arguments, we have h1(s) ≥ 0. If r1 < 0, i.e. if r′1 = 0,
then −g1(P , Q) ≤ 0 by (6.3). This implies g1(s + 2, 2s + 1) ≥ 0. Thus, (5) holds.
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Note. Even if deg f ≥ 9, if f can be written as

f(x, y, z) = g0(p, q)r2 + g1(p, q) r + g2(p, q),

then the above theorem holds.

Using this theorem, we immediately obtain the following:

Example 6.6. For any a, b, c ∈ R, the following hold:
(1) 6S6 + 5T4,2 ≥ 8T5,1.
(2) 8S6 + 10S3,3 ≥ 9T5,1.
(3) T4,2 + 18U2 ≥ 4UT2,1.

(4)
3 +

√
3

18
S6 +

15−
√

3
6

U2 ≥ US3.

Equality holds if a = b = c or (a : b : c) = (
√

3− 1 : 1 : 1) or so on.
(5) 2(1− α)S6 + αUT2,1 ≥ T5,1, here α ∼ 0.4235227783 is a root of

257α6 − 1512α5 + 3598α4 − 4386α3 + 2865α2 − 950α + 125 = 0.

Equality holds if a = b = c or (a : b : c) = (β : 1 : 1), here β ∼ 0.5712944281 is a root
of

β6 + 4β5 + 7β4 + 6β3 − 2β − 1 = 0.

(6) (2− γ)S6 + 3γU2 ≥ T5,1, here γ ∼ 0.762794619 the unique real root of

54γ5 − 378γ4 + 1017γ3 − 1330γ2 + 900γ − 250 = 0.

Equality holds if a = b = c or (a : b : c) = (δ : 1 : 1), here δ ∼ 0.5701772717 is the
unique real root of

δ5 + 3δ4 + 7δ3 + δ2 − 2 = 0.

(7) (2− ε)S6 + 3εU2 ≥ UT2,1, here ε ∼ 1.8010662235 is a root of

108ε3 − 414ε2 + 538ε− 257 = 0.

Equality holds if a = b = c or (a : b : c) = (ζ : 1 : 1), here ζ ∼ 0.5666113232 is a root
of 3ζ3 + ζ2 + 2ζ − 2 = 0.

6.2. Edge discriminant of Pc+
6 .

For Pc+
6 , we could only determine the edge discriminant.

Lemma 6.7. Let Lc0+
s be the local cone of Pc0+

6 at the point (0 : s : 1) ∈ P2
+. Note that

dimLc0+
s = 9 − 2 ≤ 7 by Proposition 1.27(1). The following Gi,s are linearly independent

elements in Lc0+
0,s .

G1,s := s4S6 − (2s6 − 1)S4,2 + (s8 − 2s2)S2,4 − 3(s8 − 2s6 + s4 − 2s2 + 1)U2,

G2,s := 2S5,1 − 3sS4,2 + s3S2,4 − 3(s− 1)2(s + 2)U2,

G3,s := 2s3S1,5 + S4,2 − 3s2S2,4 − 3(s− 1)2(2s + 1)U2,

G4,s := S4,2 + s2S2,4 − 2sS3,3 − 3(s− 1)2U2,

G5,s := US3 − US2,1, G6,s := US3 − US1,2, G7,s := US3 − 3U2.

Proof. It is easy to check Gi,s(0, s, 1) = 0, Gi,s = (1, 1, 1) = 0. A proof of G2,s(a, b, c) ∈
Lc0+

0,s will be published in other article. G1,s(a, b, c) = fs2(a2, b2, c2) ≥ 0 by Theorem 3.1.
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G3,s ≥ 0 follows from G3,s(a, b, c) = s3G2,1/s(b, a, c).

G4,s = s2(S2,4 − 3U2)− 2s(S3,3 − 3U2) + (S4,2 − 3U2)
= (S2,4 − 3U2)

×
{(

s− S3,3 − 3U2

S2,4 − 3U2

)2

+
U2(S6 + 6S3,3 + 3U2 − 3T4,2 − 2US3)

(S2,4 − 3U2)2

}
.

Using Theorem 6.1, we have S6 + 6S3,3 + 3U2 − 3T4,2 − 2US3 ≥ 0. Thus, G4,s ≥ 0.
G5,s ≥ 0, G6,s ≥ 0, and G7,s ≥ 0 are trivial.

Theorem 6.8. For H̆c
6 3 f = S6 + xS5,1 + yS1,5 + zS4,2 + wS2, 4 + uS3,3 + x6US3 +

x7US2,1 + x8US1,2 − 3(1 + x + y + z + w + u + x6 + x7 + x8)U2, the edge discriminant of
Pc+

6 is the following discc+
6 .

discc+
6 (x, y, z, w, u)

:= 256x5y5 − 27x4y2w4 − 27x2y4z4 − 192x4y4zw − 6x3y3z2w2 − 4x2y2z3w3

+ 144x4y3w2u + 144x3y4z2u + 18x3y2zw3u + 18x2y3z3wu− 128x4y4u2

− 80x3y3zwu2 + x2y2z2w2u2 − 4x3y2w2u3 − 4x2y3z2u3 + 16x3y3u4

− 1600x5y3w − 1600x3y5z − 36x3y3z3 − 36x3y3w3 + 108x4w5 + 108y4z5

+ 1020x4y2zw2 + 1020x2y4z2w + 24x3yz2w3 + 24xy3z3w2 + 16x2z3w4

+ 16y2z4w3 + 144x2y2z4w + 160x4y3zu + 160x3y4wu− 630x4yw3u

− 630xy4z3u− 746x3y2z2wu− 746x2y3zw2u− 72x3zw4u− 72y3z4wu

− 80x2yz3w2u− 80xy2z2w3u + 560x4y2wu2 + 560x2y4zu2 + 356x3yzw2u2

+ 356xy3z2wu2 − 6x2y2z3u2 − 6x2y2w3u2 − 4x2z2w3u2 − 4y2z3w2u2

+ 24x3y2zu3 + 24x2y3wu3 + 16x3w3u3 + 16y3z3u3 + 18x2yz2wu3

+ 18xy2zw2u3 − 72x3ywu4 − 72xy3zu4 + 320x4y4 − 50x4y2z2 − 50x2y4w2

+ 2250xy5z2 + 2250x5yw2 + 144x3yw4 + 144xy3z4 + 9768x3y3zw

+ 160x3yz3w + 160xy3zw3 − 900x4zw3 − 900y4z3w − 576x2zw5 − 576y2z5w

− 5428x2y2z2w2 − 128x2z4w2 − 128y2z2w4 − 96xyz3w3 + 144x2y2zw4

− 64z4w4 + 2000x5y2u + 2000x2y5u− 2050x4yzwu− 2050xy4zwu

− 682x3y2w2u− 682x2y3z2u− 192x2yz4u− 192xy2w4u + 3272x2yzw3u

+ 3272xy2z3wu + 320xz2w4u + 320yz4w2u− 208x3y3u2 + 825x4w2u2

+ 825y4z2u2 + 1020x3yz2u2 + 1020xy3w2u2 + 24x2w4u2 + 24y2z4u2

+ 144x2z3wu2 + 144y2zw3u2 − 1584xyz2w2u2 + 16z3w3u2 − 900x4yu3

− 900xy4u3 − 630x3zwu3 − 630y3zwu3 − 108x2yw2u3 − 108xy2z2u3

− 72xzw3u3 − 72yz3wu3 − 27x2z2u4 − 27y2w2u4 + 324xyzwu4 + 108x3u5

+ 108y3u5 − 2500x5yz − 2500xy5w − 1700x2y4z − 1700x4y2w + 248x2y2z3

+ 248x2y2w3 + 256x2z5 + 256y2w5 + 2000x4z2w + 2000y4zw2 − 13040x3yzw2

− 13040xy3z2w + 4816x2z2w3 + 4816y2z3w2 + 512z5w2 + 512z2w5

− 640xyzw4 − 3750x5wu− 3750y5zu− 12330x3y2zu− 12330x2y3wu

− 1600x3z3u− 1600y3w3u− 120x3w3u− 120y3z3u + 560x3z2w2u
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+ 560y3z2w2u + 10152x2yz2wu + 10152xy2zw2u + 768xw5u + 768yz5u

− 2496xz3w2u− 2496yz2w3u + 2250x4zu2 + 2250y4wu2 + 1980x3ywu2

+ 1980xy3zu2 − 4536x2zw2u2 − 4536y2z2wu2 − 4464xyz3u2 − 4464xyw3u2

− 576z4wu2 − 576zw4u2 + 3942x2yzu3 + 3942xy2wu3 + 2808xz2wu3

+ 2808yzw2u3 + 162x2wu4 + 162y2zu4 + 108z3u4 + 108w3u4 − 486xzu5

− 486ywu5 + 3125x6 + 410x3y3 + 3125y6 + 15600x3yz2 + 15600xy3w2

+ 1500y4z2 + 1500x4w2 − 192x2w4 − 192y2z4 − 10560x2z3w − 10560y2zw3

+ 8748x2y2zw − 640xyz4w + 15264xyz2w2 − 1024z6 − 4352z3w3 − 1024w6

+ 2250x4yu + 2250xy4u + 19800x3zwu + 19800y3zwu + 16632x2yw2u

+ 16632xy2z2u + 6912xz4u + 6912yw4u− 5760xzw3u− 5760yz3wu

+ 15417x2y2u2 − 2412x2y2zwu2 − 9720x2z2u2 − 9720y2w2u2 − 22896xyzwu2

+ 8208z2w2u2 − 1350x3u3 − 1350y3u3 + 5832xw2u3 + 5832yz2u3 − 6318xyu4

− 4860zwu4 + 729u6 − 22500x4z − 22500y4w − 1800xy3z − 1800x3yw

− 21888xyz3 − 21888xyw3 − 6480x2zw2 − 6480y2z2w + 9216z4w + 9216zw4

− 31320x2yzu− 31320xy2wu− 3456xz2wu− 3456yzw2u− 27540x2wu2

− 27540y2zu2 − 8640z3u2 − 8640w3u2 + 21384xzu3 + 21384ywu3 + 540x2y2

+ 43200x2z2 + 43200y2w2 + 31968xyzw − 17280z2w2 + 27000x3u + 27000y3u

+ 46656yz2u + 46656xw2u + 15552xyu2 + 3888zwu2 − 8748u4 − 32400x2w

− 32400y2z − 13824z3 − 13824w3 − 77760xzu− 77760ywu + 38880xy

+ 62208zw + 34992u2 − 46656

Proof. Compare the coefficients of G1,s +
7∑

i=2

αiGi,s and f in Theorem 6.7, we have

x = 2α2, y = 2s3α3, z =
1− 2s6

s4 − 3sα2 + α3 + α4,

w =
s8 − 2s2

s4 + s3α2 − 3s2α3 + s2α4, u = −2sα4.

Eliminate α2, α3, α4 and s from the above equalities, we have disc+
6 (x, y, z, w, u) = 0.

Corollary 6.9. For H̆s
6 3 f = S6 + pT5,1 + qT4,2 + rS3,3 + sUS3 + tUT2,1 − 3(1 + 2p +

2q + r + s + 2t)U2, the edge discriminant of Pc+
6 is the following discs+

6 .

discs+
6 (p, q, r) := 8p4 + p2q2 − 4p3r − 42p2q − 4q3 + 18pqr

+ 9p2 + 36q2 + 54pr − 27r2 − 108q + 108.

Proof. Since

disc+
6 (p, p, q, q, r) = (2p− 2q + r − 2)(2p + 2q + r + 2)

(
discs0+

6 (p, q, r)
)2

,

we have the conclusion.

We don’t know a lot about Pc
6 and Pc+

6 , but we can prove the following examples at
once using the results in this section.
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Example 6.10. For any a, b, c ∈ R+, the following hold:
(1) 2S6 + 16S3,3 ≥ 9T4,2.
(2) S9 + 6U3 ≥ US2

3 .
(3) (

√
2 − 1)T5,1 + 4S3,3 ≥ 2(

√
2 + 1)US3. Equality holds if a = b = c or (a : b : c) =

(1 +
√

2 : 1 : 1) or so on.
(4) (1 − α)T5,1 + 6αU2 ≥ 2US3, here α ∼ 0.5681144549 is a root of 23α4 − 38α3 +

35α2 − 40α + 16 = 0. Equality holds if a = b = c or (a : b : c) = (β : 1 : 1), here
β ∼ 0.8499070444 is a root of β4 + 4β3 + β2 − 2β − 2 = 0.

(5) (1−γ)T5,1+6γU2 ≥ UT2,1, here γ ∼ 0.8392059669 is a root of 23γ3−21γ2+5γ−3 = 0.
Equality holds if a = b = c or (a : b : c) = (δ : 1 : 1), here δ ∼ 0.5651977174 is a root
of 2δ3 + 2δ2 − 1 = 0.

(6) (1−ε)S6+εS3,3 ≥ US3, here ε ∼ 0.9384024897 is a root of 27ε3−108ε2+117ε−37 = 0.
Equality holds if a = b = c or (a : b : c) = (ζ : 1 : 1), here ζ ∼ 1.8793852416 is a root
of ζ3 − 3ζ − 1 = 0.

(7) (1− 2η)S6 + ηUT2,1 ≥ US3, here η ∼ 0.4070962548 is a root of

514η5 − 1501η4 + 1824η3 − 1106η2 + 326η − 37 = 0.

Equality holds if a = b = c or (a : b : c) = (θ : 1 : 1), here θ ∼ 0.8236644431 is a root
of 2θ5 + 5θ4 + 4θ3 − 4θ − 2 = 0.

(8) 3
√

4S6 + (3− 3
√

4)U2 ≥ 3S2,4.

(9) S6 +

√
13 + 16

√
2− 1

2
S2,4 ≥

√
13 + 16

√
2 + 1

2
S4,2.

About four variables cases, Pc0+
4,3 = P(P3

+, Hc0
3 ), Ps0

4,4 = P(P3
R, Hs0

4 ), and Ps0+
4,4 = P(P3

+,
Hs0

4 ) are determined in [4].
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