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Abstract. In this article, we study the structure of the cone of semidefinite forms. It is
a closed semialgebraic set but usually is not basic closed semialgebraic set. A discriminant
is a defining equation of an irreducible component of algebraic boundary of this cone. We
calculate discriminants using new tools — characteristic variety and local cones. A charac-
teristic variety is a semialgebraic subset of a real projective variety on which the family of
inequalities is essentially defined as linear functions. Local cone is a subcone of the PSD cone
which corresponds to a maximal ideal. This theory works well for a family of polynomials
which are invariant under an action of a finite group. After we construct an abstract general
theory, we apply it to a family of cyclic homogeneous polynomials of three real variables of
degree d. We calculate some discriminants for d = 3, 4, 5 and 6, and we show that this
theory derives many new results.

Section 0. Introduction.

A study of a PSD cone was derived from Hilbert’s 17th problem. About the history
of the study, please read [7] §6. Recent important results about PSD cones are found in
[2], [8], [22] and [6]. Especially, some studies of algebraic boundaries and discriminants are
explained in [2]. But, it seems that the structure of PSD cones is not yet known so well,
including the classical case P3 4 = X3 4. In this article, we study such problem using real and
complex algebraic geometry. For this purpose, we should generalize the definition of PSD
cone. The exact definition will be given in §1, but we present here its idea. Let 3, 4 be the
vector space of all the homogeneous polynomials of n variables of degree d, and H C I, 4
be a subspace. JH is called a linear system. Let A be a closed semialgebraic subset of Pﬁ_l.
We call

P=PAH):={fecH|f(a)>0forallac A}
to be the PSD cone on A in H. Originally, P, 24 := T(Pﬁé_l, 3, 24) is called the convex
cone of positive semidefinite forms, or shortly the PSD cone ([5], [6], [8], [20], [22]). Since P
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is a closed semialgebraic convex cone (Proposition 1.14), P has the algebraic boundary 9,P.
Let ¢ be a defining polynomial of an irreducible hypersurface component of 9,P. We call ¢
to be a discriminant of P (cf. [20], [6] p.172). We don’t assume that ¢ is non-negative on P.
Let’s start from some elementary examples. Cirtoaje proved the following theorem in 2006.

Theorem 0.1. ([10]) Let
fla,b,c) == (a* +b* + ) 4+ p(a®b + b3c + Ea) + q(ab® + be® + ca®)
+7(a®b? + b*c* 4 c*a®) — (1 +p + g+ r)abe(a + b+ ¢).
Then, f(a, b, ¢) >0 for all a, b, c € R if and only if p*> + pq + ¢*> < 3r + 3.

In this case, disc$’(p, q,7) := 3(r + 1) — (p? + pg + ¢?) is a discriminant, and disc$’ > 0
determine the PSD cone. This PSD cone is a basic closed semialgebraic set. The second
example is the following theorem which will be proved in §3.

Theorem 0.2. Let
fla,b,c) = (a® + 0>+ ) + p(a®b + b*c + *a) + q(ab® + bc? + ca®) + rabe.
Then, f(a, b, ¢) >0 for alla >0, b >0, ¢ > 0 if and only if one of (1) or (2) holds.
(1) 3+ 3p+3q+7r >0 and 4p® + 4¢> + 27 > p?¢® + 18pq.
(2) 3+3p+3¢+r>0andp>0andq>0.

In this case, disc§t (p, q) := 4p> + 4¢> + 27 — p?¢® — 18pq is a non-trivial discriminant,
and 3+ 3p+ 3¢+ r is a trivial discriminant. Note that P is not a basic closed semialgebraic
set, and the signature of disc§' (p, q) is not constant on P (see Fig. 3.1). It was not easy to
calculate discriminants. Schur found the following inequality in the early period of the 20th
century.

(a® +b% 4+ ¢*) + 3abe > (a®b+ b*c + c?a) + (ab® + bc? + ca?).
But generalization of Theorem 0.2 is completely new.

In §1 and §2, we introduce some tools to obtain discriminants. We use the similar idea
with [6] and [20]. Let X be the image of A by the rational map defined by the linear system
H. X is called the ‘characteristic variety’ of P. Note that P is the dual cone of the convex
set generated by X (Proposition 1.14). In other words, f € P is a linear inequality on X.
We shall show that the structure of 0P is determined by the critical sets of X (Theorem
1.18). Our method to determine P is summarized in Remark 1.23.

If a finite group G acts on A, and 3 is a set of G-invariant polynomials, then there exists
the natural dominant rational map A/G--- — X. This is an isomorphism under a certain
condition (for example Proposition 1.36). This fact helps us to determine the critical sets of
X. It G=2Z/nZ, ]P’H’%_1 /G is a real algebraic variety. But for the symmetric group &,,, the
set Pﬁfl/Gn is a proper closed subset of the real weighted projective space Pr(1,2,...,n),
and is not a real algebraic variety. To treat critical sets of Pﬁ_l /Sy, we introduce a notion
of semialgebraic varieties in §1. It is also convenient to consider X to be a semialgebraic
variety, for we can apply techniques of scheme theory.

We will show that the local cone P, := {f € 9P | f(a) =0} C P (a € A) is useful
to calculate discriminants and to determine extremal PSD forms. Especially, if BsH = (),
then 0P = U P, (Proposition 1.26). For example, in the case Theorem 0.2, P (g.5.1) is the

zeX
ray generate(ei by
fo(a,b,c) = s*(a® + b* + ) — (25° — 1)(a®b + b*c + c*a)
(s* — 2s)(ab® + bc® + ca?) — 3(s* — 253 + 5% — 25 + 1)abe.
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This §, is an extremal PSD form of P.
If X has many critical subsets, then P may have many discriminants. The following
two theorems are typical examples.

Theorem 0.3. Let

f(a,b,c) := (a* + b* + c*) 4+ p(a®b + bPc + Ea) + q(ab® + be® + ca®)
+r(a®b? + b*c* + c?a?) — (1 +p+ q + r)abe(a + b+ c),
o(p,q,7) == p*q*r® — 4p°¢® + 18p°qr + 18pg°r — 4p*r® — 4¢*r®
— 27p4 — 27q4 +167% — 6102q2 — 80;10q7‘2

+ 144p*r + 144¢%r — 192pq — 12812 + 256.

Then, f(a, b, ¢) > 0 for alla > 0, b > 0 and ¢ > 0 if and only if one of the following 6
conditions holds.

(1) r>-=2,p<=2Vr+2,p+¢>0, and ¢(p,q,r) <0.

(2) r>-2,¢<-2Vr+2,p+q>0, and ¢(p,q,r) <0.

() r>—=2,—Vr+4<p+q<0,p>-2Vr+2,q>-2Vr+2, and ¢(p,q,v) > 0.

(4) r>=2,p>-2r+2,q>-2yr+2,and p+q > 0.

(5) r >0, and p* + pq + ¢> < 3r + 3.

(6) 7 < —=2,p+¢>0and¢(p,qr)<0.

In this case, disc§ (p, q,7) == ¢(p,q,r) and disc$’(p, ¢, 7) are non-trivial discriminants.

Note that this PSD cone is not a basic closed semialgebraic set. So, we need to decompose
P into basic semialgebraic sets as the above.

Theorem 0.4. Let

f(a,b,c) = (a® +b° + ) + p(a*b + b*c + c*a + ab* + be* + ca*)
+ q(a®V? + b3 4 a® 4 a®b® 4 b2 + 2a®)
+ rabe(a® +b* + ¢?) — (1 + 2p + 2q + r + 1)abe(ab + be + ca),

ds(p.0.7) = (4(p+ 1)(p—2)(20 ~ 1) ~94(2p 1)~ 9r(p + 1))
. ((2p 1?32+ + 2))3.

Then, f(a, b, ¢) > 0 for all a > 0, b > 0 and ¢ > 0 if and only if one of the following 4
conditions holds.

(1) p>—-1,p+q+1>0,and 2p+7r+1>0.

(2) p>-1,p+q+1>0,2p+r+1<0, and ds(p,q,r) > 0.

(3) 3<p<—-1,p+q+1>0andds(p,qr)>0,and (q,r) # (—p—1, —2p — 1).

(4) p<—3,4g > (p+1)* +4, and d5(p, q,) = 0.

In this case, ds(p,q,r) and 4¢ — (p + 1)? — 4 are non-trivial discriminants. The number
of discriminants will be discussed in §2. After §3, we treat many PSD cones and determine
its discriminants and their extremal forms.

In this article, we only treat three variable polynomials. But it is already known that
our method is applicable many generalized cases (for example see [4]).
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Section 1. Structure of PSD cones.

1.1. Semialgebraic variety.

An abstract generalized definition of semialgebraic (quasi-)varieties is given in [3]. Here
we summarize minimum concepts to study algebraic inequalities.

Usually, the symbol R implies the set of real numbers. But if you regard R to be any
real closed field, all results of this article hold. A definition of real algebraic varieties is given
at Definition 3.2.11 in [7]. But in this article, we call such a variety to be an algebraic quasi-
variety. Note that an algebraic quasi-variety is reduced and has at least one non-singular
point but may not be irreducible. If an algebraic quasi-variety is irreducible, we say it is an
algebraic variety. Note that we can define non-reduced real algebraic quasi-varieties, but we
don’t need them in this article. (cf. [18])

Let V be a complete real algebraic quasi-variety. For a subset A C V, the minimal
reduced algebraic subset which contain A is called the Zariski closure of A and denoted
by Zar(A) or Zary(A). We define dim A := dim Zar(A). On the other hand, topological
closure of A in V is denoted by Clsy (A) or A. The interior of A is defined by Int(A) :=
Zary (A) — Clsy (Zary (A) — A). Int(A) is also written as A°. The (relative) boundary of
A in V is defined by 9y A := Clsy(A) — Int(A4). 0A := A — Int(A) is called the absolute
boundary of A. Note that Int(A) and 0A does not depend on the choice of embedding
A C V. Zary(0y A) is denoted by 0, A, and is called the algebraic boundary of A (see [25]).

Note. Some real algebraic varieties have lower dimensional connected components
which are subsets of singular locus. Thus definition of Int(A) may not be good in other
theory. But the above definition works well in this article.

Assume that A is a semialgebraic subset of a complete real algebraic quasi-variety V'
with Zar(A) = V. See Remark 3.2.15 of [7] for the definition of semialgebraic subsets. The
structure sheaf Ry of V is defined in [7] §2 or [3]. Let U be an affine open subset of V'
and B C U be a non-empty subset. There exists an one-to-one correspondence between
the set of maximal ideals of Ry (U) and points in U. For a point x € U, we put S(z) :=
Ry (U) — my, here m, is the maximal ideal of Ry (U) corresponds to z. S(B) := ﬂ S(z)

zeB
is a multiplicatively closed subset of Ry (U). We define Ry (B) := S(B) 'Ry (U). The
sheaf of rings R4 on A is defined by R4 (W) = Ry (W) for any Euclidian open subset W of
ANU. Then Ry is a coherent sheaf of rings on A (see [3]). A locally ringed space which is
isomorphic to (A, R4) is said to be a semialgebraic quasi-variety.

If A is irreducible, i.e. V is irreducible, (A, R4) is called a semialgebraic variety. In this
case, the field of fractions Q(R4(A)) is denoted by Rat(A). Note that Rat(A4) = Rat(V),
and dim A = tr. degy Rat(A).

For a semialgebraic quasi-variety A, Sing(A) := {1’ €A ‘ R4 4 is not a regular local ring
} is called the singular locus of A, here Ry , is the stalk of R4 at . We denote Reg(A) :=
A— (Sing(A) U BA). A regular map between semialgebraic quasi-varieties is defined as a
morphism of locally ringed spaces as in [16]. A rational map between semialgebraic varieties
is defined by the similar way as complex algebraic varieties.

Example 1.1. We denote
Pri={(Xo: - :X,) €P | X;X; >0forall 0 <i<j<n}.

This is a semialgebraic variety. Usually, any point (X : ---: X,,) € P?} is assumed to be
X0>0,..,X,2>0.



For A =P or A = Pg, we denote
Hot1,d:= {f ‘ f=f(Xo,...,X,) is a homogeneous polynomial of deg f = d.} U {0}.
We usually denote H4 := H,, 41 ¢ when the index n 4 1 is clear.

We can use results of complex algebraic geometry by the virtue of the following propo-
sition.

Proposition 1.2. (See [3]) Let A be a semialgebraic variety.

(1) Then, there exists a complete complex algebraic variety X with a conjugate anti-
holomorphic map J: X — X such that dim A = dim X and that A is a semialgebraic
subset of X(R) := {P € X | J(P)=P}. This X is called a complex envelope of A.

(2) If X and Y are complex envelopes of A, then X and Y are birational equivalent.

(3) Let B be a semialgebraic variety, ¢: A — B be a regular map, and X, Y be complex
envelopes of A, B. Then, there exists a rational map ¢: X --- — 'Y such that |4 = ¢.

Proposition 1.3. Let A and B be semialgebraic quasi-varieties and ¢: A — B be
a regular map. Then ¢(A) is also a semialgebraic quasi-variety. If A is a semialgebraic
variety, then p(A) is also a semialgebraic variety. Here, the structure sheaf of p(A) is
defined similarly as [3]Definition 1.4 (see also [16] II Exercise 3.11(d)).

Proof. This follows from Proposition 2.2.7 of [7]. (See also [3].) O

Example 1.4. Let G be a subgroup of the symmetric group &,,4+1. Then, PE/G and
P" /G are semialgebraic varieties by the above proposition. (See also [21].)

A semialgebraic quasi-variety can be decomposed into a union of non-singular semial-
gebraic varieties without absolute boundaries as the following way:

Definition 1.5. (Critical decomposition) Let A be a semialgebraic quasi-variety with
dim A = n. We shall define A’(A) (i = 0,..., n) by induction on n. If dim A = 0, then
A={P,..., P,} where P; are points. In this case we put A%(A) = {Py,..., P}, and put
AY(A) =0 for i # 0.

Assume that n = dim A > 1. Let Zy,..., Z, be all the irreducible components of A
with dim Z; = n. Put A; := Int(Z; — Sing(A)), and A"(A) = {Al,. . Ar}. Note that
Z;NZ;NInt(A) C Sing(A) for i # j.

Let Yi,..., Y} be all the irreducible components of A with dimY; < n — 1, and let
Bj :ij —(A1UUAT) Put

B := Sing(A) UOAUB; U--- U By.
Then, we can regard B as a semialgebraic quasi-subvariety of A with the reduced structure
(see [3]). Note that dim B < dim A. Thus we put A*(A) := AY(B) for i # n.

We denote A(A) := AY(A)UAL(A)U---UA™(A), and is called a critical decomposition
of A. Each element D € A(A) is called a critical set of A. Note that D is a non-singular
semialgebraic variety with 9D = ().

Example 1.6. Pi is isomorphic to a triangle as semialgebraic varieties. Thus, AO(]P’%F)
={(1:0:0),(0:1:0), (0:0:1)}, A*(P%) = {Int(P%)}, and A*(P?) consists of three
open line segments connecting two points in A%(P2).

In our theory, we have to treat homogeneous polynomials on Pﬁ_l, not on R™, for we
need that A is compact. Thus, we need the following:

5



Definition 1.7.(Signed linear system) Let A be a semialgebraic quasi-variety, R be
the sheaf the germs of real analytic functions on A. Assume that there exists an invertible
R 4-sheaf J and an invertible R%"-sheaf J such that J @x, RY =7 QRan d. For any point
a € A, we can take an affine open subset a« € U C A such that Iy = Raly - €} by a
certain ey € HP(U, J). Then, for f € HO(A, H), there exists gy € H°(U, Ra) such
that fly = grel?. We define sign(f(a)) € {0, £1} by sign(f(a)) = sign(gr(a)). A finite
dimensional subspace H C H°(A, J) is called a linear system on A.

Example 1.8. Let A = P} C PR. Then, Hy = I, 41 4 is a signed linear system on
P%. If d is even, H, is also a signed linear system on [Pfy.

Definition 1.9. Let A be a semialgebraic quasi-variety, and 3 be a linear system on

A.
BsH :={z € A| f(z) =0 for all f e H}

is called to be the base locus of H. Clearly, Bs H is a semialgebraic closed subset of A.

Assume that U := A — BsH # (). Let {so,..., sy} be a base of H. Then the linear
system 3 defines a regular map ® : U — P(H") by ®(z) = (so(z) : -+ : sy(z)) forz € U.
We denote this ® by ®g¢: A--- — P(HY).

If BsH = () and ®g¢ : A — Pgc(A) is an isomorphism, we say I is very ample.

Proposition 1.10. Let G C 8,41, and m: P — Pg/G is the natural surjection. Let
HG = {f € Hny1.4 ‘ o(f) = f for all o € G}. Then,
(1) P§/G is a normal semialgebraic variety.
(2) If d € N is a multiple of #G, then m(HS) is a very ample linear system on P /G.

Proof. (1) follow from Proposition 1.2 and the theorem that if X is non-singular complex
algebraic variety and a finite group G ants on X, then X/G is normal.

(2) Extend 7 to m:P¢ — P¢/G. Let H be a hyperplane of P¢, and D := Z o(H).
oeG
Then 7. D is a very ample divisor in P¢/G. Thus, m,Opr (d)€ is a very ample invertible

sheaf on P /G. So, m(HS) is a very ample linear system on PR /G. O

To observe G-invariant polynomials on A, it is useful to consider quotient spaces A/G
(cf. [24]).

1.2. PSD Cone.

Definition 1.11. (PSD cone) Let A be a semialgebraic quasi-variety, and 0 # 3 be a
signed linear system on A. A closed convex cone

PAH) :={feH| fla)>0forallac A}

is called the PSD cone on A in HH.
Assume that U := A — BsH # (). Note that P(U, H) = P(A, H), since f(a) = 0 for
all f € H and a € BsH. We denote

X(A, H) = Clspae) (Pac(U))
and we call X (A, H) to be the characteristic variety of P(A, IH).
Let Ry := {a €R } o >0}, and {so,..., sy} be a base of }{. Put

)A(:(A, H) = U R, - (30(3;)7...78]\,(33)) c RN+
z€A



and let €(A, ) be the closure of the convex cone generated by X (4, ). C(A, H) is called
the characteristic cone of P(A, H).

Example 1.12. Let G C 6,4, and d is a positive multiple of #G. Then, X (P,
HG) 2P /G, and X (PR, HG) = P} /G, by Proposition 1.10.

Proposition 1.13. Let A be a semialgebraic quasi-variety, H be a signed linear system
on A, and A —BsH # . Put X := X (A, H), and let H; be the set of linear polynomials
on P(HY) including 0. Then

i P(X, Hy) — P4, H)
is a linear bijective map.

Proof. ®5. : H; — JH is a linear bijective map as a result of complex algebraic
geometry. Take f € H. There exists a unique linear homogeneous polynomial g on P(3HY)
such that f = ®3.(g). f(a) > 0 for all a € A if and only if g(P) > 0 for all P € X. Thus we
have the conclusion. O

Proposition 1.14. (Semialgebraicity Theorem) Let A be a semialgebraic quasi-variety,
and I be a signed linear system on A such that A — Bs 3 # (). Then,
(1) P(A, H) is a semialgebraic closed convex cone in the Euclidian space H.
(2) P(A, H) is the dual convex cone of the characteristic cone C(A, I).

Proof. (1) By Proposition 1.13, we may assume A = X C P} and 3 = 3.

Step 1. We consider the case A is a basic semialgebraic subset: A = {z € P} } fi(z) >0
fori=1,..., r}, where f; € R[xg,. .., zy] are homogeneous polynomials of even degrees. Put
B :={(z,y) € Pf’ x RN*! | fi(z) >0 (Vi), and z-y < 0}, where -y = zoyo + - - + TnYn-
B is also a semialgebraic set. Let mp : P x RVl — RN+ he the second projection
mo(z,y) = y. m(B) = {y € RN+ ‘ -y < 0 for dx € A} is also semialgebraic by
Tarski-Seidenberg theorem. Thus, P(A, H) = RV — my(C) is semialgebraic.

Step 2. We consider general semialgebraic quasi-variety A C PY. There exists basic
semialgebraic subset By,. .., By C P¥ such that A = B;U---UBy. Then, P(A, H) = P(By,
H)N---NP(Bg, H). Thus P(A, H) is semialgebraic.

(2) Similar. O

Definition 1.15. (Face component) Let C be a semialgebraic closed convex set of RY
or PY with dimC = N. Take D € AN~1(C) as Definition 1.5. Then D is called a face
component of C' or of OC. The defining equation of the hypersurface Zar(D) is called a
discriminant of D or of C' and denoted by disc(D).

What we should do is to determine all the face components of P(X, H;). The following
proposition clarifies the geometric meaning of equality conditions of algebraic inequalities.
A convex cone C' C RY is said to be non-degenerate if dimC = N.

Proposition 1.16. (Boundary Theorem) Let A be a compact semialgebraic quasi-
variety, and 0 # 3 be a signed linear system on A. Assume that P := P(A, H) C H is
non-degenerate. Let f € P.

(1) If f(a) = 0 for a certain a € A — BsH, then f € 0P.
(2) If f € OP, then there exists a € A such that f(a) = 0.
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Proof. We can reduce to the case A is irreducible, and H C Rat(A), since P(A; U A,,
H) =P(A1, H)NP(Az, H).

(1) Since a ¢ BsH, there exists g € P such that g(a) > 0. Then for all € > 0,
f(a) —eg(a) < 0. This means f —eg ¢ P. Thus f € IP.

(2) Assume that f € P satisfies f(a) > 0 for all a € A. Then, f+eg € P for any g € P,
and 0 < ¢ < 1. Thus f ¢ 0P. O

Definition 1.17. (Dual variety) Let P = PY and PV be the set of all the hyperplanes
in P. Assume that D C PP is a non-singular semialgebraic variety with 9D = 0 (i.e. A(D) =
{D}). For x € D, let Tp ; := Tzar(p), C P be the tangent space of Zar(D) at 2. Then,

DY = {H e PV ’ H > Tp, for a certain = € D}

is called the dual variety of D. Since D is irreducible and non-singular, D" is irreducible.
Thus DV is a semialgebraic variety. Note that DV may have singularities.

Theorem 1.18. Let X C P = P"™ be a closed semialgebraic quasi-variety, P := P(X,
Hy), and 7 : (H; — {0}) — P(H;) be the natural surjection. Put P(P) := n(P — {0}) C
P(3;). Note that P(Hy) =PV, since P = P(HY). Then,

opP) c J DV

DEA(X)

Proof. Take 0 # f € 0P C Hy. Let Hy C P = P(HY) be the hyperplane corresponds
to f. Since BsH; = ), f(xz) = 0 for a certain € X. There exists D € A(X) such that
xz € D. Since f(y) > 0 for all y € D, we conclude that Hy D Tp ,,. Thus Hy € DV. (]

Note. If D € A(X) satisfies X NInt(P(C(X, 3y))) # 0, then DY ¢ P by Proposition
1.14(2).

Definition 1.19. Use the same notation with Theorem 1.18. For D € A(X), we denote
F(D) := Clsge, (r~ (DY) N OP).
Note that F(D) and D" have the same discriminants.
Example 1.20. Let d be a positive even integer, Hy = H, 4, Ppa = T(Pﬁfl,
Hy), and X, 4 = X(Pﬂg_l, Hg). Since Opn-1(d) is very ample, we have X,, 4 = Pﬁ_l,
] C
A" Y X, a) = {Xn.a}, and AY(X,,.q) = 0 for i #n — 1. Thus 9P, 4 is irreducible. That is,
the defining equation of Zar(9P,, 4) is irreducible. (Compare with Chapter 4 and 5 of [6].)

Remark 1.21. (1) Under the same assumption with Theorem 1.18, assume that X =
X(A, H), P € A, and 2 := ®3¢(P) € D € A"(X). Let B := &,/ (D) C A. Assume that
B — D is a finite unramified morphism, and there exists a local coordinate system (t1,.. .,
t,) at a certain neighborhood of P in B.

Let {so,..., sy} be a base of H. Identify posg + --- + pnsy € H with (po,..., pn) €

RN+1 We take (pg : --- : pn) as a homogeneous coordinate system of P(3). Then,
" 88,‘ n .
Tp, = <1 8(P) —1—21)]'(9—(13) i €Pr | (v1,..., 00) ER
=



Thus, disc(D) = discp(po,. .., pny) of Zar(DV) can be obtained eliminating t1,.. ., t, from
the system of equations
N

831 )
> pisi(P(ty,...,t,)) =0 and Zpl P(ty,....t,))=0 (j=1,..,7).
=0

Here P(ty,..., t.) is the function which represent the coordinate of P.

(2) Especially, consider the special case dim D = N — 1. Then, Zar(D) is a hypersurface
h
of PY defined by a certain irreducible polynomial h(zo,..., zy). Let h; = T Then

L
TD,m:{(l'O: acN GPR |h0 xo—i—~--+hN(P)xN:0}.
Thus, disc(D) = discp(pos. - - pN) of Zar(DY) can be obtained eliminating z,. .., zy from
the system of equations pozg + - - - + pyxy = 0 and p; = hi(zo,..., zn) (i =0,..., N).
(3) Assume that D € A°(X), and 2 =D = (by : - - : by). Then, Zar(P") is the hyper

plane defined by bopo + - -+ + bypy = 0. Thus, disc(D) = bopo + - -+ + bnpN-

Lemma 1.22. Let V be a non-singular complete real algebraic variety, and A be an
open subset of V such that Int(Clsy (A)) = A. If 0, A is a union of hypersurfaces of V, then
Clsy (A) is a semialgebraic subset of V.

Proof. We regard 9, A to be a reduced divisor D. There exists a composition of blowing
ups ¢: Y — V such that Sing(Y) = ) and ¢*D is a normal crossing divisor. It is enough
to show that p~1(A) is a semialgebraic subset of Y.

Take a point P € Y. Choose an afﬁne open subset P € W C Y, and take a distance
function d on W. For ¢ > 0 (€ R), let B,(¢) := {Q ew ‘ d(P,Q) < 5} Since Y is compact,
it is enough to prove that for any P € gp—l(A), there exists e > 0 such that ¢=1(A)NB,(e) is
a semialgebraic set. Since D is normal crossing, we can choose an analytic local coordinate
system (21,..., z,) at P € U such that DN Bp(e) = (V(21) U--- UV (2y,)) N Bp(e). Note
that z; is not always a polynomial but an analytic function.

Let f be the defining polynomial of (Supp D) N Bp(e). Since D is reduced, we may
assume that f = x1---x,,. Let s = (s1,..., $m) € {£1}™, and let Qs be the subset of
Bp(e) defined by s1z1 > 0,..., S;@m > 0. (0Y) N Bp(e) is a union of some Qs. Thus, it is
enough to prove every (Jg is a semialgebraic set. We may assume f > 0 on Q(1,..‘,1)- Then
s1°8mf >00n Qs s

Let (y1,..., yn) be an algebraic coordinate system on Bp(¢). We may assume z; =
Yi + 9i(y1,. . ., yn) for 1 < i < m, where g; is a power series with ord g; > 2. Let V C Bp(¢)
be the set defined by z; = -+ = x,, = 0. V is an algebraic variety, since V is defined by
Y1 = -+ Ym = 0 if € is sufficiently small. In other word, V is a subvariety of Sing(D) N By(¢).

Since 81+ sy f > 0o0n Qs ..,

Qs ={y €By(e) | s1--smf(y) >0, 5191 + - + Smym > 0}.
Therefore Qg is a basic semialgebraic set. O

sm)» We have

Remark 1.23. Let A be a semialgebraic quasi-variety, and 0 # JH be a signed linear
system on A. Theoretically, we can determine P = P(A, H) by the following algorithm.

Step 1. Determine X = X (A, H) and A(X), using algebraic geometry.

Step 2. For every D € A(X), calculate the dual variety Zar(DV) = Zar(D)V, according
to Remark 1.21. Usually, we need a computer here.

9



Step 3. S = U Zar(D)Y cuts JH into blocks Bi,..., By such that 0B; C S and

Int(B;) NS = 0. Find out convex cone P which is a union of some B;. If there exists f € B;
such that f(a) < 0 for a certain a € A, then Int(B;) NP = (. Contrary, if there exists
0 # f € B; such that f € P, then B; C P. Note that each block B; is semialgebraic by
Lemma 1.22.

Step 4. Obtained P may not be a basic semialgebraic set. In such a case, find out a
nice decomposition of P into basic semialgebraic subsets, since we want to describe P by a
system of inequalities.

1.3. Local cone.

In Remark 1.23, every step is not so easy, when dim JH is not small. We need some more
tools to execute the above steps. The following idea is useful to reduce to lower dimensional
case and to find extremal inequalities.

Definition 1.24. (Local Cone) Let A be a semialgebraic quasi-variety, and H be a
signed linear system on A. For a subset I C A, we put

Hy={feH| fla)=0forallac I}, P;:=PnH;=PA4 H).
We call Py to be the local cone at I. If I = {a}, we denote P,y by P,.

Proposition 1.25. (1) P; is a semialgebraic closed convex cone in Hj.
(2) :PI = fP(Aa :}CI)
(3) Let I and J be subsets of A. Then (P1); = P(uy).

Proof. Trivial. 0

Let C C R™ be a closed convex cone, and 0 # f € C. We say f is extremal in C if g,
h € C and f = g+ h then g and h are multiples of f.

Proposition 1.26. (Local Cone Theorem)
Let A be a compact semialgebraic quasi-variety, and 0 # 3 be a signed linear system
on A. Then,

(1) 0P c | Pa.
acA
(2) If I ¢ BsH, then P C OP.

(3) Assume that A is irreducible and A—Bs3H # (). Let W := U P,. ThenU = OP.
a€A—BsH
(4) Let 0 # f € P,. f is extremal in P if and only if f is extremal in P,,.

Proof. (1) Take 0 # f € OP. Then, f(a) = 0 for a certain a € A by Proposition 1.16.
Thus f € P,.

(2) Take f € P;. There exists a € I — BsH such that f(a) =0, since I ¢ BsH. Then
f € 0P by Proposition 1.16.

(3) By (2), U contains a non empty open subset of 0P. Since BsH is a Zariski closed
subset of A, dim(9P —U) < dim §P. Thus U = IP.

(4) If f is extremal in P, it is clear that f is extremal in P,.

Assume that f € P, is not extremal in P. Then, there exist g, h € P —R, - f such that
f =g+ h. Since g(a) > 0, h(a) > 0 and g(a) + h(a) = f(a) = 0, we have g(a) = h(a) = 0.
Thus g, h € P,. Therefore, f is not extremal in P,,. O
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Proposition 1.27. (Face Component Theorem) Let X be a closed semialgebraic subset
of PY such that X is not included in any proper linear subspace of PY. Assume that
P :=P(X, H,) is non-degenerate in H;. Take x € D € A"(X).

(1) dim®P, < N —r.

(2) F(D) = Cls ( U fo>.
xeD
Proof. For f € H := H;, let Hy be the hyperplane in P(H) defined by f = 0.
(1) Since P is non-degenerate, dim(UNP) = N+1 for any Euclidean open neighborhood
U of P. Note that dimTp , = dim D = r, since D is non-singular. The condition Tp , C Hy
means that f passes through independent r+1 points. Thus dim P, = dimP—(r+1) < N—r.

(2) D is clear. We prove C. Take f € DY C Int(F(D)). Then, f(z) = 0 for a certain
x € D. That is, f € P,. O

Not that dmH, =dimIH —1=N. If r > 0, dim P, < N —r. Thus P, is degenerate
in H,.

Remark 1.28. We provide an algorithm to obtain the base of Zar(Pp). This algorithm
helps us to find extremal inequalities. We use the same symbols as Remark 1.21. Assume
that P = P(A, H) and X = X (A, H) satisfy the condition of Proposition 1.27. Let
D € A"(X) and P € B = &5/ (D). Assume that B — D is a finite unramified morphism,

and there exists a local coordinate system (t1,. .., t,) at a certain neighborhood of P in B.
N
Take f = Zpisi € Pp. Since f € Hp, we have
i=0
N
sz‘si(P(tly - tr)) = 0. (1.29)
i=0
Since (po,. . ., pn) is perpendicular to Tp g, (p), we have

sz 881 tla"'7tr)) =0 (130)

for j = 1,..., r. Consider (1.29), (1.30) as a system of linear equations on (po,..., pn).
Then, its solution space is just Zar(Pp) if Pp # 0. Note that (1.29), (1.30) are the same
system of equations with Remark 1.21(1).

1.4. Relative theorems.

Proposition 1.31. (Relative theorem for H) Let A be a compact semialgebraic quasi-
variety, H be signed linear system on A, and P := P(A, H). For a subspace 0 # H' C K,
let fP' :=P(A, H'). Then,

(1) P"=PNH and 0P C 0P NH'.

(2) If Bs Z}C’ = () and P is non-degenerate, then P’ is non-degenerate.

(3) P, » NH for any x € A.

(4) Let 0 7& f € P’ If f is an extremal element of P, then f is an extremal element of P’.

Proof. (1), (3) and (4) are clear.
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(2) If P’ degenerates, then its dual cone C(A, H') contains a line L. Let p : C(A,
H) — C(A, H') be the map induced from the inclusion map H’' C H. Since p is a linear
projection, p~1(L) contains a line. This implies that P degenerates. O

Proposition 1.32. (Relative theorem for A) Let A be a compact semialgebraic variety,
and B C A be a closed semialgebraic subvariety such that Zar,(B) = A. Let 3 be a signed
linear system on A. Let Y := X(B, H), X := X(A, H), Dy := Reg(X) € A(X), and
Dp = Reg(Y) € AY), P := P(4, H), and P’' := P(B, H). Assume that P is non-
degenerate and dimF(Dp) = dim P’ — 1. Then Zar(F(D,)) = Zar(F(Dp)).

Proof. Since B C A, we have P’ D P. Put N := dim3H — 1. Since N = dimP <
dimP’ = dimF(Dp) < dimF(D4) < N, these agree. Since B C A, we have Dp C Dy,
DY C DY, and F(D4) C F(Dg). Since DY and DY, are irreducible, and dimF(Dp) =
dimF(Da) = N, we have Zar(F(D,)) = Zar(F(Dp)). O

Proposition 1.33. (Closure Theorem) Let C C R™ be a semialgebraic closed convex
cone.
(1) Let F be a face component of C, and let P, Q, R € R™ are distinct points such that Q
is in the interior of the line segment PR. If P € C, P ¢ F and Q € F, then R ¢ C.
(2) Assume that C contains no lines. Let Fy, Fi,. .., F,. be face components of C' such that
0C = FyUFyU---UF,. Then

aFQZ(F1UF2U~-'UFr)ﬂFQ.

Proof. (1) If R € C, then P, R€ F.
(2) Trivial. 0

1.5. The cases A =Pg and A = P7.

Note that a local cone P, degenerate and BsH, 3> a. To apply Proposition 1.16, 1.27
and 1.31, we need the following;:

Proposition 1.34.(Non-degeneracy Theorem) Assume that ‘d € N and A = P, or,
‘d € 2N and A = P}’. Assume that H C H, 41,4, and BsH = (. Then P(A, H) is
non-degenerate.

Proof. (1) First, we consider the case H = H,, 1 4. We denote the coordinate system

of P by (ag :---:ay). Let s := ad € H. Note that sy € P(A, H).
i=0
Assume that P is degenerate. Then, its dual cone C(A, H) contains a line L passing
through the origin O. There exists two points P, @ € LN X (A, ) such that O is contained
in a line segment PQ. Let p, ¢ € A be points correspond to P, Q. Then sq(p)so(q) < 0.
Since sg > 0, so(p) = sq4(q) = 0. This implies p = ¢ =0 and P = Q. A contradiction.

(2) The general case follows from Proposition 1.31. 0

Let A be a non-singular semialgebraic variety. Consider the case a finite group G acts
on A. Let m: A — A/G be the natural surjection. We denote

AC = {ac A|o(a)=aforall oceG}.
Note that Sing(A4/G) C w(A%).
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Example 1.35. Let A = P% and G = Z/(n + 1)Z. Then, A = {1}, where 1 := (1 :
1:---:1). Sing(PR/G) = {n(1)}.

Proposition 1.36. Let A = Py or A = P, and G C &,41. Put g := #G, and
XG = X(A, H9).
(1) Ifd=kg+2m (k> 1, m > 0) and Bs HS = (), then A/G = X§.
(2) FA=P",d>g and BsHG =0, then A/G = X§.

Proof. For f € HS, we put V(f):={z € A ‘ f(z) = 0}. Note that Py : A — X§

m vy
factors as A — A/G —% X§.
(1) We may assume that A = P2. If d = kg, then P%/G = X§, by Proposition 1.10.
Consider the case d = kg + 2m. Let Sy := a? + -+ + a2. We define an injection
Sm
L: f}Cng A HY
by «(f) = fS5. Since V(S3*) = V(S2) = 0, there exists the regular map p: X§ — X,fg.
Note that @ch; =po (I)ch- Since \I/gg is an isomorphism, \I/dG is also an isomorphism.
°g
(2) Consider the case d =n+1+1. Let S; := agp + --- + a,. We define an injection

Si=e
L HS 2 HG by o(f) = fS{79. Since ANV(SY9) = 0, there exists the regular map
p:X§ — X&. The left part is similar as (1). O

Section 2. Cyclic and Symmetric inequalities.

2.1. Cyclic inequalities of three variables.

Consider typical problems:
(1) Probe that f(a,b,c) >0 for all a, b, c € R.
(2) Probe that f(a,b,c) >0forala>0,b>0,c>0.

We shall study the case that f is a cyclic homogeneous polynomial of degree d. Let
G=7/3Z,and A=P% or A= Pi. We denote the homogeneous coordinate system of A by
(a:b:c). Let

¢ = (Hsz.q)°.
Problem (1) is study of P(P3, HS), and (2) is of P(P2, 3H;). We shall denote
By Proposition 1.34, these are non-degenerate. The following are typical elements of Jj.
Sijxla,b,c) = a'tic +b'dak + clalb*
Sij(a,b,c) = a'tV +b'd +cta?,  Si(a,b,c) :=da' +b + ', Ula,b,c):= abe,
T;jk(a,bc) =8 k(a,b,c)+S;k(abc), T,(ab,c):=T;o(ab,c).
We usually omit (a, b, ¢) if the variables are a, b, ¢, e.g. S; = a’ +b'+c', T; ; = T; j(a, b, c).

Take the set I; of indices (i, j, k) such that By := {S’M,k ‘ (i,5,k) € Id} form a basis of
HG. Let N :=dimH§ — 1 and
Align all the elements of By as sg,..., sy so that sg = a? + b® + ¢, and that sy = Si ik
with the minimum |(¢, 7, k)|. For example, we can choose I3 = {(3,0,0), (2,1,0), (1,2,0),
(1,1,1)}, and I, = {(4,0,0), (3,1,0), (1,3,0), (2, 2, 0), (2,1,1)}.
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Proposition 2.1. (1) dimHG = [(d+ 1)(d + 2)/6].
(2) BsHG =0 for d > 3.

Proof. (1) follows from #1I; = [(d+ 1)(d + 2)/6].
(2) By Proposition 1.10(2), BsHS, = 0. BsH; C V(S4) = 0. By ¢ : H§ x5 G, o, we
have Bs Hj, , C Bs Hj. 0

Here, we summarize some results of high school algebra — special cases of Muirhead
inequality (see [19]).

Proposition 2.2. (1) For all a, b, ¢c € R and —1 < k < 2, the following hold:
254 > T34, S4 > S22 > US,
256 > Tuo > 2USs, Tyo > UThy, Tup > 6U2
o+ kS1 1 > 0.
(2) Fora>0,b>0, ¢ >0, the following hold:
253 > Ty, > 6U,
384 > T3 1 > 2525 > 2U Sy,
255 > Ty > T30 > 2053 > 2U Sy 1,
256 > T51 > Tup >2US3 > UTsy > 6UZ,
2833 > UTy > 6U2.

All of the above inequalities f(a,b,c) > 0 satisfy the condition f(a,a,a) = 0. We will
find that this equality condition has special meaning. So, let

HP = {f €3G | f(L1L1) =0}, PL=PE2 HL), PP = PE2, K.

For f € H§, we say f is monic if the coefficient of S in f is equal to 1. We say f lies on
infinity if the coefficient of Sy in f is equal to 0.

Proposition 2.3. (1) dimHS = [(d + 1)(d +2)/6] — 1.
(2) BsHL ={(1:1:1)} ford > 3.

Proof. Easy exercise. (]

Proposition 2.4. Let G = Z/37Z, m:P% — P2/G be the natural surjection, and

L:={(0:s:1)€P% | s>0}. Then,

(1) P%/G is a normal real algebraic surface, and A°(P%/G) = {r(1:1:1)}, AL (P%/G) = 0,
A*(B2/G) = {Rea(P2/G)}.

(2) P2 /G is a normal semialgebraic surface, and A°(P1/G) = {mw(1:1:1), 7(0:0: 1)},
AY(B2/G) = {n(L)}, A*(P2/G) = {Rea(P%/G)}.

Proof. (1) Through the study of cyclic quotient singularity, it is well known that P% /G
is a complete real algebraic variety, and have unique singular point 7(1 : 1 : 1). Thus we

obtain (1).
(2) follows from Example 1.4 and (1). Note that Zar(w(L)) has a unique singular point
at m(0:0:1). 0

Next we shall study characteristic varieties. Put
Of = Pyee, X§:= X (PR, H3), X7 :=X(PL, Hy).
By Proposition 1.36, X5 = P2 /G for d > 3, and X5 2 P3/G for d = 3 and d > 5. In these
cases, A(X5) and A(X5") are given by the above proposition. We shall study X§.
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Proposition 2.5. Let P := ®5(1:1:1) € X§. Then A°(X%) = {P}, AY(XY) = 0,
and A?(X§) = { (X{—{P})}.

Proof. ®§ : P%--- — X can be extended to a rational map ®¢ : P%--- — P(HS ®gr
C), and m:Pg — Pgr/G can be extended to nc:Pec — Pc/G, here G = Z/37Z. Let w =
14_2\/73,1:(1:1:1),621 = (w:w?:1)and Q2 = (w? : w: 1) € PA. Then
(P2)¢ = {1, Q1, Q2}, and Bs(H§ ®r C) = {Q1, Q2}. Thus the locus of indeterminacy of
¢ : PZ--- — (X{)c is {Q1, Q2}. Let L := {(a : b: c) € P2 | at+b+c=1} L:=
LeNPE =V(S1), P:=n(1), P :=mc(Q1), P2 :=mc(Q2) € PZ/G, Cc := mc(Le) C PE/G
and C := n(L) C PZ/G. Note that Q1, Q2 € Lc¢, and Sing(P2/G) = {P, P1, P»}. Since
every function in g is constant on L, ®4(L) is a point. On the other hand, it is easy to see
that WS : (P3/G —C) — (X — ®5(L)) is an isomorphism, as the proof of Proposition 1.36.
Let ¢ : X — PZ/G be the blowing up at P, and P», and C'; be the strict transform of Cc.
Then, Cs is an exceptional curve of the first kind, and X — (X$)c is the contraction of
C. Regarding P3/G C X, we conclude that WS : P%2/G — X§ is a smooth contraction of
C. Thus, X{ is a complete real algebraic variety, which has unique isolated singular point
of Ai-type. (]

By the above two propositions, we have:

Proposition 2.6. Assume d > 3. Let P := ®3(1:1:1), O := ®5(0:0: 1), and

Cq:={®5(0:s:1) | s>0}.

(1) The boundary of PG = P(P%, HS) consists of two face components F¢ := F(Reg(X5))
and F(P). Moreover, F(P) = P.

(2) The boundary of P consists of at most four face components F;* := F(Reg(X51)),
e = F(Cy), F(O), and F(P). Moreover, F(P) = PP T.

(3) If dim FG" = dim 3G — 1, then disc(Reg(X5)) = disc(Reg(X57)).

Proof. (1) By the definition, F(P) = P<. It is a subset of a hyperplane in H C HE
by Remark 1.21(3). P is non-degenerate by Proposition 1.34. Thus, F5U P’ must enclose
a non-degenerate convex cone. Thus F4 is a face component of Pg.

(2) can be proved similarly.

(3) follows from Proposition 1.32. 0

Definition 2.7. We say F is the main component of P, and disc(Reg(X§)) is the main
discriminant of P§. If dim ’J"ZJF = dim H§—1, then we say ff'ffr is the main component of fPZJr,
and disc(Reg(X5")) is the main discriminant of PS. Otherwise, if dim F;" < dim HG — 1,
then we say fPZ+ has no main component. 8§+ is called an edge component of fPZ+, and
disc(Cy) is called an edge discriminant of PG*.

disc(P) is the linear polynomial corresponding to f(1,1,1) = 0. disc(O) is the linear
polynomial corresponding to f being at infinity, i.e. the coefficient of Sy in f is zero. By
Proposition 1.32 and 1.34, we have:

Proposition 2.8. Assume that ng+ has the main component. Then f]’f;r and P¢ have
the same main discriminant.

Proposition 2.9. (Edge Discriminant Theorem) Assume that d > 3 and Pt has an
edge discriminant. Then, it agrees with the edge discriminant of inﬁ.
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Proof. Let {so,..., sy_1} be a base of HS, and let disc§0+(po, ...,PN—1) be the edge
discriminant of T§0+ corresponding sg,..., Sy_1. Since discgloJr exists, we have dim 8§0+ =
N —2, and dim(PPT)p < N —3 for P € Cy. Take sy = S, .1 € HG — HL so that | (4, j, k)|
is minimum. Then, sy is a multiple of U = abc. Thus sy (0,s,1) = 0 and sy € (P5")p.
Since Zar((P5")p) = Zar (PYT)p + Ry - sy), we conclude that Zar(€5") is the cone
with the base Zar(860+) and the vertex sy at infinity. Let disc;" (po,...,pn) be the edge
dlscrlmmant of P corresponding so,. . ., sy. By the above discussion, disc" (po, .. .,pN) =

dlSC (po,---,pN 1)- O

This proof implies the following:

Proposition 2.10. (Variables of the edge discriminant) Let d > 3. Choose a basis
50,. .., sy of H¢ so that each s; is of the form s; = S for some j > k>12>0. If s; is a
multiple of U = abe, i.e. | > 1, then p; does not appear in disc?fr (Poy- -+ PN)-

2.2. Symmetric inequalities of three variables.

To study symmetric inequality, we shall determine A(P/®3) and A(P2 /&3).
Let’s start from P%/®3. Let m: P32 — P2 /S5 be the natural surjection. We can choose
a fundamental domain of 7 as

AF::{(s:tzl)ElP’%{’s—i—t—l—lZO,SStSl}.

7(Ar) = P%/®3 and the restriction map m: A% — 7(A%) is an isomorphism as a semialge-
braic variety.

Recall that P2/&3 = Pc(1,2,3), since Cla, b, ¢|®* = C[Si, S1.1, U]. So, we usually
take the homogeneous coordinate system (zg : 1 : 22) corresponding to (S : S1,1 : U). The
weighted projective plane Pc(1,2,3) has isolated singularities at (0:1:0)and (0:0:1).
Let mc : P2 — PZ/G3 be the natural surjection. Since 7 1(0: 0 : 1) is imaginal points,
(0:0:1) gé IP2/63 Note that 7o' (0:1:0) N Ap = {(-1:0:1)}.

For (a:b:c) € P,

27U% — 1851 511U + 457U + 457, — 5757, = —(a — b)*(b—¢)*(c — a)* < 0.
Thus P2 /G3 is the closed semialgebraic subset of Pr(1,2,3) defined by

271‘% — 18zgz122 + 4x3x2 + 41‘1 — xoml < 0. (2.11)
Next we consider 9(PZ/G3).
Proposition 2.12. Let L : { 1 1) € P2 ’ s € RU{oc}, s # 1, s # —2}.

Then A?(P3/63) = {n(A%)}, Al PZ/G ) { l}))}, and A°(P%/&3) = {w(1:1:1),
m(=1:0:1)}.

Proof. Note that the edge {(s:s:1) € Ap | —=1/2 < s < 1} is transported to {(s: 1:

1) e P2 | s<—2o0rs> 1} by a suitable element of G3. It is easy to see that TI'(LT) agree
with the algebraic curve on Pg(1,2,3) defined by 2723 — 18zox1 22 +4xdxe + 423 — 2322 = 0,
and Sing(m (Lb ) ={m(1:1:1)}.

Let Ly :=={(s:—s—1:1)eP} | -2<s< -1} and Ly :={(s: —s—1:1) € P} |
—1<s<-1/2}. Since m(1/s: —1/s—1:1)=7(s: —s—1:1), 7(Ly) = 7(La) is the open
line segment connecting (0:0: 1) and (0: —3 : —2). Since Sing(Pc(1,2,3)) N7 (L) = 0, we
have 7(L1) C Reg(P3/S3). m(=1:0:1)=(0:0:1) € Sing(PZ/S3), and 7(-2:1:1) =
(0:—=3:—2) ¢ Sing(9(P%/S3)). Thus, we have the conclusion. 0
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Next we study P2 /3. One of the fundamental domains of m:P3 — P2 /&3 is
Apt :z{(s:t:l)é]?i’()gsgtgl}.

P2 /&3 is the semialgebraic subset of Pr(1,2, 3) defined by (2.11) and z1 /23 > 0, z2/23 > 0
Thus we have the following proposition (cf. Fig.2.1).

y S
St
1 m(l1:1:1)
3
m(Lh, ), s<1
(0:1:1)
2
P%/6s m(Lh., ), s> 1
W(L%+)
v
St
w(0:0:1) 1
27

Fig.2.1. Graph of P% /&3
Proposition 2.13. Let
Lb+ _{(s 1:1)ePy|0<s<lorl<s<oo},
Ly, ={(0:5:1)ePg |0<s<1}.
Then A*(P2 /G3) = {n(A ) )}, AYPL/G;5) = {W(LZI’,JF)), TF(L%+)}, AY(P%/&3) = {=(0:
0:1), m(0:1:1), m(1:1:1)}.
We also study Bs H$ and Bs 5" where
Hy={feH, ‘ [ is symmetric. },
I = {f e Hy } f(1,1,1) =0 and f is symmetric.}.

Proposition 2.14. (1) If d > 4 is even, then BsH5 =0 and BsHZ = {(1:1:1)}.

(2) If d > 3 is odd, then BsHj; N Ap = {(-1 : 0 : 1)}. Ifd > 5 is odd, then
BsHP NAp={(1:1:1), (-1:0:1)}.

(3) Let L={(a:b:c) €P | a+b+c=0}. Ford >3, ®3(L) is a point if and only if
d=3,4,5o0r".

Proof. (1), (2) Consider an injection x5 I 5. Then BsIH; , C BsHZUV(S,) =
Bs 35 Since BsH; = (), we have BsH% = ) for even d > 4. The proof of BsH5? = {(1 :
1:1)} is similar.

If d > 5 is odd, then BsH% C BsH5 and BsH5? C BsIHEY. It is easy to see Bs HE N
Ap={(-1:0: 1)}, and BsHL NAp ={(1:1:1), (=1:0:1)}.

Take fundamental symmetric polynomials o1 := 51, 02 := 51,1 and 03 := U. Note that
H5 = (Rlo1, 02, 03])g and S1(—=1:0:1) =0, U(-1:0:1) =0, 51(—-1:0:1) =—1. If d
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is odd, then any monomials ofobo}* with k + 21 + 3m = d are multiple of oy or o3. Thus

f(=1,0,1) =0 for any f € H.
(3) In {alfaéagn ‘ k+2l4+3m = d}, the number of elements of the form olo} is at
most one if and only if d =3, 4, 5 or 7. O

Section 3. Cubic cyclic inequalities.
3.1. The PSD cone P5".

Cubic cyclic inequalities are studied in [1] and [2]. Let A := P% with the homogeneous
coordinate system (a : b : c), G := Z/3Z, HG := (H3,4)%, and P;" := P(A, HS). Note that
f]:’f;r is non-degenerate by Proposition 1.34.

Consider the case d = 3. We choose a base sg,..., s3 of H§ as so := S3 — 3U, s1 :=
Sa1 — 3U, 83 := S12 —3U, s3 :== U = abe. Note that {sq, s1, s2} is a base of H5’. We
execute the algorithm of Remark 1.23.

Step 1: Eliminate a, b, ¢ from z; = s;(a,b, s). Then, we obtain that X5T := P5(P3) =
P2 /G is a cubic semialgebraic surface in P : (zg : -+ : x3) defined by

F3 = xi{’ — Tor1x2 + :Ug + $3.713 — 3xox1x3 + 995%1‘3 — 3xoxax3 — 9x1T02T3 + 9x§x3 =0
and z;23 > 0 (0<i<2). Let P:=(0:0:0:1),03:=(1:0:0:0), and C5 :=
(X5t N{zs = 0}) — {P}. Then, A%XS") = {P3, O3}, AY(XST) = {C3}, and A*(XST) =
{Reg(X5™)}.

On the other hand, X" := X (P2, H£) is the domain on P enclosed by C3 U {Os},
and AY(XS'F) = {Og}, AL(XE) = {Cy}, AZ(XSO) = {Reg(X50)).

Step 2: Identify pgsg + - -+ + p3sz € HS with (po,..., p3) € R By Remark 1.21(3),
disc(O3) = po, disc(P3) = po + p1 + p2 + 3ps. Let’s calculate Zar(Cy) by the algorithm
in Remark 1.21(2). Zar(C3) is defined by z3 = 0 and z3 + 23 — xoz1z2 = 0. Thus,
disc(Cs) = 4pop? + 4pops + 27pg — pips — 18pgp1pe.

We denote local cones of P§t, PST at the point (0:s:1) € P2 by Lg;, Lg?j. Note
that if they are not 0, then dim LS: < 2, and dim LS?:‘ = 1 by Proposition 1.27(1). By the
algorithm of Remark 1.28, we know that LS?: is generated by

fo(a,b,c) := 5283 — (25% —1)S91 + (s* — 25)S1 2 — 3(s* — 25° + s* — 25 + 1)U.

This is extremal in P5" by Proposition 1.26(4). As a limit s — 400, we put foo(a,b,c) :=
8/2 = 5172 — 3U.

Theorem 3.1. (Structure of P§")
(1) P5T has no main component.
(2) LGL =Ry -fs+ Ry -U for s > 0.
(3) F(O3) =Ry - U+ Ry - (S2,0 —3U) + Ry - (51,2 — 3U).

Proof. (1) Let Y be the cone whose vertex is P and whose base is C5 U O3. Since X§

is a cubic surface with an A;-singular point P3, it is easy to see that Reg(X51) C Int(Y).
Thus, Reg(X51)V is included the exterior of P§*. Thus F5' is not a face component.

(2) f = afs + pU satisfies f(0,s,1) = 0. Thus f € L(C),t» if « > 0 and g > 0.
Note that dimﬁgf; = 2. Contrary, assume [ € Lg;. Then f = f(1,1,1) > 0 and
a=(1/s%)f(0,0,1) > 0.
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(3) Put F = F(O3) = L§F). Then 0F = (€5F UPST)NF by Proposition 1.33(2). Since
ETNF =Ry fo+Ry-U)U Ry - foo + R4 - U),
Pt NTF = LG5 =Ry - fo URy - foo,
we have F=Ry -U + Ry - (521 —3U) + Ry - (S1,2 —30). O
Remark 3.2. (1) Let ¥§: X5 — X5 be the projection defined by ¥§(zq : 21 : 2 :
r3) = (2o : o1 : w2). Then Vg is a birational map and is continuous, since deg,, F3 = 1.

But ¥§ is not regular at Ps. In fact, ®5(P3) = (3:1:1) ¢ Sing(X5").
(2) We have an analytic poof of f, € P§t as

fs(a>b7 C) = fs(a7 1- k(l - a’)’ 1)
—(1- a)Z{a(l —ks)2(k+52) + (14 (1—k)s2) (1 — k — 5)2} > 0.
But we don’t need such a proof.

We don’t need Step 3 of Remark 1.23, since the convex set is unique. Step 4 is easy.
Thus we have:

Proof of Theorem 0.2. Let discs (p, q,r) = disc§’ " (p, q) = disc(C3)(1,p, q, ) = 4p® +
4q® + 27 — p?q® — 18pq. Figure 3.1 is the graph of discgo+ (p,q) =0.

qi

=7

N

Fig. 3.1. Graph of disc5’t (p,q) = 0

Thus P5T stands over the union of the following (1°) and (27).
(1) 4p® + 4¢3 + 27 > p2q® + 18pq.
(2') p>0andq>0.
Take f = S3 4+ pSa1 + ¢S12 +rU € Hg. Note that f ¢ F(O). 3+3p+3¢+7r =
f(1,1,1) >0 for f € P§T.
It is easy to see that if (1) or (2) holds, then f € P§*. O

Corollary 3.3. An extremal element of P§T is of the form afs (a > 0, s € [0, o0]) or
pU (6> 0).

Corollary 3.4. Let G = &3, Hj := H§ and P5T := P(P3, 3(3). Then, P57t is a three
dimensional triangular cone whose three edges are R - (Tz1 — 6U), Ry - (S5 43U — T3 1),
and R+ -U.
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Proof. This follows from P5T = P5T N HS. 0

Corollary 3.5. Let G = &3, 330 := (H)C, POT = P(P3, 350). Then, P0T is the
fan on R with two edges Ry - (S5 +3U — Ty 1) and Ry - (T — 6U).

Note that S3 + 3U > T5 ; is Shur’s inequality of degree 3.

3.2. Structure of X5° and chlo+.
Let @3 1= ®ye0, X0 := @P(PR), and X := 05 (P2).

Proposition 3.6. If d > 3, then ®¢°(1:1: 1) is a point. In other word, the rational
map ®% : PZ--- — XS can be extended to (1 : 1 : 1) as a continuous map. Moreover,
®0(1:1:1) is a non-singular point of X5°.

Proof. We consider on the ground field C. Let p; : Y — P2 be the blowing up at
(1:1:1),and let B} := p;'(1:1:1).

To begin with, we study the case d = 3. We take sg := S3 — 3U, 51 := So1 — 3U,
s9 1= S1,2 — 3U as a base of f}Cgo ®r C. Note that

so(1+¢,1+ut +ot?1) = 3(u? —u+ 1)t2 + (3(2u — Vv + (v® 4+ 1))t* + O(t*),
si(14+t,1+ut +vt2 1) = (u? —u+ 1)t 4+ ((2u — Do + u)t® + O(th),
so(1+t,1+ut+ot?1) = (u? —u+ Dt + ((2u — Vv +u?)t3 + O(t4),
here O(t*) is a sum of terms whose degree of ¢ is not less than 4. Let (s = (1++/—3)/2. For
roots u = (g, (§ of u?> —u+1 =0, let y2, y3 be the points on E; corresponding to the vector
(1:w:1) at the point (1:1:1). Note that Bs(pjH$ ®r C) = {y2, y3}. Let po : P2 — Y’
be the blowing up at s, ys, and let Ey := p; *(y2), E3 := p; *(y3), and E; be the strict
transform of E7, and p := pg o p;.

Then Bs(p*HS® @g C) = 0. Let @0 = P30 @pc P%Z — PZ. Note that ®°(E;) =
(3:1:1) = Q. Foru = (s and ¢, let Ly, L3 be the line passing through @ and
((u®> +1) : w: u?). Then, ®(Ey) = Lo and ®°(Ey) = L. Since Lo NPE = {Q} and
L3 NP2 ={Q}, we conclude that ®$°(1:1: 1) = Q over the field R. Thus &5 : P — P2
can be extended to (1:1:1) as a continuous map.

Consider the case d > 4. We define the injection ¢ : HS® — HL by w,(f) = CH
Then Bs(p*H @r C) C Bs(p*HS? ®r C) U V(Sy). Since Bs(HP @r C) = {(1:1: 1)},
we have Bs(p*HY @r C) = 0. Let &% := D gec0gpe Pz — P((HY)Y ®r C), and
(X§)c = DP(FD).

For s = S4 — USl, 53’1 — USl, 52,2 — USl, 5173 - USl S 3(20 and s = 55 — USM,
5471 - USl,l, 53,2 - USl,l, 5'273 - USl,l, 31,4 - USl,l, USl - USl,l € f]-CgO, the following
holds:

s(1+t,14ut,1) = co(u® —u+ 1)t +Zhi(u)ti. (3.7)
i>3
We denote d = 3k + e, here e € {3, 4, 5}. Then H = H§, - H. Thus, (3.7) holds for any
s € H. Therefore, ®<°(E) is a point.
Since Bs(p*HS @ C) = 0, there exists the natural regular map ¢ : (X5%)c — (X$°)c.

Let Q' := @go(El) and L := @(Ei) (i =2, 3). Then, ¥(L}) = L;. Since L; N X5 = {Q},
we have L) N X5° = {Q'}. Thus ®P(1:1:1) =Q.
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Since @ is a non-singular point of (X$°)c = P2, @’ is also a non-singular point of

(X$)c. O

Proposition 3.8. Let G := Z/37 and let = : P42 — P%/G be the natural surjection.
Decompose ®¢ and 9% as

c0
o P2 L P2/G T4 XS, 0 PR L P2/G Yh X<,

Let g : X5+ — X5 be the rational map induced by the inclusion f}Cg?d - s,

(1) Ifd=3ord > 5, then ¥ : P2 /G — X5° and ¢4 : X5 — X$° are birational bijective
continuous map.

(2) Ifd > 3, then ®<°(1: 1 : 1) is an interior point of X .

Proof. Let A=P% —{(1:1:1)}, WS := ®5(A), and W := &°(A). We have observed
that (1) and (2) hold for d = 3. Moreover, ¥ : A/G — W50 and @3 : W — W40 are
isomorphisms.

Consider the case d = 6. Since HL = H§ - Z}C , We have Bs HS" = ). A birational

bijective continuous map ¥§° factors as &5 : P2/ G e, Xgo — X5, Thus ¢ : W§ —

W is an isomorphism, and ¢g : X§--- — X is a bijective continuous map.
XSQ

Consider the cases d = 5 and d > 7. By H;_, — Hg, we have Bs H = 0. For
e = 3 or 6, there exists a birational continuous bijection ®<° : P2/ G X5 — X0,
Thus ¢q : W5 — WS is an isomorphism, and ¢4 : X§--- — XS0 is a birational bijective
continuous map.

(2) Since U : P2 /G — X5 is a composition of ¥ : P2 /G — X and X0 —
X5, we know that ®<°(1: 1 : 1) lies interior of X5, 0

Corollary 3.9. Let Og := ®(0: 0:1), L := {(0:s:1) € P2 | s > 0}, and
Cy = ®9(L). Then,
(1) Ifd > 3,01;+hen X0 =2 X0 and AY(XPY) = {Oa), AYXPY) = {Ca}, AXT) =
{Reg(X5")}.
(2) Ifd > 3 is odd, then X$° 2 P2, and A°(X5%) = AY(XS0) =0, A%2(XS) = {X5°}.

Section 4. Quartic cyclic inequalities.

4.1. The PSD cone P$°.

Hilbert proved that every element in Py, := P(Pr, H,4) can be presented as a sum of
squares of quadric polynomials in [17], and this is the source of Hilbert’s 17th problem (see
also [22]). Quartic cyclic inequalities ware studied in [8], [10], [12] and [2]. Cirtoaje proved
that every element f(a,b,c) € 9P is of the form

fla,b,¢) =X Z (2a% — b* — ¢* + pab — (p + q)bc + qca)* (A > 0).
cyclic
In this section, we solve some open problems presented in above articles.
We want to study P¢. But it is hard because of Conjecture 4.8. So, we start from
P = P(PZ, HL), and PPLT = P(PZ, HS), here H := {f € 35 | £(1,1,1) =0}.
We execute Step 1 of Remark 1.23. We choose sg := S4 — USy, s1 := S31 — US;,
sg := 51,3 — US1, 53 := 529 — US as a base of f}Cjo, and sg,..., S3, s4 := US] as a base of
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Hg. Eliminate a, b, ¢ from the above using the computer software Mathematica. Then we
have:

Proposition 4.1. (1) X{° is a quadric surface in P3 defined by
FP = (21 + 22)% + 3(z1 — 22)* + (w0 — 223)% — 2.

Thus A°(X{) = AY(X{) = 0, A?(X{°) = {X{°}, and 9P has the unique face component
FX5).
(2) X§ is the semialgebraic subset of P& defined by F{° and

FY = (21 + 20 4 324)% — (x0 + 223 + 324) (23 + 324).

(3) The inclusion H® —= HS induce a rational map o5 : X5 — X0 which is a
continuous map and a bijection.

Pp=(1:1:1:1:1)

00Xy

Xi
Fig 4.1. Projection of X§

Proof. (1) and (2) are easy. Remember Proposition 2.5.

(3) ¢§ is defined by @(zo : @1 : w2 : 23 : 24) = (To : o1 : 2 : x3). Since deg,, ((xl +
To + 314)% — (20 + 273 + 374) (23 + 3$4)) =1, ¢ : X§ — X$¥ is a bijective continuous
map. O

Next we execute Step 2 of Remark 1.23. Let £, and L% be the local cones of P§ and
P at the point (s : t: 1) € Pi. Then dim LS, < 2 and dim £ = 1 for any (s, t) € P§
by Proposition 1.27(1). Execute the calculation of Remark 1.21(2) and Remark 1.28 using
computer. Then we have that 9P is the quadric surface defined by
disc§’ = 3(pops + pp) — (P} + p1p2 + 13),
and that the generator of Lg?t is the following gﬁt. Definition of gét is somewhat compli-
cated:

G;(,q(av b,c) := S4+pSz1+qS13
2 2 2 2
+pq + +pg +
+ (p ];q q —1> S22 — (P+Q+p p3q d >U51
gc)fo (CL, b7 C) = 52,2 - USl)
B 253,1(87t7 1) - 51,3(57t7 1) - S2,1,1(57t’ 1)
5272(8, t, 1) — 527171(5, t, 1)

gét (CL, b7 C) = gg)((s,t),p(t,s) (a7 b7 C)

p(s,t) =
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where p(1,1) := =2, p(0,0) = oo € P}, and gi, := g. Note that p(s,t) = p(1/t,s/t) =
p(t/s,1/s). We don’t need Step 3 and 4 for P5°, and we have:

Theorem 4.2. (Structure of P0, cf. [2], [10]) The four dimensional convex cone P$°
has the following structure:
(1) For f = poSs+p1S31 + p2S1,3 + p3S2,2 — 3(po + p1 + p2 + P3)US, € HL, f e PP if
and only if disc’ (po, p1, p2, p3) > 0.
(2) Lg?t =Ry - Qf,r
(3) An extremal element in P is of the form ag,, or agl, (3a>0).

4.2. The PSD cone P{*.

Study X" := X (P2, H{®) € X§°. Let Oy := @°(0:0:1) = (1:0:0:0), and
Cy = {®(0:s:1) | s > 0}. By Corollary 3.9, AY(XSOT) = {04}, ANXSOT) = {Cy),
and A2(X°") = {Reg(X$°")}. The main discriminant of P5°T is disc§’ by Proposition 2.8.
disc(O4) = po by Remark 1.21(3).

Let’s calculate the edge discriminant. By Remark 1.21(2), Zar(C}') can obtained by
eliminating s from

3 3
8si
ii07 71 :0 d A=~ 0, 71 :0 43
;01?8( s,1) an ;Op 55 (0:5:1) (4.3)

A computer gives a solution
disc§™ = 256p5 — 27papi — 192pgp1p2 — 6pgpips — 4pips — 27pps
+ 144p3p2ps + 18pop? paps + 144p3p3ps + 18pep1pips — 128p8p?
— 80pgp1paps + PIPaps — 4poptp3 — 4popapi + 16p3ps.
Note that this agree with the edge discriminant of P{*, by Proposition 2.9. If we solve (4.3)
as Remark 1.28, we find the following b:

hs 1= 5371 + 8251’3 — 2852’2 — (S — 1)2US1,

hoo = 51’3 — USl
Note that ho = 53’1 — USl, and 9(1]4,0 = gg(o = 5272 — USl Put gé—l—oo = gg(o formally. We
denote the local cones of P;™ and PP at (s:t:1) € P2 by L and LT

Theorem 4.4. (Structure of PT, cf. [2]) The four dimensional convex cone P’ has
the following structure:

(1) Lg?f =L =Ry - g2 for s >0,¢>0, and
FO =R ({gpg |90+ 0>~ (0 —a)* 2 6%, p+q<0juU{al}).
(2) For s >0, LS?: =Ry 'gés + R - bs.
(3) An extremal element in P’ is one of the forms agét (s, t € Ry) or abs (s € [0, 00],
a>0).
Proof. (1) Since dim L4 = 1 and L D L # 0, we have LG = L, for s > 0,
t > 0. Especially, gf,t is extremal in fPfloJr.
(2) Note that dim L(‘j?: <2for s >0. Let a, b, ce RyOand s > 0. Then
hs(a, b, C) = 82(5173 — USl) — 28(5’272 — USl) + (53,1 - USl)
S -USL\? L USi(Ss - 511
S1,3—USt S1,3 —US1 -

= (S13—-US1) <s
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A computation using Mathematica shows us h4(1,1,1) = h4(0,s,1) = h4(0,0,1) = 0. Thus,
be € LG N LY € 0PPF. Since dim (L% N LG%T) < 1, we have L5 N LG =R, - .
Thus, b is extremal in TZOJr. Since g‘:t is also extremal, we have Lg?j =Ry '964,5 + R bs.

(3) follows from (1) and (2). O

Now, we can prove Theorem 0.3. We should perform Step 3 and 4 of Remark 1.23.

Proof of Theorem 0.3. For each vector subspace V. C HSC, let V be the set of all
the monic polynomials in V. Note that ¢(p,q,r) = discit(1,p,q,7). Let (z, y, z) be the
coordinate system of H5? = R3. By Theorem 4.4,

22 + 2y +y* = 32 + 3, }

Iz +y)?—(r-y?=26* a+y<0f’

€0 is a subset of the sextic rational surface S := {(z,y,2) € HSO | oz, y, z) =0}. To
observe the surfaces 85’2“, we draw the section of it by the surface V; := {(z,y,2) € f}uCZO
| z=r}. Let P, =P NV, C, == (0P NV, Fo=FL 0V, FF=F"nV,, and
E, := SNV,. Note that F, is an ellipse defined by 3(x + y)? + (z — y)?> = 12(r + 1). EI is
an arc of the ellipse F, with the ends

(@ y):(iS\f—\/r—l—ﬁl ¥3f—\/'r~l—4)

%“—{w%aeﬁf

. : . (4.5)

since 9(z + y)? — (z — y)? > 62. E, is an irreducible sextic rational curve which does not
depend on r. The rational curve FE, has a parametrization

1 1 1 3
x:2(83—2—3s>, y:2<33—7“s—8> seR—-{0}

If r > 0, E, tangents to F, at the points given by (4.5). In the case r > 6, we obtain the
graph as in Figure 4.2.

Fig4.2. r > 6
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The curve E, has two branches which are symmetric with respect to the origin and

\/T:l:\/r2—36
6

x =y = £2y/r — 2. The intersections of two branches (z, y) = (£2v/r + 2, F2/r + 2) are
also nodes of E,.. The boundary C'. of P, is displayed by thick curve in Figure 4.2. Thus, in
the case r > 6, we conclude that C,. can be represented as the union of the domain defined
by (1), (2), (3), (4) and (5) of Theorem.

In the case 0 < r < 6, the graph becomes as in Figure 4.3. FE, does not have cusps if
r < 6. By the similar observation as the above case, we conclude that P, can be represented
as the union of the domain defined by (1), (2), (3), (4) and (5).

the line £ + y = 0. Each branch has two cusps at s = &+ , and a node at

Fig43. 0<r <6 Fig44. -1 <r <0

In the case —1 < r < 0 (Fig.4.4), the ellipse F;. does not touch to E,. Thus C, agrees
to one of the branches of F,., and P, can be represented as the union of the domain defined
by (1), (2), (3) and (4).

In the case —2 < r < —1 (Fig.4.5), the ellipse F,. does not appear. Thus, P, can be
represented as the union of the domain defined by (1), (2), (3) and (4).

Figd.5. -2 <r < -1 Fig.4.6. r < -2
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In the case r < —2 (Fig.4.6), E, has no singularities. Thus, P, is the domain defined
by (6). 0

Remark 4.6. Since disc§ (1,p,p,q) = (47 — p> —8)%(r +2p +2)(r — 2p + 2), the curve
p=q, 4r = p? + 8 is also a zero locus of disc§" in iPiOJr. Points on this curve correspond to
inequalities (S —57.1)% > 0.

4.3. The PSD cone P§.

By Proposition 2.6, 0P§ has just two face components. One is the main component

9, and the other is f]’ﬁo. As a base of Hj, we choose s = Sq4 — US1, 51 := 531 — USh,

59 := 513 —US1, s3 := S22 — US4, s4 := US;. The main discriminant is more complicated.
So, we present it in inhomogeneous form for f = so + ps; + ¢s2 + rs3 + vsy € HY.

discy(1,p, q,7,v) = (3(T +1) — (p* + pq + q2))(2p +2¢+7r+5)3
- (p4 + ¢* + 34p3q + 34pg® + 39p* ¢
+2(p + q)(5p* + Tpq + 5¢%)r — (2p° + pg + 2¢°)r°
+86p° + 86° — 12(v — 16)(p*q +pg®) — (v — 84)(p* + ¢*)r
+ (v + 18)pgr — 22(p + q)r? + 8r° = 57(v — 2)(p* + ¢°)
+ (v* = 63v + 51)pg — 2(13v + 126)(p + ¢)r + 2(3v — 106)r>
+2(7v* 4 3v — 139)(p + q) + 8(19v — 70)r
~ (0 + 200% — 1620 + 388))
We shall complete Step 1 and 2 of Remark 1.23.
Theorem 4.7. (Structure of P§) For —1/2 < k <1, let
ei (a,b,¢) == (k(a® +b° + ) — (ab+be + ca))2
= k2S4 — 2kT371 + (2k2 + 1)S272 — (2]{7 — 2)US1,
S1a(s,t,1)  st+s+t
So(s,t, 1) P4+ 4+1
ef’t(a, b,c) = ekX(SJ/) (a,b,c).
(1) For (Sat) € R2 - {(17 1)}7 Lg,t = {ag?,t + ﬂe?,t } «, ﬂ € RJr}
(2) If s >0, >0, and (s,t) # (1,1), then L7 := LS.

(3) An extremal element in P§ is of the form ag), (o > 0) or agl (a > 0) or aey
(~1/2< k<1, a>0).

k(s,t) =

€[-1/2, 1],

Proof. (1), (2) By Proposition 1.27, dimL§, = N —2 < 2if (s, ¢) # (1,1). If s >0
and t > 0, then dim Lg‘; =2and LS, C L. Let fo a8 := agﬁt —i—ﬂeﬁt. Since g, € L,
and 2, € L2, we have fy ;a5 € £5,,if a>0and §>0.

Since fs.t.0,0 € OPF, we have fs ;. g ¢ P by Proposition 1.33(1). If s > 0 and ¢t > 0,
then fsia.-5 ¢ P

Assume that o < 0. There exists (s',t') # (s,t) such that k(s',t') = k(s,t) and
gt (s',¢',1) > 0. Since e, (s',#/,1) =0, fota1(s,t,1) < 0. Thus fyra1 ¢ P§. If's >0
and t > 0, then fs ;1 ¢ fPZJr.

Thus £¢, and L are generated by g2, and eﬁt.
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(3) follows from (1). O

We now complete Steps 1, 2, and 3 of Remark 1.23 for P5. Regretfully, we can’t give
complete proof for Step 4. But graphical observation leads to the following:

Conjecture 4.8. For f = Sy +pSs1 4+ ¢S1,3 +1rS2+ (v—1—2p—1r)US; € HY,
fla,b,c) >0 for all a, b, c € R, if and only if v > 0 and one of the following hold:
(1) v =0 and disc5’(1,p, g,r) > 0.
(2) 0 < v <27 and disc§(1,p,q,7,v) > 0 and 4r + 4(u + 2v/3u + 1) > (p+ q)>.
) (p+a)°
16
The domain discj > 0 consists of some blocks. Sing(V(discy)) is complicated. What
we should prove is that 4r + 4(u + 2v3u + 1) > (p + ¢)? and r > (p + q)?/16 + 2 with
discio(l, p,q,7) > 0 cut off the correct P§. These two inequalities are not determinants.
By the way, Theorem 4.7 resolves the following conjecture. The sufficiency part was
proved by Cirtoaje and Zhou in [13]. The necessity part was their conjecture.

Theorem 4.9. (Cirtoaje-Zhou Conjecture) For f = Sy +pSs1+¢S1,3+7S522+0vUS; €
G, let

3) v > 27 and discy(1,p,p,r,v) >0 and r > + 2.

1
af ::1+p+q+r+v:§f(1,1,1),

Bf =6+ 3p+3q+2r+ v,
V5 =200+p+9),
of ::2+2rfv—(p2+pq+q2+p+q),
or(x) = 2y/ayz® — Bra® + vy /agz + 6f.
Then, f(a,b,c) > 0 for all a, b, ¢ € R, if and only if one of (1) and (2) holds.
(1) af > 0 and there exists a x € (—/3, V/3) such that ¢ (z) > 0.
(2) f is of the form f = (S — £S11)? (3x € R). That is, f satisfies p = q, p*> — 4p = 4r
and p? + 2p = 2v.
Moreover, f which does not satisfies (2) belongs to P50 if and only if the solution of
or(z) >0 inx € (=3, V3) is unique.
Proof. (If part) It is clear that if f satisfies (2) then f € P§. We assume that f satisfies
(1). Fix an ¢ € (—V/3, V3) with ¢;(z¢) > 0, and let

3p — 2\/ayzg + 278 - 3¢ — 2/ajzo + 278

b1 = 3-%’% ) 1-— 3_$% )

3r — oy + 2 /ayrg — 3xF 3v — 2ay5 + 2 /oo
ryi= TS ,
! 3—a? ' 3— a3

fila,b,¢) := S84 +p1S31+ q1S1,3 + 11522 +11USh,
ei(a,b,c) = efo/(xo_m)(a, b, c).
It is easy to see that
3f = (3 —3)fi + (w0 — g )’er > (3 — a) fu,
fl(l,l,l) = 1+p1+Q1+T1+Ul ZO,

2 2
3
ptpata g pr(zo) o

3 (B—a5)”
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Note that f; € P$0. Since gl)thl, 9X, e1 € PS, we have

3—u5 x +,¢f@m)ng+ (z0 — oy )
3 P1,91 3 — x(Q) o 3

f=

el € ?Z

(Only if part) We shall prove that if f € P§ does not satisfy (2) then f satisfies (1).
1
Since f € P§, we have 1l +p+qg+7r+v = gf(l,l,l) > 0, Note that

—q)?

V3 i (p
pr(V3)=—4|Va; - ——(p+g+4) | ———— <0,

2
3 o 2
wﬂ—%ﬂ:—4<¢%4-ﬁ@+q+®> —ODJ”SQ

Case 1: We treat the case f € Lg ;.

P32+ paga + ¢
3

3 . We assume that —1/2 < k < 1, and f = (aag;y ., + B2ep )/ (2 + B2k?)
(Not always f € L5 ;). Then

Let po = p(s,t), g2 := p(t,s), ro = — 1, and vy = —py — @2 —

P2+ paga + ¢2

_ aopy — 200k _anqe — 2Bk
B e Y
o Q2T + 62(2162 + ].) o oV — B2(2k - 2)
B ag + ok’ 0T ag + ok’
Using Mathematica, very complicated calculation show us that
Vagk \ _ vagk | _ V/36ak
g0f< >O, and ‘—<\/§.
k—1 k—1 W
Moreover, if k = M that is, if f € L, then x = Y isa multiple root of the
’ So(s,t,1) ’ s, E—1

cubic equation ¢ (z) = 0. Since p;(v3) <0 and ¢(—v3) <0, we have
{xe@vﬁvﬁﬂwﬂmzo}z{V@k}.

k—1

Case 2: Consider the case f € P{.

In this case, 3ar = f(1,1,1) = 0, and ¢f(z) = —(5+2p+2q+r)x*+(3+3r—p*—pg—q?).
Since ¢;(0) = disc’(1,p,¢,7) > 0 and ¢;(v/3) < 0, there exists 0 < 2; < /3 such that
@¢(x1) = 0. Note that if f ¢ 9P, then p¢(0) > 0.

Case 3: Consider the general case f € Pg.

In the convex cone P§, we take a line ¢ which passes through a point f and a point on

the half line R, - gX. Consider the intersection of £ and dP§. Then there exists the unique
§ > 0 such that fo := f — 6gX € 0PS. Equivalently

fo =S4 +p53,1 + q51,3 -+ (7" — (5)52,2 + (?} + (5)U51
Thus ¢y, (z) = ¢(x) — 6(3 — 22). By Proposition 2.6, fo € L5, or fo € PSL.
Case 3-1: Consider the case fy € L£¢ ;.
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Then, there exists the unique o € (—v/3, v/3) such that, ¢, (z¢) = 0 by the result of
the Case 1. Then ¢ (z0) = ¢, (o) + §(3 — x3) > 0. Thus (1) holds. Note that if f ¢ 0P
then ¢ (29) > 0. Thus there exists many x € (—/3, v/3) such that ¢(z) > 0.

Case 3-2: Consider the case fy € P and fo ¢ FL.

Then, by the result of the Case 2, we have ¢¢(0) > ¢y,(0) > 0. O

4.4. The PSD cone fPff.

By Proposition 2.6, P;T = T(Pi, H¢) has at most four face components: the main
component F;T+, the edge component €T, ?ZO+ and F(Oy4). All these four exist as the
following theorem.

Theorem 4.10. The five dimensional cone PS" satisfies the following:

(1) F{t =Cls U LS, | is a face component.
(s,t)ERE — {(1 1)}

(2) €5t = {aleo s T+ ozggo s tashs +aUSy | s >0, a; >0} is a face component.

(3) The main discriminant of F§ is disc], and the edge discriminant is disc§" .

(4) An extremal element of fPff“ is of the form aggfq Op+q¢?—(p—q)?>6%p+q<0,
a>0) or agl (a>0)or abs (s € [0,00], @ > 0) or aeif (0<k <1, a>0)oralS;
(> 0).

Proof. (1) follows from Theorem 4.7(2).

(2) Since f = aleés + aggés + ashs + ayUS; satisfies f(0,s,1) =0, we have f € Lgi;
for s >0, a; > 0.

We shall prove the converse. Since dim Lg; = 3 for s > 0, any element f € Lg; can
be represented as f = aleés + ozgg(is + ashs + a,US7 by certain oy, as, as, agy € R. We
shall show that we can choose a1, a2, as, ay € Ry. Since

(s +1)%, + 3sh, = s%g5, +3(s* — s+ 1)°US,,

we can assume that (i)“as > 0 and ay = 0” or (ii) “a2 =0 and oy > 0.

Consider the case (i). Assume that f = aref, + aago,s + ashs € P57, and az > 0.
Since f(1,1,1) = aleés(l, 1,1), we have o; > 0. Since

22(s3 4+ 52 +5+1—s2)?

A
€y (x,8,1) = ,
O,S( ) (82+1)2
2(6_ 5, 3 4_3_ 2 2 2
(s ="+ 55 —s+1— (25" — 5° — 5% + 28)x + °z%)
gés($73, 1) = 82 9
bs(z,8,1) =2(s® — s+ 5% + 87 — s+ 1— (35 —25* + 3s)z + (s* + 5)2?),
i (2,5, 1) go.s(2,5,1) fz,s,1)

o es(Ts 1) im 905 1) < lim
Wehaveili% b.(z,5,1) Oand:llil% hs(x,s,1) = 0. Thus 0 :lli%h(msl)

Consider the case (11). Assume that f = Oqeo o Fashs +auUS; € P§T and ay > 0.
Since f(0,0,1) = a3, (0,0,1), we have a; > 0. Since ef',(0,1/s,1) =0, US1(0,1/5,1) =0,
hs(0,1/s,1) = (s = 1)° g

Thus we have

= (3.

D >0, and f(0,1/s,1) = azhs(0,1/s,1), we have az > 0.

ng; = {aleés + a2964,s +ashs + aaUS, ‘ o 2 0}
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for s > 0. The left part is easy.

(3) The main discriminant is discj by Proposition 2.8, and the edge discriminant is
disc;™ by Proposition 2.9.

(4) is clear. 0

Thus, we complete Step 1 and 2 of Remark 1.23, and we determined all the extremal
inequalities. We don’t yet succeed in Step 3 and 4.

4.5. The PSD cones Pj.

Let % and H:Y be the same with Proposition 2.14. The aim of this subsection is to
prove the following theorem.

Theorem 4.11. Take f = Sy +pT31 + 1522+ (v —1—2p —1r)US; € H;. Then,
(a,b,c) >0 for all a, b, ¢ € R, if and only if v > 0 and one of the (1), (2) and (3) holds.
1) v=0andr >p*—1.

2) 0 <wv <27, disci(1,p,p,7,v) >0, and r > p? — (v + 2v/3v + 1).
2
)

3) v>27, diSCi(l,p,}% 7“,’[)) >0,andr > pT + 2.

f
(
(
(

Put G := 63, @) = Py, P = Pyee0, Py = P(PR, I(3), and P’ = P(PR, 3(). We
have to study of ijO before Pj. We choose sg = S4—US1, s1 =131 —2US1, s9 = S22—-US;
as a base of H3?, and we choose sq, 51, 52 and s3 = US] as a base of Hj3. We shall execute

Step 1 of Remark 1.23. Let Xj = X(P%, 33), and X;° = X(P%, 35%). As a result of

elimination, we obtain

X0 = {(mo cxycxp) € PR ’ Fi%(xq,z1,20) < O},
X; = {(aco cxy g w3) €EPY ‘ Fi9%(zg, 11, 12) <0 and F§(xq, 21,20, 73) = O},
here
Fi9 (20,21, 22) = 27 + (20 — 222)° — 7§,
Fi(x0, 71,22, 23) = (x1 + 323)* — (20 + 222 + 323) (22 + 323) = 0.
Using Proposition 2.13, 2.14, and the above, we obtain the following;:
ANXE) =0, ANXE) = {2 (L%}, A%(X(%) = {23°(4%)},
AYXE) = {@°(1)}, ANXE) = {@5(LE)}, A*(XF) = {@5(4F)},

where 1 = (1:1:1), L, = {(s: 1:1) € P2 | s # 1}, and Ay = {(s : ¢t : 1) € P}

| s+t+1>0,s <t<1}. Since X;° lies on a plane and Zar(X}) is a ruled surface

(conic cone), their dual varieties have lower dimensions. Thus, P5° and P have no main

component. Note that F(®5°(1)) = P50, Since P5° has only one face component, we
immediately have the following proposition.

Proposition 4.12. (cf. [2], [10]) (1) For f = pSa+qT51+7S22—(p+2q+7)US; € H5P,
f(a,b,¢) >0 for all a, b, ¢ € R if and only if p > 0 and p(r + q) > r2.
(2) The extremal elements of P5° is a positive multiple of gy, (Ip € R) or So2 — US1.

We shall study the dual variety of ®3(L5%.). Put F5 := F(®5(L%)). By the algorithm of
Remark 1.21(1), we obtain that the discriminant of F§ agrees with discy(po, p1, 1, D2, P3)-

The dual variety of Zar(X}) is defined by 8pg+p?—4p1p2 = 0 and 3py—3p; —3p2+ps = 0.
Its extremal inequality at (s:¢:1) € A =P is eﬁt. Thus we can determine all the extremal
inequalities of Pj as the following:
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Proposition 4.13. Let £, be the local cone of P§ at (s:t:1) € A =P,
(1) Ifs#1,t#1,s#tand s+t+1#0, thenL‘;’t:R-ef’t.
(2) Ifs=1lort=1lors=tors+t+1=0, thenL§7t:R-gét+R~eﬁt.

We now have completed Step 1 and 2 of Remark 1.23 for P;. We need an elementary
lemma to proceed Step 3 and 4.

Lemma 4.14. Let
gz, ) := 108V/3t> + 36(10 — 3z)t> — V3(z + 2)%(4x + 47)t + 6(x + 2)*,
h(z,v) := (4v + 2% — 44z + 52)% + 128(x — 4)°.

(1) g(x,t) >0 for0 <t < 33 and x < 12.
(2) h(xz,v) >0 for v > 27 and z € R.

Proof. (1) Consider g(z,t) as a cubic function on ¢. The greater solution of

dg(x,t
g(a?) = 324V/3t2 + 72(10 — 32)t — V3(z + 2)(4z + 47) = 0
~2(10 — 3
is t1(z) = 91(z) 18\/(5 z) , where g1 () := 1223 + 22522 + 372z + 964.

Case 1: Consider the case g1(x) < 0. Since the coefficient of 2 in g(z,t) is positive, we
have g(x,t) > g(z,0) = (x +2)* > 0 for t > 0.
Case 2: Consider the case gi(z) > 0 and z < 12. Note that g(x,0) = (z + 2)* > 0,

and g(x,t) > max{g(z,t1(x)), g(z,0)} for ¢ > 0. Thus, it is enough to show g(x,¢1(x)) > 0.
Using Mathematica, we have
1
— (92(2) — u ()*?),

oo, t(@) = 5

here go(z) = 378z + 233123 + 1398622 + 21636 + 32696.

Since go(z)? — g1(z)® = 108(12 — z)3(z + 2)*(1622 + 25z + 58), we have g(z,t;) > 0 for
T < 12.
Case 3: Consider the case 0 < t < 3v/3 and z > 12. Since t1(x) is increasing for x > —2,

we have t1(x) > t1(12) = ﬁg\/j > 3v/3 for x > 12. Tt is easy to see

g(z,V/3) = 3(2z* + 42 — 1412% — 1520z + 11456) > 0.
Since g(z, 0) > 0, we have g(x,t) > 0 for x > 12 and 0 < t < 3+/3.
(2) If & > 4, then (z —4)® > 0 and h(z,v) > 0. If x < 4,
h(z,y) = (z — 4)*((z + 24)* +512) + 8(v — 27)(2(v — 27) + (z — 4)(z — 40))
> 16(v — 27)* > 0. O

Proof of Theorem 4.11. For each vector subspace V' C I3, let V be the set of all the
monic polynomials in V.

Since f(1,1,1) = 3v, f € P satisfies v > 0. If v = 0, f € P§ if and only if r > p? — 1,
by Proposition 4.12. Now we assume v > 0.

We use the symbol (z, y, z) instead of (p, , v) as the coordinate system of H5. Fix a
constant v > 0, and let H, be the plane z = v in f]tfj. Let T, :=PiNH,, F, :=F;NH,,
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and let C, be the curve defined by discy(1,z,z,y,v) = 0 on H,. Note that F, C C,. The
curve C), is a rational curve with a parameterization

v(2t +1) =14 v(—t® 4 2t% 4 3t + 2)

(t+2)° (t+2)°
(t € PL — {—2}). We can draw the graph of C, using the above parameterization. The
boundary F), of T, is displayed by thick lines in Fig 4.7 and 4.8.

rz=t+

Fig.4.7. v > 27 Figd.8. 0<v <27

When v > 0, the curve C, has a node at

2V
P, (z,y)= -2 ﬂfg’w ]
3 3

If v > 27, the following @, is also a node of C,,.

Qo (z,y) = (2 = -2 W)

Note that @), is an isolated zero in T, if 0 < v < 27. These nodes P,, ), correspond to
polynomials ekX .

(2) Consider the case 0 < v < 27. Let t := /v > 0. Substitute y = —(¢? +2v/3t + 1) to
disc§(1,z,z,y,t*) = 0, then we have

2
2
disc§ (1,3:, z, (2% — (2 +2V/3t + 1)),t2> = —/3t (x + \B/gt + 2> g(z,t) =0,

here g(z,t) := 108v/3t® + 36(10 — 3z)t? — V/3(z + 2)%(4x + 47)t + 6(x + 2)*.
Since g(z,t) > 0 for 0 < t < 3v/3 and = < 12 by the previous lemma, we conclude that the
curve C, and the parabola y = 2% — (v+ 2v/3v + 1) intersect at only P,. Thus, this parabola
cut off extra domain which does not belong to Ty, from the domain discy(1,x, z,y,v) > 0.
(3) Consider the case v > 27. The parabola y = x?/4 + 1 passes through P, and Q,.
Note that , , )
discy (1,x,x, % +2,v) =~ (3(3: 2) 2_5(;“}) M, v) ,

here h(x,v) is a polynomial of the previous lemma. Since h(x,v) > 0, the roots of the

equation discy(1,z,z,22/4 + 2,v) = 0 are x = £2,/ % — 2. Thus C, and the parabola

intersect only at P, and @),. Thus, this parabola cut of extra domain which does not belong
to T, from the domain discy(1, z,z,y,v) > 0. (]
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Section 5. Quintic inequalities.

5.1. The PSD cone 3’§0+.

Since dim Hz® = 4, it will not be so hard to determine P:°". Before the Step 1 of
Remark 1.23, we introduce some elementary propositions.

Proposition 5.1. ([13] Theorem 2.1. See also the proof of Theorem 6.1.) Let f(x, v,
z) be symmetric homogeneous polynomial with 3 < deg f < 5. Then f(x, y, z) > 0 for all
x>0,y>0,2z>0,if and only if f(s,1,1) > 0 and f(0,s,1) >0 for all s > 0.

For a generalization of the above proposition, see [23] Theorem 4.5 and [26] I Theorem
2.2.

Proposition 5.2. Let f(a,b,c) := S5 +pTu1+ql32+1rUSe—(14+2p+2¢+r)USi; €
O, Then, f(0,s,1) >0 for all s > 0 if and only if one of (1) and (2) holds.
(1) p>—-3andp+q+1>0.
(2) p<—-3and4qg> (p+1)* +4.
Proof. Since f(0,1,1) =2(p+q+1), p+ g+ 1> 0 is a necessary. Note that
f(0,2,1) = (z° + 1) + p(a* + 1) + ¢(2* + 2?)
=(1+2)1+@p-Dz+ (1 -p+qz*+(p—1a®+z*).
Thus, let a:=p—1, 6:=1—p+¢q, and
g() =1+ (p-Dz+(1-p+qz°+ (p- 1)’ + %)
=zt +axd 4+ +ax+1

= 22 <<x+i>2+a<x+i>2+(ﬂ—2)>.

Again, let y ;= x + 1/ and h(y) := y®> + py + (¢ — 2). Then
f(z,1,0) >0 (Vx > 0) <= g(z) >0 (Vx > 0)
= hy)=y>+oay+(B-2)=0(Vy=2).

Note that h(2) = f(1,1,0) =p+ ¢+ 1 and h(y) = (y + «/2)* + (48 — 8 — a?) /4.

Ifa>—4,ie. ifp > -3, then h(2) =2a+F+2=p+q+1= f(1,1,0) is the minimum
of h. This is the condition (1).

If « < —4, ie. if p< =3, then h(—a/2) = (43 -8 —a?)/4 = (4g— (p+ 1) —4)/4 is
the minimum of h. This is the condition (2). O

Proposition 5.3. For f(a,b,c) := S5 +pTu1+ql32+1rUSe—(1+2p+2¢+r)US;; €
f}v(fgo, let

ds(p,q,r) :=4(p+1)(p—2)2p—1)—9(q(2p—1)+r(p+1)) — ((2p— 1)? —3(2q+r+2))
Then f(s,1,1) > 0 for all s > 0 if and only if one of (1), (2), (3) or (4) holds.

(1) p>—-1land4dp+2q+7r+3>0.

(2) p<—land (2p—1)* <3(2¢+r+2).

(3) 4p+2q+7r+3 <0 andds(p,q,7) > 0.

(4) p<—1,(2p—1)? > 3(2q +r +2) and d5(p, q,7) > 0.

3/2
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Proof. Since f(0,1,1) = 2(p + g + 1), it is necessary that p+ ¢ + 1 > 0. Note that
fl@,1,1)=(z—1)*2* +2(p+1)2° + (dp+2¢+ 7+ 3)z +2(p+q+1)).
Thus, let g(z) == 2% +2(p+ 1)a®> + (dp+2¢+r+3)z+2(p+q+1).
Then ¢'(z) = 32 +4(p + 1)z + (4p + 2¢ + 7 + 3). We consider the roots of ¢'(x) = 0.
Case 1: We treat the case that the quadric equation ¢’(z) = 0 has no positive roots.
In this case, g(x) > 0 on (0, co) if and only if g(0) > 0. The axis of the parabola

y=4¢(z)isx = _Z(p;— D) , and
, 2(p+1) 73(2q+7’+2)—(2p—1)2
/(-5 ) - ;

¢'(x) = 0 has no positive roots if and only if “p+1 > 0 and ¢’(0) > 0” or “p+ 1 < 0 and
g'(—2(p+1)/3) > 0”. These correspond with the conditions (1) and (2).
Case 2: We treat the case ¢’(0) > 0 and the quadric equation ¢’(z) = 0 has a positive
root xg.
In this case, g(x) > 0 on [0, co) if and only if g(x¢) > 0 and ¢g(0) > 0. ¢’(x) = 0 has a
positive root xg if and only if p+ 1 < 0 and ¢’(—2(p+1)/3) < 0. Since
V(2 1) -3¢ +7+2) —2(p+1)

o = 3 y (54)

and 27g(z¢) = 2ds(p, q,7), we have the condition (4).

Case 3: We treat the case ¢'(0) < 0.

In this case, g defined by (5.4) is a positive, and ¢'(xg) = 0. g(x) > 0 on [0, co0) if and
only if g(z¢) > 0 and ¢g(0) > 0. This corresponds with the condition (3). O

In (3) and (4), d5 > 0 is equivalent to ds > 0. Thus, Theorem 0.4 is proved. But we
want to obtain extremal inequalities and to determine which are discriminants. We choose
So = 55 — USl,l, S1 = T471 —QUSLl, S9 = T372 — USl 1, 83 = USQ — USl 1 as a base off]-C
For Step 1 of Remark 1.23, we execute Remark 1.21(2). Then we know that X5t = X(]P’%r,
V) is defined by

Fiso(xo, T1, T, T3) := T2 — 2oTa + T1T2 — T3 — 2T923 — bx123 + 2013 = 0,
Fsi1(xo, 1, 0, x3) := 22 + 22 — 2wxe — 22123 < 0.
Note that Fs(sg, s1,52,83) = —(a—b)?(b—c)?(c—a)?(a+b+c)* < 0. Using Proposition 2.12,
2.13, 2.14, and the above, we obtain A?(X:"") = { Reg(X:°%)}, ANX:F) = {@:0(L%.,),
(LY, )}, and AO(XSO+) {®:°(0:0:1), ®°(0: 1:1)}. Next execute Step 2 of Remark
1. 23 Slnce P90:0:1)=(1:0:0), F(@L(0:0: 1)) is the set of all the polynomials at
infinity in P£Y. This can be determined using Proposition 1.33.

Proposition 5.5. ﬂ’§0+ and P+ have no main components.

Proof. We prove Fi C Pit is not a face component Assume 0 # 3f € Int(FiT). We
may assume f € L5} for 0< Els <3t <1,and f ¢ Ly for any u > 0, and f ¢ L7 for
any v > 0. For g € H:, we denote

M(g) := max{g |a€dAr}, m(g) :==min{g(a) | a € 0AF},

here@AF :—{u,l,l ‘O<u<1}U{1,1,u ‘uZl}U{O,u,l)’OﬁuSl}. Since
f¢£ and f ¢ L3, we have m(g) > 0. Since M(S5) < +00, there exists 0 < & < 1 such
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that m(f —eS5) > 0. By Proposition 5.1, f — &S5 € POF. But f(s,t,1) —eS5(s,t,1) < 0.
Thus ‘3'"? is not a face component.

We prove 3"§O+ C ng0+ is not a face component. Otherwise, we can take 0 # f,
g € Int(FE°T) such that:
(a) There exists 0 < s1 < t; < 1 and 0 < sy < ty < 1 such that (s1, t1) # (s2, t2),
JeLy g L0 F LYY, andge LT
(b) f,g¢ LS?JL for any u > 0.
(c) f,g¢ Lf)?fr for any v > 0, v #£ 1.
Then, at least one of m(f/g) > 0 or m(g/f) > 0 holds. We may assume m(f/g) > 0.
Take 0 < ¢ < m(f/g). Then f —mg € P, But f(s1,t1,1) — eg(s1,t1,1) < 0. Thus FOF
is not a face component. 0

It is complicated to write the conditions in homogeneous form. So, for f € HE® which
does not lie on infinity, we normalize it in monic form. Let p := p1/po, ¢ := p2/po and
r := p3/po, that is

=355 +pT471 + ng’Q +rUSy — (1 + 2p + 2q + T‘)USl’l € f}{go.
For each vector subspace V C HEC, let V be the set of all the monic polynomials in V.

Theorem 5.6. We use the same symbols as above.
(1) Let P=®L(0:1:1)=(1:1:1:0),and O =®(0:0:1)=(1:0:0:0). Then the
dual of P is described as F(P) = A} U AL, where
'1::{(p,q7r)€f]tfgo |p—|—q+1:0, —3§p§—1,r2p2}
é::{(p,qu)ef]tfgo |p—|—q—}-1=0, -1 < p, 2p+r—|—120}.
(2) Let C; = ®°(LY ) = {®(s:1:1) | s > 0}. Then
FC)={(par)eHL | 4g=(p+1)*+4,p< -3, d5(p,q.r) > 0}.
(3) Let Cy = ®3°(LY,) = {®°(0:5:1) | s > 0}. Then F(Cs) = B} U B, U B}, where
Li={(p,q,r) €H® | ds(p,q,7) =0, p < —3,4q > (p+1)> + 4},
o ds(p,q,7) =0, =3 <p < —1,
B, ::{ (p,q,r)ef}fgo 5(pg.m) P },
P+q+120,(qr) #(-p—1, —2p—1)
By = { (p.q,r) € H" | ds(p,q.7) =0, -1 <p,p+q+1>0,2p+r+1<0}.
Especially, ds(p,q,r) = disc(C1), 4¢ — (p+ 1)? — 4 = disc(Cs). p+ g+ 1 = disc(P) and
po = disc(O).

Proof. Fix p € R, and observe the plane section V,, = {(q7 r) € R? } (1,p,q,7) € Hg”}.
Let C,, be the curve defined by ds(p, q,7) = 0 on the (g, r)-plane V,,. C), is a rational cubic
curve with the parameterization

1
R S +1<482—65 +116)83
’ 27(2t+1)3< 0+ 1)(4(897 — 65p + 116)
+ 6(8p? — 38p — 19)t? 4 3(8p? — 11p — T3)t + (4p® 4 8p — 23))),
1
= — (= 8(2p—1)%> - 3(2p — 1)*(8p + 23)¢?
" 27(%H)g( (2p — 1% — 3(2p — 1)*(8p + 23)

—6(2p— 1)(p+4)(dp + T)t — (p+ 4)2(8p + 5)).

35



C) has a cusp at P, = (¢,7) =

3 2 3

<4p i 12p27 15p = 23 , — (2p271) > The cusp P, lies
on a line 3(2¢ + 7 +2) = (2p — 1)2. The vertical line p+ ¢ + 1 = 0 tangents to C, at
(¢,7) = (—=p—1, —2p — 1), and intersects with C, at (¢,7) = (—p — 1, p*?). The graph of C,
in the case p > —1 is as in Figure 5.1.

\ (¢,r)-plane V, (2p—1)2 Q (q,r)-plane V,

7
2p—1)2 =3(2 2 b
(101,2191)&(%1“+ ) G
C
Cp  4p+2q+r+3=0 b
d

pta+1=0  ds(p,q,r)=0 pta+1=0 dspar)=0
Fig 5.1. Case: p> -1 Fig 5.2. Case: p=—1

89’§0+ NV, is shown by the thick curve. The graph of C), in the case p = —1 is as in
Figure 5.2. In this case, the line 4p +2q+ 7+ 3 = 0 coincides with 3(2¢+7+2) = (2p—1)2,
and these lines intersect to p + ¢+ 1 = 0 at the cusp P,.

The graph of C), in the case p < —1 is as in Figure 5.3. In this case (—p—1, —2p—1) ¢ V,,
by the condition 4(p+1)(p —2)(2p —1) —9(¢g(2p—1) +r(p+1)) > 0.

p+q+1=0 dg=(p+1)2+4

(q,r)-plane V,

\ (2p—1)2=312¢+7r+2)

.

|

|

|

! c, dp+2q+r+3=0
: d5 (p» q, T’) =0

|

I

Fig.5.3. Case: p< —1
By the above observation, we complete the proof. (]

Corollary 5.7. Let
ff(a, b,c) = 5o+ ps1 — (p+ 1)so + p’ss,
0t) =2 -t +t\/(t —1)(t +2),
sm(t) = (1/2)(€(t) — VA(E)* — 4,
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fP(a,b,c) i=so + (1 —20(t))s1 + (2 + 2t — 2 — 2(1% — 1)£(t))s2
—((t+1)%(2t + 3) — 4(t + 1)2£(t))s3,
gi(a,b,c) :=s1 + (t* — 1)sg — 2(s + 1)%s
(1) For allt >0, g; is an extrelal element of P:*", and g; € Lfofr N LSOOJF.
(2) Let t > 2, and put s := s,(t). Then 0 < s < 1, and fP Lfol+ N LSO+ fB is an
extrelal element of P
(3) Let 0 <t <2, and put p := —t — 1. Then f;' € Lf,oﬁ N Lg?fr, and f is an extremal
element of POF.

4) All the extremal elements of P°T are positive multiples of f* (=3 < p < —1), fF
5 D t
(t>2),g: (t>0), s2 and s3.

Proof. (1) f € LS?OJF implies the cofficient of s¢ in f is equal to zero. Since,
gu(5,1,1) = 2(s — 1)%(s — t)2,
50(0,5,1) = s(s + 1)((s — 1)° + ),

we have g; € L * by Proposition 5.1.
(2) It is easy exercise to veryfy that s,,(t) varies (0, 1] when ¢ > 2. Since

fP(s,1,1) = (s = 1)%(s = 1)*(s + 2(t = V/(t = 1)(t +2))%),
fP(0,5,1) = (s +1)(s* = (2= 2 = /(¢ = 1)(t +2))s + 1)?,
we have fP € Lf,ofL N Lg?j.
(3) follow from
0,6, 1) = (t+1)(t— 12 + (p+ 1)t + 1).
(4) All the extremal elements of LS?OJF are positive multiples of g; (0 > 0) and g0 := s2.
Lg?j N LS?&F =Ry - s3. Thus we obtain (4). 0

5.2. Edge discriminant of Tg+.

We cannot yet obtain the main discriminant of Pt and PET. It will be extraordinary
long polynomial. But we determined the edge discriminant of ﬂ’g+.

We choose So = S5 - USQ, S1 = 5471 - USQ, So = 5372 - USQ, S3 = 82’3 - USQ,
54 =51,4—US3, s5 =USy;—US; 1 as a base of i}CgO, and we choose sg,. .., s5 and sg = US7 1
as a base of HE. Let

Lemma 5.8. Let £ be the local cone of P’ at the point (0 : s : 1) € P2. Note
that dim £ = 6 — 2 < 4 by Proposition 1.27(1). The following Fy s, Fs s, F3, Fy s are
linearly independent elements in Lg?j .

0= {feHL | f(0,5,1) =0},

13 S(oz b,c) == 3stsy — (45° — 1)81 + (8% — 45%)s4,
F5 s(a,b,c) :==2s1 — 3ss2 + $354,

Fs s(a,b,c) == 1 — 3s%s3 + 2554,

Fy s(a,b,c) =
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Proof. It is easy to check F; 4(0,s,1) = 0, F; s = (1,1,1) = 0 for 1 < i < 4, and
F;(0,0,1) = 0 for 2 < j < 4. Since dimH§’, = dimHL — 2 =4, Fi ..., Fi, is a base
of 9—(8?8. We need long analytic argument to prove Fi , Fo s € LS?;“ . Thus, T will publish
this proof in an other article. Fj s > 0 follows from Fj s(a,b,c) = s3Fs (b, a,c,1/s) > 0.
Fy s > 0 follows from Sy > Sy ;. O

Theorem 5.9. For Iﬁg > f = 55 +.CL'S471 —|—y51,4 +2’5372 —i—ng,g —|—UUSQ —F’UUSLl S f]-(:g,
the edge discriminant of T? is the following disc?f.

discE™ (z,y, 2, w)

= — 27xtyt — 43yt — 42?323 + 1823 y3 2w + 2%y 22 w?
+ 144zt w + 14422y 2 — 6239222 — 6223 w? + 1623w + 16327
— 80x3yzw? — 80xy3 22w + 1822%yz3w + 18zy% 2w — 4a?2%w® — 4y?23w?
— 3623y — 1922ty — 1922y w — 128z w? — 128y 22
+ 24z yw® 4 24xy? 22 — 272224 — 27y w? — T462%y% 2w
+ 14423 2%w + 14493 z0® — T2z2w* — 72y2*w + 3562y2°w? + 1623w3
+ 25625 + 256y° 4+ 16023yw + 160xy>2 + 102022y2% + 10202y w?
+ 56022 zw? + 560y222w — 630z23w — 630yzw3 +1082° + 108w°
— 5022y? — 1600232 — 1600y°w — 900zw> — 900yz> — 2050zyzw + 8252%w?
+ 2000w + 2000422z + 2250x22 + 2250yw? — 25002y — 37502w + 3125.

Proof. By Proposition 2.8, the edge discriminants of P{* and ng(H agrees. Thus we
shall calculate that of PT. Eliminate as, a3 and s from

—(4 5 1 8 4 3
T = (874) + 200 + a3, y= % + 3 + 233a3, z = —3say, W= —332a3,
3s 3s
we obtain discg™ = 0. O

If f is symmetric, then

discSt (p,p,q,q) = (p+ g+ 1)(5— 3p+ )3 (4g — (p+ 1)* — 4)2.

Recall that 4 — (p+1)? — 4 is a discriminant of P°*. Since discE (p, p, ¢, ¢) is a multiple of
(49— (p+1)% —4)%, we know that E5F C Sing(ELT). The following is an example of Lemma
5.8.

Example 5.10. For any a, b, ¢ € R, the following inequalities hold:

5/4 5v/4
Sy + (:Lf — 1> USy > :Lf Sa1, 2841+ S1,4 > 3532,

Proof. The first is Fl,%(av b,c) > 0. The last is F5 1(a,b,c) > 0. (]

38



Section 6. Sextic inequalities.

6.1. Convex analysis.

Choi, Lam and Rezenick studied some sextic inequalities in [9]. Cirtoaje presented a
nice theorem in [11] Theorem 2.4. But, its proof has error, and its statement is not correct.
Example 6.10(5) gives a counterexample for Theorem 2.4 of [11]. Some corrected versions
are published in [13] and [14]. Here, we provide a corrected and extended version.

Theorem 6.1. Let f(x, y, z) be a homogeneous symmetric polynomial with 6 <
deg f <8 Letp:=x+4+y+z q:=xy—+yz+ zzx, r :=xyz, and denote
fla,y.2) = go(p.)r? + g1(p. @) 7 + g2(.@) (90, g1, 92 € R[p, q]).
We also fix the following symbols.

D(p,q) := g1(p,9)* — 490 (P, )92(p, 0),
hi(s) :==2sgo(s +2,2s +1) + g1(s +2,2s + 1),
ho(t) := 2t%go(2t + 1,7 + 2t) + g1 (2t + 1,¢* + 2t),
Li={seR|-2<s<1, go(s+22s+1)>0, and D(s+2,2s+1) > 0},
L:={sel|-1/2<s<1}.
(I) Assume deg f = 6 or 8. Then, f(x, y, z) > 0 for all z, y, z € R, if and only if the
following condition (1) holds, and for every s € I (depending on s), one of (2) or (3) holds.
(1) f(0,0,1) >0 and f(x,1,1) > 0 for all z € R.
(2) hi(s) > 0.
(3) ha((1+2s)/(4—1s)) <0.
(IT) Assume 6 < deg f < 8. Then, f(z, y, z) > 0 for all z, y, z € Ry, if and only if the
following condition (4) holds, and for every s € Iy (depending on s), one of (5) or (3) holds.
(4) f(0,2,1) >0 and f(z,1,1) >0 for all x € R,..
(5) hi(s) >0orgi(s+2,2s+1) >0,

Proof. Step 0: For p, ¢ € R with p? — 3¢ > 0, let
Xpg={(z,9,2) eR’ |z <y<z,z4+y+z=p ay+yz+2z=q}

p—2vp? —3q P+ 2v/p? — 3¢
041(17: q) = 3 ) a2(p7 q) = 3 )

p—Vp?—3q p+Vp?—3q
61(p7 Q) = 3 ) ﬁ2(pv Q) = 3 )

r1(p,q) == a1(p,q)B2(p,9)%,  72(p,q) = Bi(p,q)*az2(p, q).
Note that X, , # 0. For r := xyz,

27r% — 2(9pq — 2p°)r + (4¢° — p*¢®) = —(z — y)*(y — 2)* (= — 2)* < 0.
The solution of the above inequality on r is
9pg — 2p° — 4(p* — 39)*” _ o g =2+ A - 3¢)3/?
27 == 27

Moreover, if r = r1(p, q) or r = r2(p,q), then —(x — y)?(y — 2)?(z — 2)? = 0. Thus we have:
(0-a) min  zyz = r1(p,q). The equality holds if and only if x = a;(p,q) and

(m,y,z)EXp,q

y=2z=[2(p,q).

ri(p,q) = = 12(p, q).
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(0-b) ( m)axX xyz = ra2(p,q). The equality holds if and only if x = y = (1(p,q) and
T,Y,2)EXp g

y =2 = as(p,q).

We shall prove sufficiency of (I) and (II).

Assume that (1) holds in the case (I) or (4) holds in the case (II), and assume that f(a,
b, ¢) < 0 for certain a, b, c. In the case (II), we assume a > 0, b > 0, ¢ > 0. It is enough to
show that (2), (3) and (5) cannot hold.

Let P :=a+b+c, Q := ab+bc+ca. We may assume P > 0, since f(—a, —b, —c) = f(a,
b, ¢) in case (I). Let a1 := a1(P,Q), as = a2(P,Q), /1 = (1(P,Q), B2 = [2(P,Q),
r1:=r1(P,Q) and 1y := r3(P, Q). Since P2 —3Q = ((a —b)? + (b—¢)? + (c — a)?)/2 > 0,
we have ag > 0 and By > 0. If ap = (P +2v/P?2—-3Q)/3 =0, then P = = 0 and
a =b=c¢=0. This contradicts to f(a, b, ¢) < 0. Thus as > 0. Similarly, we have 35 > 0.
In the case (II), since @ > 0, we have 3; > 0. Let

9(7") = gO(P7 Q)Tz + gl(P7 Q)T + 92<P7 Q)
Note that g(abc) = f(a, b, ¢) < 0. Let S := a1 /f2 and T := 1 /aa. Since ST+25—-4T+1 =
0, we have T'= (1+4+2S5)/(4—S) and S = (4T — 1)/(T + 2).
Since a; + 202 = P >0, 2 > 0, and ay < B2, we have —2 < S < 1. In the case (II),
since /1 > 0, we have T' > 0. Thus —1/2 < S < 1. Note that the following relations:
P=o1+28;=(5S42)02=a2+ 201 = (1427 )ax,
Q =206y + 2 = (25 +1)65 = 32 + 20201 = (T? + 2T,

90(P,Q) = B3 5g0(S + 2,25 + 1) = a4 Cgo(2T + 1, T2 + 27), (6.2)
a1 (P,Q) =B373g1(5 42,28 +1) = ad 3¢, (2T +1,T% 4 27), (6.3)
G2(P,Q) = 2g2(S + 2,25 + 1) = algy (2T + 1,T? + 27),

D(P,Q) = BID(S + 2,25 +1) = adD(2T + 1, T2 + 27, (6.4)
ry = ﬂg_?’S, ro = ag_3T2,

h1<S) = S_d(2TlgO(P, Q) +gl(P7 Q))’ h2(T) = ag_d(ZTQQO(Pv Q) +gl(P7 Q)) (65)

Step 1: We shall show go(S +2, 25 +1) > 0.

Assume that go(S + 2, 25 + 1) < 0. Then go(P, @) <0 by (6.2), and g(r) is a concave
function or a linear function. Let 7} := r; in the case (I), and 7} := max{ry, 0} in the case
(IT). Since g(abc) < 0, we have g(r}) < 0 or g(r2) < 0.

If g(r2) < 0, then there exists (z, y, z) € Xp g such that zyz = ry and f(z, y, z) < 0.
Then (z, y, z) = (B1, (1, a2) by Step 0. Thus

0> g(re) = f(B1, 1, 02) = B faz/B1,1,1) > 0.

If g(r1) < 0, then we can derive similar contradiction.

If g(0) < 0 in the case (II), then there exists (z, y, z) € Xp, such that xyz = 0 and
f(z,y, z) < 0. Since 0 <z <y < z, we have z = 0. Then 0 > ¢(0) = f(0, 1, y/z) > 0.
Thus we have go(S + 2, 25 +1) > 0.

Since go(S + 2, 25 + 1) > 0, we have go(P, Q) > 0 by (6.2). Thus, g(r) is a convex
function. Since g(abc) < 0, we have D(P,@Q) > 0. This implies D(S + 2,25 + 1) > 0 by
(6.4). Thus S € I;. In the case (II), since —1/2 < S < 1, we have S € I5.

Step 2. We shall show ho((1+2S5)/(4—95)) = hao(T') > 0, i.e. (3) cannot hold.
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Assume that ho(T) < 0. Then —g1 (P, Q)/290(P, Q) > ro. That is, the axis of quadratic
function g(r) exists in the right side of r5. Thus

0> f(a,b,c) = glabe) > g(r2) = f(B1, B, a2) = 5 f(02/P1,1,1) > 0.
A contradiction. Thus, (3) cannot hold.

Step 3. We shall show that hi(S) < 0, i.e. (2) cannot hold.
Assume that hi(S) > 0. Then —g1(P,Q)/2g0(P, Q) < 1. The axis of g(r) exists in the
left side of r;. Thus

0 > f(a7b7 C) = g(a’bc) Z g<711) = f(OCl?ﬁQaﬁQ) = /Bgf(al/ﬁ27 17 1) Z 0.
A contradiction. Thus, (2) cannot hold.

Step 4. We shall show that if S € I5 then g1(S + 2, 25 + 1) < 0. i.e. (5) cannot hold.
Assume that ¢1(S + 2,25 +1) > 0. Then ¢;(P, Q) > 0 by (6.3).
If S >0, then r; = S_BS > 0 and by (6.5). This derives a contradiction:

0> B372h1(S) = 2r190(P, Q) + g1(P, Q) > 0.
If S <0, then r; <0, and 0 > B373h1(s) > g1(P, Q). Thus, the axis of g(r) exists in r < 0.
Thus
0> f(a,b,¢) = glabe) = g(0) > 0.
A contradiction. Thus, (5) cannot hold.
Here we complete the proof of the sufficiency part.

Step 5. We shall prove the necessity part of (I) and (II).
Forz,y,zeR,let p:=z+y+ 2, ¢:=2y+ 2+ 22, and
2 /2
Ai(z,y, 2) = p—?2 ?f) — 34 , Ba(x,y,2) := p-i-gﬂ
Assume that f(z, y, z) > 0 for all z, y, z € R in the case (I), or for all z, y, z € Ry in the
case (II). Then (1) holds in the case (I), and (4) holds in the case (II).

Let s € I;. There exists a, b, ¢ € R such that A;(a,b,c)/Ba(a,b,c) =s. If s € Iy, we
can choose ¢ > 0, b >0 and ¢ > 0. Let P:=a+ b+ ¢, @ := ab+ bc + ca. Using this P,
Q, we define Xp g, a1, ag, f1, P2, r1, 11, 72, S and T same as the proof of sufficiency part.
Note that a; = Ay(a,b,¢), B2 = Ba(a,b,c), and s = S.

Since S = s € I;, we have D(S +2, 25+ 1) > 0 and ¢go(S + 2, 25 + 1) > 0. Thus
D(P, Q) > 0 and go(P, Q) > 0, by (6.2) and (6.4). This implies that the quadric equation
g(r) = 0 has two real roots r = r3, r4, here r3 < r4. Since g(r) is convex and g(r) > 0 for
all i < r <ry, then we have r3 > r9 or r4 <} . This implies that the axis of g(r) satisfies
—g1(P,Q)/2g0(P, Q) > r2 or —g1(P,Q)/290(P, Q) < 1.

Consider the case (I). If —¢g1(P,Q)/2g0(P, Q) > 72, then by (6.5), we have

)

ha((1+2s)/(4 = 5)) = ha(T) = g~ (2r290(P, Q) + 91(P, Q)) <
Thus (3) holds. If —g1 (P, Q)/2g0(P, Q) < ry, then

hi(s) = hi(S) = 857 (2r190(P, Q) + 91(P,Q)) > 0

Thus (2) holds.

Consider the case (II). In this case, S = s € I C I;. As the above arguments, if
—g1(P,Q)/290(P,Q) > ro then (3) holds. Consider the case —g1(P, @Q)/2g0(P,Q) < ri. If
ry > 0, i.e. if ¥} = rq, as the above arguments, we have hy(s) > 0. If ry <0, i.e. if v} =0,
then —gi (P, Q) <0 by (6.3). This implies ¢1(s + 2, 2s + 1) > 0. Thus, (5) holds. O
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Note. Even if deg f > 9, if f can be written as

f@,y,2) = go(p, )r* + 91(p, @) v + g2(p, q),

then the above theorem holds.

Using this theorem, we immediately obtain the following:

Example 6.6. For any a, b, ¢ € R, the following hold:
(1) 6S5+ 5Ty 2 > 8T5;.
(2) 8S+ 108533 > 975 1.
(3) Ty + 1802 > 4UTy ;.
3
4) —5— +‘[ +6\[U2 > USs.

Equahty holdsifa=b=cor (a:b:c)
(5)

=(v/3—-1:1:1) orso on.
2(1 —a)Se +aUTs 1 > T5 1, here a ~ 0.4235227783 is a root of

257a% — 1512a° + 3598a* — 4386a> + 286502 — 950 + 125 = 0.

Equality holdsifa=b=cor (a:b:c) =
of

B0 +48° + 78 +63° —28—-1=0.
— )86 + 37U? > T5 1, here v ~ 0.762794619 the unique real root of

— 378v* + 10173 — 133072 + 900y — 250 = 0.
(6 :1:1), here § ~ 0.5701772717 is the

(6) (2
54~°

Equality holds if a =b=rcor (a:b:¢c) =
unique real root of

8% + 364 +78% + 62 —2=0.

108¢? — 414e? + 538 — 257 = 0.

Equality holds if a=b=cor (a:b:c) =
of 3¢3+¢*+2¢—-2=0.

6.2. Edge discriminant of P;".

For P5T, we could only determine the edge discriminant.

(2 —€)Se + 3eU? > UTx 1, here £ ~ 1.8010662235 is a root of

(B:1:1), here B ~ 0.5712944281 is a root

(C:1:1), here ¢ ~0.5666113232 is a root

Lemma 6.7. Let £°F be the local cone of P§’t at the point (0 : s : 1) € P2. Note that
dim £9F = 9 — 2 < 7 by Proposition 1.27(1). The following G; s are linearly independent

elements in LF.

G = 518 — (255 — 1)Ss2 + (s — 252)52,4 —3(s® —25% + 5*

Ga,s := 2851 — 35540+ 8°S2.4 — 3(s — 1)*(s + 2)U?,

G35 := 2525815+ S0 — 352894 — 3(s — 1)3(2s + 1) U?,
Gas:=S12+ 525274 — 25833 —3(s — 1)2U2,
Gss:=US3 —USs1, Ggs:=USs—USips,

Proof. 1t is easy to check G; 5(0,5,1) =0, G; s =
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- 25+ 1)U?,

Grs:=US3 — 3U?

(1,1,1) = 0. A proof of Gy 5(a,b,c) €
Lg?j will be published in other article. G s(a,b,c) = f2(a?, b?, c2

) > 0 by Theorem 3.1.



G35 > 0 follows from G3 s(a,b,c) = 33G2,1/s(b7 a,c).
G478 = 32(5274 — 3U2) — 28(S373 - 3U2) + (54,2 - 3U2)

= (S24 —3U?)
y (s 33— 3U° >2 U2(Se + 6533 + 3U2 — 3Ty 5 — 2USs)
5274 — 3U2 (52,4 - 3U2)2 .
Using Theorem 6.1, we have Sg + 6533 + 3U? — 3Ty 5 — 2U S5 > 0. Thus, G4 s > 0.
Gs.s >0, Gg s > 0, and G7 s > 0 are trivial. O

Theorem 6.8. For icg S5 f=5+x51+ySis+ 252 +wS2,4 4+ uS3 3+ 26U S35 +
27USy1 +23US12 —3(1+2+y+ 2+ w+u+ z6 + 7 + 28)U?, the edge discriminant of
Pt is the following discg .

disc§™ (v, 2, w, u)

= 2562"y5 — 27ztyPwt — 2722yt 2t — 1922ty 2w — 623y3 22 w? — 4a?y? B wd

+ 14zt yPw?u + 14423y 220 + 1823y % 2wu + 182293 23 wu — 128z y*u?

— 802313 zwu? + 22y 22 wu? — 423yt wud — 42y 220 + 16235 ut

— 1600253 w — 160023y° 2 — 36231323 — 3623w + 108z w® 4 108y*2°
+ 102021y zw? + 102022y 22w + 2423y 22w + 24z 22w? + 1622 23w?

+ 16y224w3 + 144x2y2z4w + 160m4y3zu + 160m3y4wu — 630x4yw3u

— 630xy*23u — 74623y? 22 wu — 74622y 2w u — 7223 zwtu — 7243 2 wu

— 8022y 23 w?u — 80xy? 22 wiu 4 560y wu? + 56022y zu® + 35623 yzw?u?
+ 356x1° 22 wu? — 622y 23 u? — 622y wiu? — 42?22 wu? — 4y Bwu?

+ 2423y? 2u® + 242 yPwud + 1623w3u® + 163230 + 1822y 22 wu®

+ 18zy% 2w*u® — 223 ywut — 72zxy3 2ut + 32021yt — 5021y 2? — 5022y w?
+ 22502y° 22 + 22502 yw? + 14423 yw? + 144zy>2* + 976823 y> 2w

+ 16023y 23w + 1602y 2w — 9002t zw3 — 900y 23w — 57622 2w5 — 5761 25w
— 5428x%1% 2%w? — 128222 w? — 128y2 22wt — 96y 23w + 14422y 2w

— 642w + 20002°y%u 4+ 200022y u — 2050z yzwu — 20502y  zwu

— 682x3y2w2u — 682x2y3z2u — 192x2yz4u — 1921:y2w4u + 3272x2yzw3u

+ 3272:Uy223wu + 320z2%whu + 320yz4w2u — 208:1:3y3u2 + 825z w?u?

+ 825y 22u? + 102023y 2%u? 4+ 10202y w?u? + 24z wtu? + 24y? 24>

+ 14422 22 wu? 4 144y? 2w3u? — 1584zy 22w u® + 1623w3u? — 900z yu®

— 9002y u3 — 63023 zwu® — 630y° 2wu® — 10822 yw?u® — 108zy?22u®

— T2zzwu® — T2y23wu® — 2722220t — 27y%w?u? + 324xyzwu® + 10823u°
+108y3u® — 25002°yz — 2500xy°w — 170022y*z — 1700z y?w + 248z 23
+ 248z 2w + 2562225 4 256y2w® 4+ 20002 22w + 2000y* zw? — 1304023y zw?
— 130402y 2%w + 481622 22w + 4816y 23 w? + 51225w? + 51222wd

— 640zyzw? — 375025 wu — 3750y° zu — 1233023y% zu — 1233022y wu

— 160023 23u — 1600y3w3u — 12023 w3u — 1203 23u + 56023 2%w?u
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+ 560y 22w?u + 1015222y 22 wu + 101522y zw?u + 768xw’u + 768y2°u

— 2496x23w?u — 2496y 22 w3u 4+ 22502 zu? + 2250y wu? + 198023 ywu?

+ 1980xy3 zu? — 453622 zwu? — 45361 2%wu? — 4464zy23u? — 4464xyw3u’
— 576z%wu? — 576zw*u? + 394222y zu® + 3942zy2wu® + 2808z 2% wu?

+ 2808y zw?u® 4+ 162z wu? + 162y%zu* + 10823u* + 108w3u* — 486z 2u°

— 486ywu® + 31252°% + 41023y> + 3125y° + 1560023y2% + 156002y>w?

+ 1500y 22 + 1500zt w? — 19222w* — 192y22* — 1056022 23w — 10560y 2>
+ 874822y zw — 640xyztw 4 15264zy2°w? — 102425 — 4352230 — 1024w"
+ 2250z yu + 2250yt u + 198002 zwu + 19800y zwu + 1663222 ywu

+ 16632xy%2%u + 691222 u + 6912yw*u — 5760z zwu — 5760y z3wu

+ 1541722y u? — 2412222 2wu® — 972022 2%u? — 972052 w?u? — 228962y zwu?
+ 82082%w?u? — 1350x3u> — 1350y + 5832zw?u® 4 5832y2%u® — 6318xyu’
— 4860zwu? + 729u’ — 225002z — 22500y w — 1800z z — 180023 yw

— 21888zy2> — 21888zyw® — 648022 2w? — 6480y° 2%w + 92162 w + 92162w*
— 31320x2%yzu — 31320zy?wu — 3456xz%wu — 3456yzw3u — 2754022 wu?

— 275402 zu? — 864023u? — 8640w3u? + 21384z zu’ + 21384ywu® + 540x2y>
+ 432002222 + 43200y%w? + 31968zyzw — 1728022w? + 2700023u + 27000y%u
+ 46656y 2%u + 46656zwu + 15552zyu’ + 3888zwu? — 8748u* — 324002%w

— 3240032z — 1382423 — 13824w> — 77760z2u — T7760ywu + 38880xy

+ 62208zw + 34992u? — 46656

7
Proof. Compare the coefficients of G 5 + Z a;G; s and f in Theorem 6.7, we have

i=2
1—2s°
T =20, Y= 28303, 2= —5— —3saz + a3 + ay,
s
8 2

§° —2s

w = 374 + s3a2 — 352a3 + s2a4, U= —2804.
Eliminate o, a3, ay and s from the above equalities, we have discg (x,y, z,w,u) = 0. (]

Corollary 6.9. For ff(g 5 f =S¢ +pT5,1 + qT472 + T‘8373 4+ sUS3 + tUT271 - 3(1 + 2p+
2q +r + s+ 2t)U?, the edge discriminant of Pt is the following disci’.
T(p,q,r) = 8p* + p*q® — 4p’r — 42p°q — 4¢° + 18pgr
+9p? + 36¢° + 54pr — 27r? — 108¢ + 108.

: .S
discg

Proof. Since

discd (p,p, ¢, ¢, 7) = (2p — 2q + 1 — 2)(2p + 2q + 7 + 2) (discy" " (p, g, 7“))2,

we have the conclusion. 0

We don’t know a lot about Pg and ngJr, but we can prove the following examples at
once using the results in this section.
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Example 6.10. For any a, b, ¢ € R, the following hold:

(1) 256 + 16855 > 9T, 5.

(2) So+6U > US3.

(3) (V2 —1)Ts1 +4S33 > 2(v/2 4+ 1)US3. Equality holds ifa =b=cor (a:b:c) =
(1++2:1:1) or so on.

(4) (1 — a)Ts1 + 6aU? > 2US3, here a ~ 0.5681144549 is a root of 23a* — 38a3 +
3502 — 40a + 16 = 0. Equality holds if a =b=cor (a:b:¢c) = (3:1: 1), here
B ~ 0.8499070444 is a root of B* +43% + 32 — 28 — 2 = 0.

(5) (1—7)T5,1+67U? > UTs 1, here v ~ 0.8392059669 is a root of 2373 —217%+5y—3 = 0.
Equality holds if a=b=cor (a:b:¢) = (6:1:1), here § ~ 0.5651977174 is a root
of 203 + 262 —1=0.

(6) (1—e)Se+eS3,3 > USs, here e ~ 0.9384024897 is a oot of 273 —108e2+117e—37 = 0.
Equality holds ifa=b=cor (a:b:c)=((:1:1), here ¢ ~ 1.8793852416 is a root
of (3-3C—-1=0.

(7) (1 —=2n)Se +nUTs; > USs, here n ~ 0.4070962548 is a root of

514n° — 15015 4 18247 — 1106n> + 3261 — 37 = 0.

Equality holds ifa=b=cor (a:b:¢c)=(0:1:1), here § ~ 0.8236644431 is a root
of 20° + 50 +46° — 40 — 2 = 0.
(8) V456 + (3 — V4)U? > 35, 4.

9) 5o+ \/13+16\/§—1S - V13 +16vV2+1
6

2 2,4 = 2

4,2-

About four variables cases, TPZ?;F =P(P%, HY), Pi% = P(PR, H5%), and ij?j =P(P3,
HY) are determined in [4].
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