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Tetsuya Ando

Abstract We determine the geometric structures of the families of three variables cubic and
quartic cyclic homogeneous inequalities of certain classes. These structures are determined
by studying some real algebraic surfaces.

1. Introduction.
Symmetric or cyclic homogeneous polynomial inequalities are one of the most elemen-

tary inequalities. But they are not studied well. We may dare say that we know only a
few even about three variables cyclic homogeneous inequalities. The aim of this article is to
present a geometric method in order to deal with the cubic and quartic cyclic homogeneous
inequalities in three variables. We sketch the history. Articles on polynomial inequalities
are very few. One of the most important symmetric homogeneous inequalities is Muirhead’s
inequality published in 1902 ([5]), which says that if

l1 + l2 + · · ·+ ln = m1 + m2 + · · ·+ mn,

l1 + l2 + · · ·+ lk ≥ m1 + m2 + · · ·+ mk (∀k = 1, 2,. . ., n− 1),
then the inequality ∑

σ∈Sn

al1
σ(1)a

l2
σ(2) · · · aln

σ(n) ≥
∑

σ∈Sn

am1
σ(1)a

m2
σ(2) · · · amn

σ(n)

holds for any a1 ≥ 0,. . ., an ≥ 0.
The following Schur’s inequality is also discovered around this age:

(ad + bd + cd) + abc(ad−3 + bd−3 + cd−3)
≥ (ad−1b + bd−1c + cd−1a) + (abd−1 + bcd−1 + cad−1)

holds for all a ≥ 0, b ≥ 0, c ≥ 0 and integers d ≥ 3.
It is mystery that no generalization of Schur’s inequality is known yet in the case of

more than three variables, except the case of degree three (see [2] p.271 Q4). During about
a hundred years, there is no essential development. Recently, Ĉırtoaje discovered some
important theorems about three variable homogeneous inequality. One of them is as the
following:
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Theorem. ([4]) (1) Let f(x, y, z) be a quartic symmetric homogeneous polynomial. Then,
f(x, y, z) ≥ 0 for any x, y, z ∈ R, if and only if

f(1, 0, 0) ≥ 0 and f(x, 1, 1) ≥ 0 (∀x ∈ R).

(2) Let f(x, y, z) be a symmetric homogeneous polynomial with 3 ≤ deg f ≤ 5. Then,
f(x, y, z) ≥ 0 for any x, y, z ≥ 0, if and only if

f(x, 1, 0) ≥ 0 and f(x, 1, 1) ≥ 0 (∀x ≥ 0).

He also obtained similar theorem for symmetric homogeneous polynomials with 6 ≤
deg f ≤ 8. But we omit it because its statement is long. The following theorem is also
fundamental.

Theorem. ([3]) Let p, q, r be any real numbers. The cyclic inequality

(a4 + b4 + c4) + r(a2b2 + b2c2 + c2a2) + (p + q − r − 1)abc(a + b + c)
≥ p(a3b + b3c + c3a) + q(ab3 + bc3 + ca3)

holds for any a, b, c ∈ R if and only if 3(1 + r) ≥ p2 + pq + q2.

We analyze the above theorem using a convex cone. Let

R+ :=
{
x ∈ R ∣∣ x ≥ 0

}
,

Cd :=





f(a, b, c)

∣∣∣∣∣∣∣∣∣

f is a cyclic homogeneous polynomial
of degree d, such that
f(a, b, c) ≥ 0 for ∀a, b, c ∈ R,
and that f(1, 1, 1) = 0.





,

C+
d :=





f(a, b, c)

∣∣∣∣∣∣∣∣∣

f is a cyclic homogeneous polynomial
of degree d, such that
f(a, b, c) ≥ 0 for ∀a, b, c ∈ R+,
and that f(1, 1, 1) = 0.





,

Sd :=
{
f ∈ Cd

∣∣ f is symmetric
}
,

S+
d :=

{
f ∈ C+

d

∣∣ f is symmetric
}
.

Ĉırtoaje’s inequality implies that C4 is an ellipsoid cone in R4. We can also determine the
structures of S4 and S+

4 , using theorems in [3]. S4 is an elliptic cone in R3. The base of S+
4 is

a domain in R2 enclosed by a part of the ellipse and two line segments. These are explained
later. Note that Cd = Sd = 0 if d is odd. It is easy to see that

C2 = C+
2 = S2 = S+

2 = R+ · (a2 + b2 + c2 − bc− ca− ab),

and these are a half line. In this article, we shall determine the structures of C+
3 , S+

3 and
C+

4 . As consequences, S+
3 is a sector on a plane. C+

3 is a cone in R3 whose base is a domain
in R2 enclosed by a part of quartic curve and a line segment. The base of C+

4 ⊂ R4 is a
domain in R3 enclosed by three surfaces, one is a part of the ellipsoid, the others are parts
of ruled surfaces. The following inequalities can be proved as a direct corollary of this fact.
Note that these are analogues of Schur’s inequality.

Let a ≥ 0, b ≥ 0, c ≥ 0, then the following hold:
3
√

4
3

(a3 + b3 + c3) +
(
3− 3

√
4
)
abc ≥ a2b + b2c + c2a, (1.1)
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(a3 + b3 + c3) +

√
16
√

2 + 13− 1
2

(a2b + b2c + c2a)

≥
√

16
√

2 + 13 + 1
2

(ab2 + bc2 + ca2), (1.2)

(a4 + b4 + c4) +

(
4 4
√

3
3

− 1

)
abc(a + b + c) ≥ 4 4

√
3

3
(a3b + b2c + c3a), (1.3)

(a4 + b4 + c4) + α(a3b + b3c + c3a) ≥ (α + 1)(ab3 + bc3 + ca3), (1.4)
here α = 1.37907443362539958016 · · · is a root of
4α6 + 12α5 − 48α4 − 116α3 + 24α2 + 84α + 229 = 0.

(a4 + b4 + c4) + β(a3b2 + b2c2 + c2a2) ≥ (β + 1)(a3b + b3c + c3a), (1.5)
here β = 2.18452974131524781307 · · · is a root of
4β5 + 19β4 − 32β3 + 2β2 − 36β − 229 = 0.

(a4 + b4 + c4) + γ(a3b + b3c + c3a) ≥ (γ + 1)(a2b2 + b2c2 + c2a2), (1.6)
here γ = 5.07790940231978661368 · · · is a root of
4γ5 + γ4 − 68γ3 − 172γ2 − 192γ + 144 = 0.

These inequalities are located on the boundary of C+
d . Note that Schur’s inequality is located

on the boundaries of S+
d and C+

d .
We shall explain the outline of our theory. Let

Si,j,k(a, b, c) := aibjck + bicjak + ciajck.

Take an index set Id so that the set {Si,j,k

∣∣ (i, j, k) ∈ Id

}
is a base of the vector space{

f(a, b, c)
∣∣ f is a cyclic homogeneous polynomial of degree d

}
. Define the holomorphic

map ϕd:P2
R −→ PN

R (N = #I − 1 = d(d + 1)(d + 2)/6e − 1) by ϕ(a : b : c) =
(
Si,j,k(a, b, c)

∣∣
(i, j, k) ∈ I

)
. Then Xd := ϕd(P2

R) is (a closed domain of) a real projective surface of degree
d. Consider Xd in an affine space RN with the origin (1 : 1 : · · · : 1) ∈ PN

R , and take the
convex cone Dd ⊂ RN generated by Xd. Then Cd can be identified with the dual convex
cone of Dd. It seems that Xd is the whole part of algebraic surfaces, but this is not true for
symmetric polynomials. That is, it is only a closed domain of a surface.

Similarly, let P2
+ :=

{
(a : b : c) ∈ P2

R
∣∣ a ≥ 0, b ≥ 0, c ≥ 0

}
, X+

d := ϕd(P2
+), and D+

d be
the convex cone generated by X+

d . Then C+
d can be identified with the dual convex cone of

D+
d . Thus, if we study an algebraic surface Xd or its closed domain X+

d , we can determine
the structure of the convex cone Cd or C+

d , and we can obtain the sharpest inequalities.
It may be possible to determine the structures of C+

d , Cd, S+
d , Sd for d ≥ 5. But

the structure of Xd or X+
d is not so simple for d ≥ 5. It may also possible to do similar

observation for more than three variables inequalities, if we study the structure of higher
dimensional projective varieties. Theoretically it will be possible, but the calculation is
complicated. The author tried this in vain, and expects the research in the future.

2. Main Theorems.

We use the same notation as in the section 1, and we denote

Si = Si(a, b, c) := ai + bi + ci,

Si,j = Si,j(a, b, c) := aibj + bicj + ciaj ,
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U = U(a, b, c) := abc,

Ti,j = Ti,j(a, b, c) := Si,j(a, b, c) + Sj,i(a, b, c).

Theorem 1. Let

fs(a, b, c) := s2S3 − (2s3 − 1)S2,1 + (s4 − 2s)S1,2

− 3(s4 − 2s3 + s2 − 2s + 1)U,

f∞(a, b, c) := S1,2 − 3U.

Then, the following hold.

(1) The boundary of the convex cone C+
3 is

R+ ·
{
fs

∣∣ s ∈ [0, ∞]
} ∪ (

R+ · f0 + R+ · f∞
)
.

(2) If f ∈ C+
3 , then we can find α, β, s ∈ R+ such that f = αfs + βf∞.

(3) Let f(a, b, c) = S3+pS2,1+qS1,2+rU be a cyclic polynomial such that 3+3p+3q+r =
0. Then, f ∈ C+

3 if and only if

4p3 + 4q3 + 27 ≥ p2q2 + 18pq,

or “p ≥ 0 and q ≥ 0”.

(4) S+
3 = R+ · (T2,1 − 6U) + R+ ·

(
S3 + 3U − T2,1).

Note that S3 + 3U − T2,1 ≥ 0 is Schur’s inequality.

Theorem 2. Let

gp,q(a, b, c) := S4 − pS3,1 − qS1,3

+
(

p2 + pq + q2

3
− 1

)
S2,2 +

(
p + q − p2 + pq + q2

3

)
US1,

g∞(a, b, c) = gp,∞(a, b, c) = g∞,q(a, b, c) := S2,2 − US1,

hs(a, b, c) := S3,1 + s2S1,3 − 2sS2,2 − (s− 1)2US1,

h∞(a, b, c) := S1,3 − US1,

ks,t(a, b, c) := s2S4 − (2s3 − st)S3,1 + (s3t− 2s)S1,3

+ (s4 − 2s2t + 1)S2,2 +
(
s2 − (s− 1)2(s2 + st + 1)

)
US1.

Then, the following hold.

(1) C4 is an ellipsoid cone whose boundary is

R+ ·
({

gp,q

∣∣ (p, q) ∈ R2
} ∪ {

g∞
})

.

(2) If f ∈ C4, then we can find p, q ∈ R, and α, β ∈ R+ such that f = αgp,q + βg∞.
(See [3])

(3) The boundary of C+
4 is

R+ ·
({

gp,q

∣∣ 9(p + q)2 − (p− q)2 ≥ 62, p + q ≥ 0
} ∪ {

g∞
})

∪ R+ ·
{
ks,t

∣∣ s ≥ 0, t ≥ 1
} ∪ (

R+ · k0,1 + R+ ·
{
hs

∣∣ s ∈ [0, ∞]
})

.

(4) If f ∈ C+
4 , then we can find α, β, t ∈ R+ and s ∈ [0, ∞] such that

f = αhs + βgp(t,s),q(t,s),
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here

p(t, s) :=
S1(t, s, 1)

(
T2,1(t, s, 1)− 6U(t, s, 1)− 3(t− s)(s− 1)(1− t)

)

2(S2,2(t, s, 1)− U(t, s, 1)S1(t, s, 1))
− 1,

q(t, s) :=
S1(t, s, 1)

(
T2,1(t, s, 1)− 6U(t, s, 1) + 3(t− s)(s− 1)(1− t)

)

2(S2,2(t, s, 1)− U(t, s, 1)S1(t, s, 1))
− 1.

Note that gp,q ≥ 0 is Ĉırtoaje’s inequality.

Corollary 3. Use the same notation as Theorem 2, and let

gp := gp,p = S4 − pT3,1 + (p2 − 1)S2,2 + (2p− p2)US1.

Then, the following hold.
(1) S4 is an elliptic cone whose boundary is R+ ·

{
gp

∣∣ p ∈ R ∪ {∞}}. Thus, if f ∈ S4,
then we can find α, β, p ∈ R+ such that f = αgp + β(S2,2 − US1). (See [3])

(2) The boundary of S+
4 is

R+ ·
{
gp

∣∣ p ∈ [1, ∞]
} ∪ (

R+ · g1 + R+ · (T3,1 − 2S2,2)
)

∪ (
R+ · g∞ + R+ · (T3,1 − 2S2,2)

)
.

Thus, if f ∈ S+
4 , then we can find α, β ∈ R+ and p ∈ [0, ∞] such that f = αgp + β(T3,1 −

2S2,2). (See [3])

We shall prove the inequalities (1.1)—(1.6) in the section 1, using above theorems. (1.1)

and (1.2) are obtained from fs ≥ 0, putting s = 3
√

2 or s =
1 +

√
2−

√
2
√

2− 1
2

respectively.

(1.3) is obtained from ks,t ≥ 0 putting (s, t) =
(

4
√

3, 2/
√

3
)
. (1.4) is obtained from ks,t ≥ 0,

eliminating s and t from α = −(2s+ t/s), s2 +1/s2−2t = 0, 1− (s−1)2(1+ t/s+1/s2) = 0.
(1.5) and (1.6) can be obtained by the similar way.

3. Proof of Theorem 1.

Throughout this paper, we fix the following notation.

Pn
R := (real projective space).

(x0 : x1 : · · · : xn) the system of homogeneous coordinates of Pn
R.

P2
+ :=

{
(a : b : c) ∈ P2

R
∣∣ a ≥ 0, b ≥ 0, c ≥ 0

}
.

It is well known that for any a, b, c ∈ R, the inequalities S4 ≥ S3,1, S4 ≥ S2,2 ≥ US1 hold.
Moreover, if a, b, c ∈ R+, then S3 ≥ S2,1 ≥ 3U , S3,1 ≥ US1, T3,1 ≥ 2S2,2 hold.

Proof of Theorem 1. (1) (i) Ws shall prove that fs ∈ C+
3 for s ≥ 0.

Since fs(b, a, c) = s4f1/s(a, b, c), we may assume that 0 ≤ a ≤ b ≤ c = 1. Let k :=
(1− b)/(1− a). Since 0 ≤ a ≤ b, we have 0 ≤ k ≤ 1. Then we have

fs(a, b, c) = fs(a, 1− k(1− a), 1)

= (1− a)2
{

a(1− ks)2(k + s2) +
(
1 + (1− k)s2

)
(1− k − s)2

}

≥ 0.

Note that fs(0, s, 1) = 0. We recommend readers to use computer to check some complicated
equalities which appear in this article as the above.

5



(ii) We shall observe X+
3 .

Let ϕ3:P2
R −→ P3

R be the holomorphic map defined by
ϕ3(a : b : c) :=

(
S3(a, b, c) : S2,1(a, b, c) : S1,2(a, b, c) : U(a, b, c)

)
,

and let
X+

3 := ϕ3(P2
+),

f0(s) := s3 + 1, f1(s) := s2, f2(s) := s, f3(s) := 0,

C3 :=
{
(f0(s) : f1(s) : f2(s) : f3(s)) ∈ X+

3

∣∣ s ∈ R+

}

=
{
(ϕ3(0 : s : 1) ∈ X+

3

∣∣ s ∈ R+

}
.

Note that C3 is the boundary of X+
3 , and C3 is a nodal plane cubic curve whose node is at

(1 : 0 : 0 : 0).

(1 : 0 : 0 : 0)

(1 : 0 : 0 : 1/3)

(1 : 1 : 1 : 0)

P3 = (1 : 1 : 1 : 1/3)

(1 : 1 : 0 : 0)

(1 : 0 : 1 : 1/3)

C3

X+
3

The defining equation of X3 := ϕ3(P4
R) is

x3
1 + x3

2 + 9x3
3 − 6x1x2x3 − x0x1x2 + 3x0x

2
3 + x2

0x3 = 0, (3.1)
and X3 has a rational double point of the type A1 at P3 := (1 : 1 : 1 : 1/3). Let

V 3 :=
{
(x0 : x1 : x2 : x3) ∈ P3

R
∣∣ x0 6= 0

} ∼= R3,

and we choose a system of coordinates (x, y, z) of V 3 as

x = (x, y, z) =
(

x1

x0
− 1,

x2

x0
− 1,

x3

x0
− 1

3

)
.

Note that the coordinate of P3 is (x, y, z) = (0, 0, 0). Let D+
3 ⊂ R3 be the convex cone in

V 3 generated by X+
3 ⊂ V 3 = R3.

(iii) We shall show that C+
3 can be identified with the dual convex cone of D+

3 , i.e.
(D+

3 )⊥ :=
{
f ∈ R3

∣∣ (f · x) ≥ 0 for ∀x ∈ D+
3 .

}
.

Any three variables cyclic cubic homogeneous polynomial can be written as
f(a, b, c) = p0S3 + p1S2,1 + p2S1,2 + p3U, (∃p0,. . ., p3 ∈ R).

For this f , we denote
Ff (x0, x1, x2, x3) := p0x0 + p1x1 + p2x2 + p3x3,

nf := (p1, p2, p3) ∈ R3.

Assume that f ∈ C+
3 . Then 3p0 + 3p1 + 3p2 + p3 = 0, and p0 = f(1, 0, 0) ≥ 0. Let

x ∈ X+
3 ⊂ D+

3 , and assume that x corresponds to (x0 : x1 : x2 : x3) = ϕ3(a : b : c)
(∃(a : b : c) ∈ P2

+). Since f ∈ C+
3 ,

(nf · x) =
Ff (x0, x1, x2, x3)

x0
=

f(a, b, c)
S3(a, b, c)

≥ 0.
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Since X+
3 generates D+

3 , (nf · x) ≥ 0 for ∀x ∈ D+
3 . Thus nf ∈ (D+

3 )⊥, and C+
3 can be

identified with (D+
3 )⊥, corresponding f to nf .

(iv) We shall show that fs is located on the boundary of C+
3 .

Let Fs be the plane in P3
R which tangents to C3 at Qs := ϕ(0 : s : 1) = (f0(s) : f1(s) :

f2(s) : f3(s)) and which passes through P3. The defining equation of Fs is given by.

− 3

∣∣∣∣∣∣∣

x0 x1 x2 x3

f0(s) f1(s) f2(s) f3(s)
d
dsf0(s) d

dsf1(s) d
dsf2(s) d

dsf3(s)
1 1 1 1/3

∣∣∣∣∣∣∣
= s2x0 − (2s2 − 1)x1 + (s4 − 2s)x2 − 3(s4 − 2s3 + s2 − 2s + 1)x3.

This corresponds to fs. By (i), fs ∈ C+
3 = (D+

3 )⊥. Thus fs lies on the boundary of C+
3 . This

fact also implies that
{
Qs

∣∣ s ∈ [0, ∞]
} ⊂ C3 generates D+

3 , and

D+
3 =

{
x ∈ V 3

∣∣ (fs · x) ≥ 0 for ∀s ∈ [0, ∞]
}
.

Let B3 := R+ ·
{
fs

∣∣ s ∈ [0, ∞]
}
, and C+b

3 be the boundary of C+
3 . Above observation implies

that B3 ⊂ C+b
3 .

(v) We shall determine C+b
3 −B3, and shall prove (1).

Note that Q0 = Q∞ is the node of C3, and C3 is smooth at Qs if s ∈ (0, ∞). The
boundary of B3 is R+ · f0 ∪R+ · f∞. Let B′

3 := R+ · f0 +R+ · f∞. A point on B′
3 corresponds

to a surface which tangents X+
3 at Q0 and which passes through P3. Thus B′

3 ⊂ C+b
3 , and

we conclude that C+b
3 = B3 ∪B′

3. Therefore, we obtain (1).

(2) If f lies on the boundary of C+
3 , then (2) is trivial. Assume that f is an interior

point of C+
3 . The half line from f∞ to f crosses R+ · B3 at a point β′fs (∃β′ > 0, ∃s ∈ [0,

∞)). Then, we can write f in the form f = αfs + βf∞.

(3) Eliminate s from p = −2s3 − 1
s2

, q =
s4 − 2s

s2
, we obtain 27+4p3+4q2 = p2q2+18pq.

If observe the graph of this curve, we have the conclusion. Note that since the dual curve
of a plane nodal cubic curve is a quartic curve, B3 is generated by a part of a plane quartic
curve.

(4) Let ψ3:P2
R −→ Z2 := P2

R be the holomorphic map defined by

ψ3(a : b : c) := (S3(a, b, c) : T3(a, b, c) : U(a, b, c)),

and let π3:P3
R −→ Z2 = P2

R be the rational map defined by

π3(x0 : x1 : x2 : x3) := (x0 : x1 + x2 : x3).

Let Y +
3 := ψ3(P2

+) = π3(X+
3 ) ⊂ Z2, and denote y1 := x1 + x2, y2 := x1 − x2,

η3(x0, y1, x3) := 4x2
0x3 + 12x0x

2
3 + 36x3

3 − 6x3y
2
1 + y3

1 − x0y
2
1 .

Then, (3.1) can be written as η3(x0, y1, x3) + y2
2(x0 + 6x3 + 3y1) = 0. Thus,

Y +
3 =

{
(x0 : y1 : x3) ∈ Z2

∣∣∣∣
η3(x0, y1, x3) ≤ 0,
x0 ≥ 0, y1 ≥ 0, x3 ≥ 0.

}
.

Note that η3(x0, y1, x3) = 0 defines the cubic curve which has the cusp at (1 : 2 : 1/3), and
which has a parameterization(

(4− 6m2 + 3m3) : (8− 16m + 12m2 − 3m3) : (−4 + 8m− 5m2 + m3)
)
,
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(1 ≤ m ≤ 2).

-y1/x0

6
x3/x0

1 2

1/3 π3(P3)

Y +
3

As the above figure,

Y +
3 ⊂ {

(x0 : y1 : x3) ∈ Z2
∣∣ y1 − 6x3 ≥ 0, x0 + 3x3 − y1 ≥ 0.

}
.

Thus, the boundary of S+
3 is R+ · (T2,1 − 6U) + R+ ·

(
S3 + 3U − T2,1).

4. Proof of Theorem 2.

Proof of Theorem 2. (1) We denote

Gp,q(x0, x1, x2, x3, x4) := x0 − px1 − qx2

+
(

p2 + pq + q2

3
− 1

)
x3 +

(
p + q − p2 + pq + q2

3

)
x4.

G∞(x0, x1, x2, x3, x4) := x3 − x4.

Hs(x0, x1, x2, x3, x4) := x1 + s2x2 − 2sx3 − (s− 1)2x4.

H∞(x0, x1, x2, x3, x4) := x2 − x4,

Ks,t(x0, x1, x2, x3, x4) := s2x0 − (2s3 − st)x1 + (s3t− 2s)x2

+ (s4 − 2s2t + 1)x3 +
(
s2 − (s− 1)2(s2 + st + 1)

)
x4.

(i) We shall show that gp,q ∈ C4 for ∀p, ∀q ∈ R.
As Ĉırtoaje([3]) had shown,

3gp,q(a, b, c) =
∑

cyclic

(2a2 − b2 − c2 − pab + (p + q)bc− qca)2 ≥ 0.

(ii) We shall show that hs, ks,t ∈ C+
4 for s ≥ 0 and t ≥ 1.

Since S1,3 ≥ US1 for a, b, c ∈ R+, we have

hs(a, b, c) = s2(S1,3 − US1)− 2s(S2,2 − US1) + (S3,1 − US1)

= (S1,3 − US1)
(

s− S2,2 − US1

S1,3 − US1

)2

+
US1(S2 − S1,1)2

S1,3 − US1

≥ 0,

ks,t(a, b, c) = s2g2s−1/s,2/s−s(a, b, c) + s(t− 1)hs(a, b, c) ∈ C+
4 .

Note that p(0, s) = 2s− 1/s, q(0, s) = 2/s− s, and

gp(s,t),q(s,t)(s, t, 1) = 0, hs(0, s, 1) = 0, ks,t(0, s, 1) = 0.

(iii) We shall show that ks,t /∈ C+
4 if t < 1, s ≥ 0.
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Since ks,t(b, a, 1) = s4k1/s,t(a, b, 1), we may assume that 0 < s ≤ 1. Let t > 0 and
p > max{2, 12t/s}. Then,

ks,1−t(st/p, s, 1)

= −s2t2

p4

(
p2(p− 1)(1− s) + p3s2(1− s2) + p2s5(1− s)

+ p3s5 + p(2p− 1)s3t + 2ps5t + ps3(1− s)t2 + (2p− 1)s4t2

+
{
p2(p− 1)s3 − p(3p− 2)s2t− 3p2s4t− ps4t

})
.

Since t < ps/12 and p/2 < p− 1, we have
p(3p− 2)s2t + 3p2s4t + ps4t = ps2t((3p− 2) + (3p + 1)s2)

<
p2s3

12
(
(3p− 2) + (3p + 1)

)
<

p3s3

2
< p2(p− 1)s3.

Thus ks,1−t(st/p, s, 1) < 0.
(iv) We shall observe X4.
Let ϕ4:P2

R −→ P4
R be the holomorphic map defined by

ϕ4(a : b : c) := (S4 : S3,1 : S1,3 : S2,2 : US1),
and let X4 := ϕ4(P2

R). It is easy to see the following equalities hold.
(S3,1 + S1,3 + US1)2 − (S4 + 2S2,2)(S2,2 + 2US1) = 0
(S3,1 + S1,3 − 2US1)2 + 3(S3,1 − S1,3)2 + (S4 − 2S2,2 + US1)2 − (S4 − US1)2 = 0

Thus, the defining equations of the quartic surface X4 is
(x1 + x2 + x4)2 − (x0 + 2x3)(x3 + 2x4) = 0,

(x1 + x2 − 2x4)2 + 3(x1 − x2)2 + (x0 − 2x3 + x4)2 − (x0 − x4)2 = 0. (4.1)
We knows that X4 has a rational double point of the type A1 at P4 := (1 : 1 : 1 : 1 : 1),
from the above equations.

C4

X4

X+
4

P4 = (1 : 1 : 1 : 1 : 1)

Let V 4 :=
{
(x0 : x1 : x2 : x3 : x4) ∈ P4

R
∣∣ x0 6= 0

} ∼= R4, and we choose a system of
coordinates (x, y, z, w) of V 4 as

x = (x, y, z, w) =
(

x1

x0
− 1,

x2

x0
− 1,

x3

x0
− 1,

x4

x0
− 1

)
.

By (4.1), the defining equations of X4 ∩ V 4 are
(x + y + w + 3)2 − (2z + 3)(z + 2w + 3) = 0,

(x + y − 2w)2 + 3(x− y)2 + (2z − w)2 − w2 = 0. (4.2)
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Let W 3 =
{
(x, y, z)

∣∣ x, y, z ∈ R}
be the hyperplane defined by w = −1 in V 4, and let

ρ:P4
R −→ W 3 be the projection from the center P4. By (4.2), E := ρ

(
X4 − {P4}

)
is an

ellipsoid
E =

{
(x, y, z) ∈ W 3

∣∣ (x + y + 2)2 + 3(x− y)2 + (2z + 1)2 = 1.
}
.

Let D4 be the convex cone generated by X4 in V 4. The boundary of D4 is the cone whose
base is E. By the same argument as (iii) of the proof of Theorem 1, we conclude that C4

can be identified with the dual convex cone of D4.
(v) We shall determine the boundary of C4, and shall prove (1).
Let

g0(s, t) := S4(s, t, 1), g1(s, t) := S3,1(s, t, 1), g2(s, t) := S1,3(s, t, 1),
g3(s, t) := S2,2(s, t, 1), g4(s, t) := U(s, t, 1)S1(s, t, 1),

and let Gs,t (resp. G∞) be the hyperplane in P4
R which tangents to X4 at the point ϕ4(s :

t : 1) = (g0(s, t) : · · · : g4(s, t)) (resp. (1:0:0:0)) and which passes through P4. Since∣∣∣∣∣∣∣∣∣∣

x0 x1 x2 x3 x4

g0(s, t) g1(s, t) g2(s, t) g3(s, t) g4(s, t)
∂
∂sg0(s, t) ∂

∂sg1(s, t) ∂
∂sg2(s, t) ∂

∂sg3(s, t) ∂
∂sg4(s, t)

∂
∂tg0(s, t) ∂

∂tg1(s, t) ∂
∂tg2(s, t) ∂

∂tg3(s, t) ∂
∂tg4(s, t)

1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣
= −S1(s, t, 1)

(
S2(s, t, 1)− S1,1(s, t, 1)

)2(
S2,2(s, t, 1)− U(s, t, 1)S1(s, t, 1)

)

×Gp(s,t),q(s,t)(x0, x1, x2, x3, x4),
the defining equation of Gs,t is given by Gp(s,t),q(s,t) = 0. Note that the range of

(
p(s, t),

q(s, t)
)

is R2 ((s, t) ∈ R2). When s2 + t2 →∞, defining equation of Gs,t tends to G∞ = 0.
Thus gp,q and g∞ are on the boundary of C4.

Let ψ:P2
R −→ W 3 be the rational map defined by

ψ(a : b : c) =
(
− S4 − S3,1

S4 − US1
, − S4 − S1,3

S4 − US1
, − S4 − S2,2

S4 − US1

)
.

Take any point Q ∈ E. Since ψ = ρ ◦ ϕ4, we have ψ(P2
R) = E. Thus, there exists s, t ∈ R

such that ψ(s : t : 1) = Q, or ψ(1 : 0 : 0) = Q. Then Gs,t or G∞ tangents to E at Q. Thus,
we conclude that

B4 := R+ ·
({

gp,q

∣∣ p, q ∈ R} ∪ {
g∞

})
is the boundary of D⊥

4 = C4.

(2) can be obtained by the similar argument as the proof of (2) of Theorem 1.

(3) Let X+
4 := ϕ4(P2

+), E+ := ψ(P2
+), and let D+

4 be the convex cone generated by X+
4 .

If we obtain the convex closure E
+

of E+, we can determine D+
4 as the convex cone whose

base is E
+
. Let C+b

4 be the boundary of C+
4 .

(−1,−1,−1)

E+
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(vi) We shall determine B4 ∩ C+b
4 .

Let

k1(s) :=
s3

s4 + 1
− 1, k2(s) :=

s

s4 + 1
− 1, k3(s) :=

s2

s4 + 1
− 1,

Γ :=
{
(k1(s), k2(s), k3(s)) ∈ W 3

∣∣ s ∈ R+

}
=

{
ψ(0 : s : 1) ∈ W 3

∣∣ s ∈ R+

}
.

Γ is the boundary of E+. Note that Γ has a node at ψ(0 : 0 : 1) = (−1, −1, −1). Since{(
p(s, 0), q(s, 0)

) ∣∣ s ∈ R+

}
=

{(
p(0, s), q(0, s)

) ∣∣ s ∈ R+

}

=
{
(p, q) ∈ R2

∣∣ 9(p + q)2 − (p− q)2 = 62 and p + q ≥ 0
}
,

we know that the plane defined by Gp,q(0, x, y, z, −1) = 0 tangents to E at a point on Γ
if and only if 9(p + q)2 − (p − q)2 = 62 and p + q ≥ 0. By the above observation, we know
that B4 ∩ C+b

4 is the following B+
4 :

B+
4 := R+ ·

({
gp,q

∣∣ 9(p + q)2 − (p− q)2 ≥ 62, p + q ≥ 0
} ∪ {

g∞
})

= R+ ·
(
R+ ·

{
gp(s,t), q(s,t)

∣∣ s, t ∈ R+

} ∪ {
g∞

})
.

(vii) We shall determine one of the another parts of C+b
4 .

Let Ks (s ∈ [0, ∞])be the plane in W 3 which tangents to Γ at ψ(0 : s : 1), and which
passes through (−1, −1, −1). The equation of Ks is given by∣∣∣∣∣∣∣

x y z 1
k1(s) k2(s) k3(s) 1
d
dsk1(s) d

dsk2(s) d
dsk3(s) 0

−1 −1 −1 1

∣∣∣∣∣∣∣

=
s2

(s4 + 1)2
Hs(0, x, y, z,−1).

Thus, we know that hs lies on the boundary of C+
4 , by (ii). Let

`s :=
{
(1− τ)(−1,−1,−1) + τ · ψ(0 : s : 1)

∣∣ 0 ≤ τ ≤ 1
}

be the line segments connecting (−1, −1, −1) and ψ(0 : s : 1), and let E2 :=
⋃

s≥0

`s. The

plane defined by Hs = 0 tangents E
+

at the line segment `s on E2. Thus, the boundary of
E

+
is E+ ∪ E2.
The plane defined by Gp(s,t), q(s,t) = 0 tangents E

+
at the point ψ(s : t : 1) on E+.

Since
Ks,t = s2G2s−1/s,2/s−s + s(t− 1)Hs = s2Gp(0,s),q(0,s) + s(t− 1)Hs,

the plane defined by Ks,t = 0 tangents E
+

at the point ψ(0 : s : 1) on Γ (s ≥ 0, t ≥ 1).
Thus, ks,t (s ≥ 0, t ≥ 1) lies on the boundary of C+

4 , and
B′

4 := R+ ·
{
ks,t

∣∣ s ≥ 0, t ≥ 1
}

is a part of C+b
4 .

(viii) We shall determine C+b
4 − (B+

4 ∪B′
4), and shall prove (3).

Let B+b
4 , B′b

4 be the boundaries of B+
4 , B′

4. Note that we can identify k0,t = k0,1 with
k∞,t. As is shown in the above,

B+b
4 = R+ ·

{
gp(0,s),q(0,s)

∣∣ s ≥ 0
}

= R+ ·
{
ks,1

∣∣ s ≥ 0
}
,

B′b
4 = R+ ·

{
hs

∣∣ s ∈ [0,∞]
} ∪ R+ ·

{
ks,1

∣∣ s ≥ 0
}

∪ (R+ · h0 + R+ · k0,1) ∪ (R+ · h∞ + R+ · k0,1).
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An element of B′′
4 := R+ · k0,1 +R+ ·

{
hs

∣∣ s ∈ [0, ∞]
}

corresponds to a plane which tangents
to E

+
at the point (−1, −1, −1). Thus B′′

4 ⊂ C+b
4 . Therefore, C+b

4 = B+
4 ∪B′

4 ∪B′′
4 , and we

complete the proof of (3).

(4) For s ≥ 0, let Ms := R+ ·hs+R+ ·
{
gp(t,s),q(t,s)

∣∣ t ≥ 1
}
, and M∞ := R+ ·h∞+R+ ·g∞.

By the above observation, we conclude that
⋃

s∈[0,∞]

Ms = C+
4 . Thus, we have (4).

Remark 4. The polynomials Hs and Ks,t appear in the defining equation of the hyperplane
which tangents to the boundary of X+

4 .
Let

l0(s) := s4 + 1, l1(s) := s3, l2(s) := s, l3(s) := s2, l4(s) := 0,

C4 :=
{
(l0(s) : l1(s) : l2(s) : l4(s)) ∈ P4

R
∣∣ s ∈ R+

}

=
{
ϕ4(0 : s : 1) ∈ P4

R
∣∣ s ∈ R+

}
.

C4 is the boundary of X+
4 . Let Ls ⊂ P4

R be a hyperplane which tangents to C4 at ϕ4(0 : s : 1)
(s ≥ 0) and which passes through P4 = (1 : 1 : 1 : 1 : 1). But these conditions do not
determine Ls uniquely. Moreover we assume that Ls passes through a point (t0 : t1 : t2 :
t3 : t4). Then the defining equation of Ls is

∣∣∣∣∣∣∣∣∣

x0 x1 x2 x3 x4

l0(s) l1(s) l2(s) l3(s) l4(s)
d
ds l0(s) d

ds l1(s) d
ds l2(s) d

ds l3(s) d
ds l4(s)

1 1 1 1 1
t0 t1 t2 t3 t4

∣∣∣∣∣∣∣∣∣
= −s2(t1 + s2t2 − 2st3 − (1− s)2t4)Gp(0,s),q(0,s)

+
{
s2t0 + (s− 2s3)t1 + (−2s + s3)t2

+ (1− s2)2t3 − (1− s− s2 − s3 + s4)t4
}
Hs.

Thus the defining equation of Ls can be written as Ks,t(x0, x1, x2, x3, x4) = 0, if we take
a suitable t.

Remark 5. When we eliminate s and t from

p = −2s3 − st

s2
, q =

s3t− 2s

s2
, r =

s4 − 2s2t + 1
s2

,

we obtain

p2q2r2 − 4p3q3 + 18p3qr + 18pq3r − 4p2r3 − 4q2r3

− 27p4 − 27q4 + 16r4 − 6p2q2 − 80pqr2

+ 144p2r + 144q2r − 192pq − 128r2 + 256 = 0.

But the singularity of the surface defined by the above equation is so complicated to state
the similar proposition like (3) of Theorem 1.

Proof of Corollary 3. We use the same notation as the above proof.
(1) Let ψ4:P2

R −→ Z3 := P3
R be the holomorphic map defined by

ψ4(a : b : c) := (S4 : T3,1 : S2,2 : US1),
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and let π4:P4
R −→ Z3 = P3

R be the rational map defined by

π4(x0 : x1 : x2 : x3 : x4) := (x0 : x1 + x2 : x3 : x4).

Put Y4 := ψ4(P2
R) = π4(X4). We choose a system of coordinates of π4(V 4) ∼= R3 as

(u, z, w) =
(

x1 + x2

x0
− 2,

x3

x0
− 1,

x4

x0
− 1

)
.

Let W 2 := π4(W 3) ∼= R2, and we choose a system of coordinates of W 2 as (u, z). Note that

π4(E) =
{
(u, z) ∈ W 2

∣∣ (u + 2)2 + (2z + 1)2 ≤ 1.
}

is an ellipse. π4(D4) is the convex cone in π4(V 4) whose base is π4(E) and whose vertex
is (0, 0, 0). Since the line defined by −pu + (p2 − 1)z = 2p − p2 (resp. z = −1) tangents

to the ellipse (u + 2)2 + (2z + 1)2 = 1 at
(

2p

1 + p2
− 2, − p2

1 + p2

)
(resp. at (−2, −1)), we

conclude that gp (resp. g∞) lies on the boundary of S4 = (π4(D4))⊥. It is easy to see that
these surround S4. Thus R+ ·

{
gp

∣∣ p ∈ R ∪ {∞}} is the boundary of S4, and we have (1).

(2) Let ψ2:P2
R −→ W 2 be the rational map defined by

ψ2(a : b : c) =
(
−2S4 − T3,1

S4 − US1
, − S4 − S2,2

S4 − US1

)
,

and let C2 :=
{
ψ2(0 : s : 1)

∣∣ s ∈ [0, ∞]
}
. Since ψ2 = π4 ◦ ψ, π4(E+) = ψ2(P2

+). Since the
defining equation of C2 is 2(z + 5/4)2 − (u + 2)2 = 1/8, we have that

π4(E+) =
{

(u, z) ∈ W 2

∣∣∣∣
(u + 2)2 + (2z + 1)2 ≤ 1,
2(z + 5/4)2 − (u + 2)2 ≤ 1/8

}
.

-
u

6
z

−1−2

−1/2

−1

π4(E+)

Thus, the convex closure of π4(E+) is
{
(u, z) ∈ W 2

∣∣ (u + 2)2 + (2z + 1)2 ≤ 1 and u− 2z ≥ 0
}
.

Let D′
4 be the convex cone generated by π4(E+). By the above observation, we conclude

that the boundary of the dual convex cove (D′
4)
⊥ ∼= S+

4 is the union of a surface

B′
1 := R+ ·

{
(−p, p2 − 1, 2p− p2)

∣∣ p ∈ [1, ∞]
}

= R+ ·
{
gp

∣∣ p ∈ [1, ∞]
}
,

and two faces

B′
2 := R+ · (−1, 0, 1) + R+ · (1,−2, 0) = R+ · g1 + R+ · (T3,1 − 2S2,2),

B′′
2 := R+ · (0, 1,−1) + R+ · (1,−2, 0) = R+ · g∞ + R+ · (T3,1 − 2S2,2).

Thus we have (2).
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