# Errata of Cubic and Quartic Cyclic Homogeneous Inequalities of Three Variables 

Tetsuya Ando

p.129, line 12-14 From the equation (1.5)

I wrote that:

Let $a \geq 0, b \geq 0, c \geq 0$, then the following hold:

$$
\begin{aligned}
& \left(a^{4}+b^{4}+c^{4}\right)+\beta\left(a^{3} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \geq(\beta+1)\left(a^{3} b+b^{3} c+c^{3} a\right) \\
& \text { here } \beta=2.18452974131524781307 \cdots \text { is a root of } \\
& 4 \beta^{5}+19 \beta^{4}-32 \beta^{3}+2 \beta^{2}-36 \beta-229=0
\end{aligned}
$$

But this inequality is wrong. In fact, I proved that there exists no $\beta \in \mathbb{R}$ which satisfies

$$
\left(a^{4}+b^{4}+c^{4}\right)+\beta\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \geq(\beta+1)\left(a^{3} b+b^{3} c+c^{3} a\right)
$$

for all $a \geq 0, b \geq 0, c \geq 0$.

