Some Examples of Simple Small Singularities

Tetsuya Ando

Abstract

We provide some examples of simple small singularities of higher dimensional algebraic varieties. One of them is an E_{6} type singularity $w^{2}-z^{3}+x z w+x y^{3}-3 x^{2} y z-x^{5}-x^{4} y=0$ in \mathbb{C}^{4}. We also treat small contractions of curves with heigher genera whose normal bundles are not negative.

1. Introduction

Let X be a smooth algebraic variety with $\operatorname{dim} X \geqslant 3$, and C be a smooth complete curve in X. If $\varphi: X \rightarrow Y$ is a morphism such that $P=\varphi(C)$ is a point, and that $\left.\varphi\right|_{X-C}: X-C \cong Y-P$, then φ is called a small contraction of C. Such (Y, P) is called a simple small singularity. φ is also called a small resolution of (Y, P). In general, an isolated singularity is called small if it has a resolution whose exceptional set is one-dimensional. A small singularity is called simple if the exceptional set is an irreducible curve.

For an example, the hypersurface

$$
Y_{1}=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \mathbb{C}^{4} \mid z_{1} z_{2}-z_{3} z_{4}=0\right\}
$$

has a simple small singularity at the origin $\mathbf{0} . Y_{1}$ has a small resolution $\varphi: X \rightarrow Y_{1}$ such that $C=\varphi^{-1}(\mathbf{0}) \cong \mathbb{P}^{1}$ with the normal bundle $N_{C / X} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$.

$$
Y_{2, n}=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \mathbb{C}^{4} \mid z_{1}^{2}-z_{2} z_{3}-z_{2} z_{4}^{n}=0\right\}
$$

$(n \geqslant 2)$ has also a simple small singularity at $\mathbf{0} . Y_{2, n}$ has a small resolution $\varphi: X \rightarrow Y_{2, n}$ such that $C=\varphi^{-1}(\mathbf{0}) \cong \mathbb{P}^{1}$ with $N_{C / X} \cong \mathcal{O}_{\mathbb{P}^{1}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{1}}$.

Laufer ([L]) has found a simple small singularity

$$
Y_{3, n}=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \mathbb{C}^{4} \mid z_{4}^{2}+z_{2}^{3}-z_{1} z_{3}^{2}-z_{1}^{2 n+1} z_{2}=0\right\}
$$

$Y_{3, n}$ has a small resolution $\varphi: X \rightarrow Y_{3, n}$ such that $C=\varphi^{-1}(\mathbf{0}) \cong \mathbb{P}^{1}$ with $N_{C / X} \cong \mathcal{O}_{\mathbb{P}^{1}}(-3) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)$.
In this paper, we present some more examples of simple small singularities. One of them is

$$
Y_{4}: z_{4}^{2}-z_{3}^{3}+z_{1} z_{3} z_{4}+z_{1} z_{2}^{3}-3 z_{1}^{2} z_{2} z_{3}-z_{1}^{5}-z_{1}^{4} z_{2}=0 .
$$

We also treat the case C has a higher genus in $\S 3$.

2. How to construct simple small singularities

We recall that how $Y_{1}, Y_{2, n}, Y_{3, n}$ are constructed by the method of Laufer [L].
Let $U_{1}=\mathbb{C}^{3}$ with the system of coordinate $\left(s, x_{1}, x_{2}\right)$, and $U_{2}=\mathbb{C}^{3}$ with $\left(t, y_{1}, y_{2}\right)$. We patch U_{1} and U_{2} and construct $X=U_{1} \cup U_{2}$ by the following transition function.

$$
\begin{equation*}
y_{1}=s x_{1}, \quad y_{2}=s x_{2}, \quad t=s^{-1} \tag{2.1}
\end{equation*}
$$

Tetsuya Ando

Let $C \subset X$ be the curve defined by $x_{1}=x_{2}=0$ in U_{1} and $y_{1}=y_{2}=0$ in U_{2}. The following four functions z_{1}, \ldots, z_{4} are holomorphic on X.

$$
z_{1}=y_{1}=s x_{1}, \quad z_{2}=t y_{2}=x_{2}, \quad z_{3}=y_{2}=s x_{2}, \quad z_{4}=t y_{1}=x_{1}
$$

These induce a holomorphic map $\varphi=\left(z_{1}, z_{2}, z_{3}, z_{4}\right): X \rightarrow \mathbb{C}^{4}$. It is easy to see that φ is a small contraction of $C \cong \mathbb{P}^{1}$, and the image $\varphi(X)$ is the hypersurface defined by $z_{1} z_{2}=z_{3} z_{4}$. Note that φ is the blowing up of $Y_{1} \subset \mathbb{C}^{4}$ with the center $z_{2}=z_{4}=0$.
$Y_{2, n}(n \geqslant 2)$ can be obtained using another transition function instead of (2.1).

$$
\begin{equation*}
y_{1}=s^{2} x_{1}+s x_{2}^{n}, \quad y_{2}=x_{2}, \quad t=s^{-1} \tag{2.2}
\end{equation*}
$$

In this case we find four holomorphic functions

$$
\left\{\begin{array}{l}
z_{1}=t y_{1}=s x_{1}+x_{2}^{n} \\
z_{2}=y_{1}=s^{2} x_{1}+s x_{2}^{n} \\
z_{3}=t^{2} y_{1}-y_{2}^{n}=x_{1} \\
z_{4}=y_{2}=x_{2}
\end{array}\right.
$$

Then we obtain $Y_{2, n}: z_{1}^{2}-z_{2} z_{3}-z_{2} z_{4}^{n}=0$.
This singularity is studied in $[\mathrm{R}] \S 5$. The defining ideal of C in X is $I_{C}=\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)$. I_{C} / I_{C}^{2} decompose as $\left(x_{1}\right) \oplus\left(x_{2}\right)=\left(y_{1}\right) \oplus\left(y_{2}\right)$, and transformed as $y_{1}=s^{2} x_{1}, y_{2}=x_{2}$. Thus I_{C} / I_{C}^{2} has the bidegree $(2,0)$, and $N_{C / X} \cong \mathcal{O}_{\mathbb{P}^{1}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{1}} . Y_{1}$ and $Y_{2, n}$ are not isomorphic since whose normal bundles are not isomorphic.

It will be interesting to consider the sequence of normal bundles ([R], [P]). Let $\mu_{1}: X_{1} \rightarrow X$ be the blowing up along C and $E_{1}=\mu_{1}^{-1}(C)$. If $E_{1} \neq \mathbb{P}^{1} \times \mathbb{P}^{1}$, choose C_{1} as the minimal section of the Hirzeburch surface E_{1}. Again let $\mu_{2}: X_{2} \rightarrow X_{1}$ be the blowing up along $C_{1}, E_{2}=\mu_{2}^{-1}\left(C_{1}\right)$, and E_{1}^{\prime} be the strict transform of E_{1}. If $E_{2} \neq \mathbb{P}^{1} \times \mathbb{P}^{1}$, choose C_{2} as the minimal section of E_{2}. If $E_{2} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ or $C_{2} \subset E_{1}^{\prime}$, we stop here. Otherwise we continue this process. The sequence of the bidegrees of $N_{C / X}, N_{C_{1} / X_{1}}, \ldots$ is called the sequence of normal bundles.

ThEOREM 2.1. ([P], [A4]) If (Y, P) is a simple small singularity with $C \cong \mathbb{P}^{1}$ and $\left(K_{X} \cdot C\right)_{X}=0$, then the sequence of normal bundles is one of the followings:
(i) $(-1,-1)$.
(ii) $(-2,0), \ldots,(-2,0),(-1,-1)$.
(iii) $(-3,1),(-2,-1),(-1,-1)$.
(iv) $(-3,1),(-3,0),(-2,-1),(-1,-1)$.
(v) $(-3,1),(-3,0),(-3,0),(-2,-1),(-1,-1)$.

Let $\left(a_{0}, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots$ be the sequence of normal bundles of $Y_{2, n}$. Then $\left(a_{0}, b_{0}\right)=(-2,0)$. We can choose the unique ideal J such that $I_{C} \supset J \supset I_{C}^{2}$ and that $I_{C} / J=\mathcal{O}_{C}\left(-b_{0}\right)$. Then $J_{C} / I_{C} J \cong I_{1} / I_{1}^{2} \otimes I_{C} / J$ via $\mu_{1}: C_{1} \rightarrow C$, here C_{1} is the defining ideal of C_{1} in X_{1}. It is easy to see that $J=\left(y_{1}, y_{2}^{2}\right)=\left(x_{1}, x_{2}^{2}\right)$. This observation implies

$$
\begin{aligned}
& I_{k} / I_{k}^{2} \cong\left(x_{1}\right) \oplus\left(x_{2}^{k+1}\right)=\left(y_{1}\right) \oplus\left(y_{2}^{k+1}\right) \cong \mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}} \quad(k \leqslant n-2) \\
& I_{n-1} / I_{n-1}^{2} \cong\left(x_{1}\right) \oplus\left(x_{2}^{2}+s x_{1}\right)=\left(y_{2}^{n}-t y_{1}\right) \oplus\left(y_{1}\right) \cong \mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)
\end{aligned}
$$

Thus we have $\left(a_{0}, b_{0}\right)=\cdots=\left(a_{n-2}, b_{n-2}\right)=(-2,0)$ and $\left(a_{n-1}, b_{n-1}\right)=(-1,-1)$. Therefore, if $m \neq n$, then $Y_{2, m}$ and $Y_{2, n}$ are not isomorphic. Note that this consideration is useful to find transition functions.

Some Examples of Simple Small Singularities

Laufer ([L]) has found a transition function

$$
y_{1}=s^{3} x_{1}+x_{2}^{2}+s^{2} x_{2}^{2 n+1}, \quad y_{2}=s^{-1} x_{2}, \quad t=s^{-1}
$$

($n \geqslant 1$). He fond four holomorphic functions

$$
z_{1}=y_{1}, \quad z_{2}=t^{2} y_{1}-y_{2}^{2}=s x_{1}+x_{2}^{2 n+1}, \quad z_{3}=t z_{2}-z_{1}^{n} y_{2}, \quad z_{4}=y_{2} z_{2}-s z_{1}^{n+1}
$$

and he obtained $Y_{3, n}: z_{4}^{2}+z_{2}^{3}-z_{1} z_{3}^{2}-z_{1}^{2 n+1} z_{2}=0$ with $N_{C / X} \cong \mathcal{O}_{\mathbb{P}^{1}}(-3) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)$. Since $J / I_{C} J \cong I_{1} / I_{1}^{2} \otimes \mathcal{O}_{\mathbb{P}^{1}}(-1)\left(J=\left(x_{1}\right)+I_{C}^{2}=\left(y_{1}\right)+I_{C}^{2}\right)$, and $J / I_{C} J$ splits as

$$
J / I_{C} J=\left(x_{1}\right) \oplus\left(x_{2}^{2}+s^{3} x_{1}\right)=\left(y_{2}^{2}-t^{2} y_{1}\right) \oplus\left(y_{1}\right) \cong \mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}
$$

we have $\left(a_{1}, b_{1}\right)=(-2,-1)$. Thus, $Y_{3, n}$ is of type (iii) of Theorem 2.1. This singularity with its family

$$
z_{4}^{2}+z_{2}^{3}-z_{1} z_{3}^{2}-z_{1}^{3} z_{2}+\lambda\left(z_{1} z_{2}^{2}-z_{1}^{4}\right)=0
$$

is studied in [P] Example 10.
We consider a transition function

$$
y_{1}=s^{3} x_{1}+s^{2} x_{2}^{2}+s^{-1} x_{2}^{3}+s^{-3} x_{2}^{4}, \quad y_{2}=s^{-1} x_{2}, \quad t=s^{-1} .
$$

The inverse map is given by

$$
x_{1}=t^{3} y_{1}-t^{-1} y_{2}^{2}-t y_{2}^{3}-t^{2} y_{2}^{4}, \quad x_{2}=t^{-1} y_{2}, \quad s=t^{-1} .
$$

It is not hard to check that the following four functions are holomorphic on X.

$$
\left\{\begin{array}{l}
z_{1}=s x_{1}+x_{2}^{2} \\
z_{2}=-s^{2} z_{1}+x_{1} x_{2}+x_{2} z_{1} \\
z_{3}=x_{1}^{2}+s x_{2} z_{1}+x_{1} z_{1} \\
z_{4}=s z_{1} z_{2}+x_{1} z_{3}+x_{2} z_{1}^{2}
\end{array}\right.
$$

Mathematica will show that

$$
Y_{4}: z_{4}^{2}-z_{3}^{3}+z_{1} z_{3} z_{4}+z_{1} z_{2}^{3}-3 z_{1}^{2} z_{2} z_{3}-z_{1}^{5}-z_{1}^{4} z_{2}=0
$$

Since

$$
\left\{\begin{aligned}
t & =\frac{z_{3}^{3}+3 z_{1}^{2} z_{2} z_{3}-z_{1} z_{2}^{3}+z_{1}^{5}}{z_{1} z_{3} z_{4}+z_{1}^{4} z_{2}+z_{1}^{2} z_{3}^{2}-z_{2}^{2} z_{4}}, \\
y_{1} & =\frac{z_{3}^{2} z_{4}+z_{1}^{2} z_{2} z_{4}-z_{1}^{3} z_{2} z_{3}-z_{1}^{6}}{z_{1} z_{3} z_{4}+z_{1}^{4} z_{2}+z_{1}^{2} z_{3}^{2}-z_{2}^{2} z_{4}} \\
y_{2} & =\frac{z_{2} z_{3} z_{4}+z_{1}^{3} z_{4}+z_{1}^{4} z_{3}-z_{1}^{3} z_{2}^{2}}{z_{1} z_{3} z_{4}+z_{1}^{4} z_{2}+z_{1}^{2} z_{3}^{2}-z_{2}^{2} z_{4}}
\end{aligned}\right.
$$

we know that $\varphi: X \rightarrow Y_{5}$ is a small contraction.
Since $J / I_{C} J$ splits as

$$
J / I_{C} J=\left(x_{1}\right) \oplus\left(x_{2}^{2}+s x_{1}\right)=\left(y_{2}^{2}-t^{4} y_{1}\right) \oplus\left(y_{1}\right) \cong \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2),
$$

we have $\left(a_{1}, b_{1}\right)=(-3,0)$. We choose an ideal $J \supset L \supset I_{C} J$ such that $J / L \cong \mathcal{O}_{\mathbb{P}^{1}}(-1)$. That is $L=$ $\left(x_{2}^{2}+s x_{1}, x_{1} x_{2}, x_{1}^{2}\right)=\left(y_{1}, y_{2}^{3}\right)$. Then, there exists an injection $I_{2} / I_{2}^{2} \otimes \mathcal{O}_{\mathbb{P}^{2}}(-2) \longrightarrow L /\left(I_{C} L+J^{2}\right)$. Since $y_{1}=s^{2} x_{2}^{2}+s^{3} x_{1}+s^{-1} x_{2}^{3}=s^{2} x_{2}^{2}+s^{3} x_{1}-x_{1} x_{2}$ in $I_{C} L+J^{2}$, we have

$$
\begin{aligned}
L /\left(I_{C} L+J^{2}\right) & =\left(-x_{1} x_{2}+s^{2} x_{2}^{2}+s^{3} x_{1}\right) \oplus\left(x_{2}^{2}+s x_{1}\right) \\
& =\left(y_{1}\right) \oplus\left(-y_{2}^{3}+t^{2} y_{1}\right) \cong \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}} .
\end{aligned}
$$

Thus $I_{2} / I_{2}^{2} \cong \mathcal{O}_{\mathbb{P}^{2}}(1) \oplus \mathcal{O}_{\mathbb{P}^{2}}(2)$, and, Y_{4} is of type (iv) of Theorem 2.1.

The following transition function also provides a simple small singularity.

$$
\begin{aligned}
& y_{1}=s^{3} x_{1}+s^{2} x_{2}^{2}+s^{-1} x_{2}^{3}+s^{-5} x_{2}^{6}, \quad y_{2}=s^{-1} x_{2}, \quad t=s^{-1} \\
& x_{1}=t^{3} y_{1}-t^{-1} y_{2}^{2}-t y_{2}^{3}-t^{2} y_{2}^{6}, \quad x_{2}=t^{-1} y_{2}, \quad s=t^{-1}
\end{aligned}
$$

Four holomorphic functions are

$$
\left\{\begin{aligned}
z_{1} & =x_{2}^{2}+s x_{1}=-y_{2}^{3}-t y_{2}^{6}+t^{2} y_{1} \\
z_{2} & =x_{1} x_{2}-s x_{2}^{4}-s^{2}\left(x_{2}^{2}+2 x_{1} x_{2}^{2}\right)-s^{3}\left(x_{1}+x_{1}^{2}\right) \\
& =\left(-y_{1}-y_{2}^{4}-2 y_{2}^{9}\right)+t\left(2 y_{1} y_{2}^{3}-y_{2}^{7}-y_{2}^{12}\right)+t^{2}\left(y_{1}^{2} y_{2}+2 y_{1} y_{2}^{6}\right)-t^{3} y_{1}^{2} \\
z_{3} & =x_{1}^{2}+s x_{2} z_{1}+x_{2} z_{1}^{2} \\
z_{4} & =s z_{1} z_{2}+x_{1} z_{3}+x_{2} z_{1}^{2}
\end{aligned}\right.
$$

This present a simple small singularity

$$
Y_{5}: z_{4}^{2}-z_{3}^{3}+z_{1} z_{2}^{3}-3 z_{1}^{2} z_{2} z_{3}+z_{1}^{2} z_{2} z_{4}-z_{1}^{5}+z_{1}^{5} z_{3}=0
$$

But this is isomorphic to Y_{4}.

Note that general hyperplane sections of $\left(Y_{i}, \mathbf{0}\right)$ passing through the origin are the rational double points. Those of $Y_{1}, Y_{2, n}, Y_{3, n}, Y_{4}$ are of type $A_{1}, A_{1}, D_{4}, E_{6}$ respectively. It is known there exist also those of the type E_{7} (length 4) and E_{8} (length 5,6) (see $[\mathrm{K}],[\mathrm{KM}],[\mathrm{R}],[\mathrm{M}]$). But I don't succeed to construct such equations in the above method.

3. Exceptional curves of higher genus

Now we study a small contraction $\varphi: X \rightarrow Y$ whose exceptional set is a smooth curve C of the genus $g(C) \geqslant 1$ and the normal bundle of C is not negative. To begin with, we construct an easy example to understand our method.

Let C be a smooth curve of genus g, D be a base point free effective divisor on C. Take two effective divisors D_{1} and D_{2} such that $D_{1} \sim D_{2} \sim D$ and $\operatorname{Supp} D_{1} \cap \operatorname{Supp} D_{2}=\phi$. Put $C_{i}=C-\operatorname{Supp} D_{i}$ and $U_{i}=C_{i} \times \mathbb{C}^{2}$. We represent a point in U_{1} by $\left(x_{C}, x_{1}, x_{2}\right)$ where $x_{C} \in C_{1}$, and $x_{1}, x_{2} \in \mathbb{C}$. Similarly, $\left(y_{C}, y_{1}, y_{2}\right) \in U_{2}$.

There exists a rational function s on C such that $D_{1}=D_{2}+\operatorname{div}(s) . D_{1}$ and D_{2} are zeros and poles of s respectively. We extend the rational function s on C to X by

$$
s\left(x_{C}, x_{1}, x_{2}\right)=s\left(x_{C}\right), \quad s\left(y_{C}, y_{1}, y_{2}\right)=s\left(y_{C}\right)
$$

Note that s is holomorphic on U_{1} and $t=1 / s$ is holomorphic on U_{2}.
Let $y_{C}=\tau_{C}\left(x_{C}\right)$ be the transition function on $C_{1} \cap C_{2} \subset C$ which patches C_{1} and C_{2}. We patch U_{1} and U_{2} and construct $X=U_{1} \cup U_{2}$ by the following transition function.

$$
y_{1}=s^{4} x_{1}+s x_{2}^{2}, \quad y_{2}=s^{-1} x_{2}, \quad y_{C}=\tau_{C}\left(x_{C}\right)
$$

We identify C with the zero section of X defined by $x_{1}=x_{2}=0$ in U_{1} and by $y_{1}=y_{2}=0$ in U_{2}. Since $I_{C} / I_{C}^{2} \cong \mathcal{O}_{C}(4 D) \oplus \mathcal{O}_{C}(-D)$. We have $N_{C / X}=\mathcal{O}_{C}(-4 D) \oplus \mathcal{O}_{C}(D)$.

Some Examples of Simple Small Singularities

We find the following holomorphic functions on X.

$$
\left\{\begin{array}{l}
z_{1}=s^{4} x_{1}+s x_{2}^{2}=y_{1} \\
z_{2}=s^{3} x_{1}+x_{2}^{2}=t y_{1} \\
z_{3}=s x_{1}=t^{3} y_{1}-y_{2}^{2} \\
z_{4}=x_{1}=t^{4} y_{1}-t y_{2}^{2} \\
z_{5}=x_{1} x_{2}=t^{3} y_{1} y_{2}-y_{2}^{3} \\
z_{6}=s^{3} x_{1} x_{2}+x_{2}^{3}=y_{1} y_{2}
\end{array}\right.
$$

Let $h: X \rightarrow \mathbb{C}^{6}$ be the holomorphic map defined by $\left(z_{1}, \ldots, z_{6}\right)$, and let $Z=h(X)$. It is easy to see that $Q=h(C)$ is a point, and that $h:(X-C) \longrightarrow(Z-Q)$ is a finite map. Let $X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z$ be the Stein factorization of h. Then $\varphi: X \rightarrow Y$ is a small contraction of C.

Recall that a small singularity is Cohen-Macaulay if and only if $\mathbf{R}^{1} \varphi_{*} \mathcal{O}_{X}=0$. Since there exists the natural surjection $\mathbf{R}^{1} \varphi_{*} \mathcal{O}_{X} \rightarrow H^{1}\left(C, I_{C} / I_{C}^{2}\right),(Y, P)$ can not be Cohen-Macauley if $g(C) \geqslant 1$. Thus Y is never complete intersection.

Now, remember the following theorem.

Theorem 3.1. ([A5]) Let C be a smooth exceptional curve of genus g in a smooth variety X with $\operatorname{dim} X \geqslant 3$, and let M be a subbundle of $N_{C / X}$ of the maximal degree. Put $b=\operatorname{deg} M \geqslant 0$ and $a=\operatorname{deg} N_{C / X}-\operatorname{deg} M<0$. (i.e. a is the degree of the negative part of $N_{C / X}$, and b is the degree of the positive part of $N_{C / X}$.) Then

$$
a+2 b<0
$$

We present two examples as theorems. These examples encourage the above theorem.

Theorem 3.2. We use the same notation as above. Define the transition function by

$$
\left\{\begin{array}{l}
y_{1}=s^{2 m+1} x_{1}+x_{2}^{2}+s^{2 m} x_{2}^{3} \\
y_{2}=s^{-m} x_{2} \\
y_{C}=\tau_{C}\left(y_{C}\right)
\end{array}\right.
$$

Then C admits a small contraction, and

$$
N_{C / X} \cong \mathcal{O}_{\mathbb{P}^{1}}(-(2 m+1) D) \oplus \mathcal{O}_{\mathbb{P}^{1}}(m D)
$$

Proof. It is easy to check the following z_{1} and z_{2} are holomorphic on X.

$$
\begin{aligned}
& z_{1}=y_{1}=s^{2 m+1} x_{1}+x_{2}^{2}+s^{2 m} x_{2}^{3} \\
& z_{2}=s^{-2 m} y_{1}-y_{2}^{2}=s x_{1}+x_{2}^{3} .
\end{aligned}
$$

Since

$$
u=z_{2}^{2}-z_{1}^{3}=2 s x_{2}^{3} x_{1}+s^{2} x_{1}^{2}+s^{2 m} u_{0}\left(x_{C}, x_{1}, x_{2}\right)
$$

can be divided by s, the following z_{3} and z_{4} are holomorphic on X.

$$
\begin{aligned}
& z_{3}=y_{2} u^{m} \\
& z_{4}=s^{-1} u
\end{aligned}
$$

Tetsuya Ando

For $r \geqslant 0$, We define inductively

$$
\left.\begin{array}{rl}
f_{0, r} & = \begin{cases}s^{-m} y_{1}^{r / 2} & \text { if } r \text { is even } \\
y_{2} y_{1}^{(r-1) / 2} & \text { if } r \text { is odd }\end{cases} \\
f_{q, r} & =f_{0, r} z_{2}^{q}-\sum_{i=0}^{q-1}\binom{q}{i} f_{i, 3 q-3 i+r} \quad(q=1,2, \ldots, m)
\end{array}\right\} \begin{array}{ll}
\sigma_{i}^{(q, r)} & = \begin{cases}t^{m} y_{1}^{(3 q+r-3 i) / 2} z_{2}^{i} & \text { if } q+r+i \text { is even } \\
y_{2} y_{1}^{(3 q+r-3 i-1) / 2} z_{2}^{i} & \text { if } q+r+i \text { is odd. }\end{cases}
\end{array}
$$

Since $\sigma_{i}^{(k, 3 q-3 k+r)}=\sigma_{i}^{(q, r)}$, and since $\sum_{i=a}^{b}(-1)^{i-a}\binom{b}{i}\binom{i}{a}=0$, we obtain

$$
f_{q, r}=\sum_{i=0}^{q}(-1)^{q-i}\binom{q}{i} \sigma_{i}^{(q, r)} .
$$

Since $f_{q, r}$ is a polynomial on $t, y_{1}, y_{2}, f_{q, r}$ is holomorphic on U_{2}. On the other hand, by construction,

$$
f_{q, r}=s^{q-m} x_{1}^{q} x_{2}^{r}+s^{m} g_{q, r}\left(s, x_{1}, x_{2}\right),
$$

where $g_{q, r}$ is a suitable polynomial. So, $z_{5}=f_{m, 0}$ is a holomorphic on X.
Now we have a holomorphic mapping $h=\left(z_{1}, \ldots, z_{5}\right): X \longrightarrow \mathbb{C}^{5}$. Let $X \xrightarrow{\varphi} Y \xrightarrow{g} \mathbb{C}^{5}$ be the Stein factorization of h. Since $C=h^{-1}(\mathbf{0}), \varphi(C)$ is a point. We shall show that $h:(X-C) \longrightarrow h(X-C)$ is a finite map. Let $z=\left(z_{1}, \ldots, z_{5}\right) \in h\left(U_{1}\right)-\{0\}$.

If $z_{2}^{2}-z_{1}^{3} \neq 0$, then

$$
y_{1}=z_{1}, \quad y_{2}=\frac{z_{3}}{\left(z_{2}^{2}-z_{1}^{3}\right)^{m}}, \quad t=\frac{z_{4}}{z_{2}^{2}-z_{1}^{3}} .
$$

Thus $h^{-1}(z)$ is a finite set.
Assume $z_{2}^{2}-z_{1}^{3}=0$. If $z_{2}=0$, then $z_{1}=z_{2}=z_{3}=z_{4}=z_{5}=0$. Thus we assume $z_{2} \neq 0$. Let

$$
\begin{aligned}
& \alpha= \begin{cases}\sum_{j=0}^{m / 2}\binom{m}{2 j} z_{1}^{(3 m-6 j) / 2} z_{2}^{2 j} & \text { if } m \text { is even } \\
(m-1) / 2 \\
\sum_{j=0}^{(m)}\binom{m}{2 j+1} z_{1}^{(3 m-6 j-3) / 2} z_{2}^{2 j+1} & \text { if } m \text { is odd }\end{cases} \\
& \beta= \begin{cases}(m / 2)-1 \\
\sum_{j=0}^{(m-1) / 2}\binom{m}{2 j+1} z_{1}^{(3 m-6 j-4) / 2} z_{2}^{2 j+1} & \text { if } m \text { is even } \\
\sum_{j=0}^{m}\binom{m}{2 j} z_{1}^{(3 m-6 j-1) / 2} z_{2}^{2 j} & \text { if } m \text { is odd. }\end{cases}
\end{aligned}
$$

Then we have $\alpha t^{m}-\beta y_{2}=f_{m, 0}=z_{5}$. Since $z_{1}^{3}=z_{2}^{2} \neq 0$, we have $(\alpha, \beta) \neq(0,0)$. Thus the system of equations on t and y_{2}

$$
\alpha t^{m}-\beta y_{2}=z_{5}, \quad z_{1} t^{2 m}-y_{2}^{2}=z_{2}
$$

has only finite solutions. Thus h is finite on $U_{1}-C$.
If $z=\left(z_{1}, \ldots, z_{5}\right) \in h\left(U_{2}-U_{1}\right)-\{0\}$, then $s=0$. Thus

$$
z_{1}=x_{2}^{2}, \quad z_{2}=x_{2}^{3}, \quad z_{3}=2^{m} x_{1}^{m} x_{2}^{3 m+1}, \quad z_{4}=2 x_{1} x_{2}^{3}, \quad z_{5}=x_{1}^{m} .
$$

Therefore h is finite on $X-C$.

Some Examples of Simple Small Singularities

Theorem 3.3. Let C be a smooth projective curve of any genus, and $n \geqslant 3$ be an integer. Let q and r are non-negative integers with $q+r=n-1$, and let n_{1}, \ldots, n_{q} and p_{1}, \ldots, p_{r} be any integers such that $n_{i} \geqslant 1, p_{j} \geqslant 0$ for $1 \leqslant i \leqslant q, 1 \leqslant j \leqslant r$, and that

$$
-\left(n_{1}+\cdots+n_{q}\right)+2\left(p_{1}+\cdots+p_{r}\right) \leqslant-n+1 .
$$

If D is a base point free effective divisor on C, we can construct a smooth n-dimensional variety $X \supset C$ which satisfies the following conditions.
(i) There exists a small contraction $\varphi: X \rightarrow Y$ whose exceptional set is C,
(ii) $N_{C / X} \cong \mathcal{O}_{C}\left(-n_{1} D\right) \oplus \cdots \oplus \mathcal{O}_{C}\left(-n_{q} D\right) \oplus \mathcal{O}_{C}\left(p_{1} D\right) \oplus \cdots \oplus \mathcal{O}_{C}\left(p_{r} D\right)$.

Proof. Take two effective divisors D_{1} and D_{2} such that $D_{1} \sim D_{2} \sim D$ and Supp $D_{1} \cap \operatorname{Supp} D_{2}=\phi$. Put $C_{i}=C-\operatorname{Supp} D_{i}$ and $U_{i}=C_{i} \times \mathbb{C}^{n-1}(i=1,2)$. We represent points in U_{1} and U_{2} by $x=\left(x_{C}\right.$, $\left.x_{1}, \ldots, x_{q}, u_{1}, \ldots, u_{r}\right) \in U_{1}$ and $y=\left(y_{C}, y_{1}, \ldots, y_{q}, v_{1}, \ldots, v_{r}\right) \in U_{2}$ as before. Let s be a rational function on C such that $D_{1}=D_{2}+\operatorname{div}(s)$. We extend s to U_{1}, U_{2} by $s\left(x_{C}, x_{1}, \ldots, u_{r}\right)=s\left(x_{C}\right)$ and $s\left(y_{C}, y_{1}, \ldots, v_{r}\right)=s\left(y_{C}\right)$. Note that s is holomorphic on U_{1}, and $t=1 / s$ is holomorphic on U_{2}. We identify C with the curve in X defined by $x_{1}=\cdots=x_{q}=u_{1}=\cdots=u_{r}=0$ in U_{1} and $y_{1}=\cdots=y_{q}=v_{1}=\cdots=v_{r}=0$ in U_{2}.

Let $P_{j}=2\left(p_{1}+\cdots p_{j}\right)+j\left(0 \leqslant j \leqslant r, P_{0}=0\right)$ and $N_{i}=n_{1}+\cdots+n_{i}-i\left(0 \leqslant i \leqslant q, N_{0}=0\right)$. Note that $N_{i} \geqslant 0$. Let

$$
\sigma=u_{1}^{2}+s^{P_{1}} u_{2}^{2}+s^{P_{2}} u_{3}^{2}+\cdots+s^{P_{r-1}} u_{r}^{2}
$$

(if $r=0$ then $\sigma=0$). We patch U_{1} and U_{2} and construct $X=U_{1} \cup U_{2}$ by the following transition function.

$$
\left\{\begin{aligned}
y_{i} & =s^{n_{i}} x_{i}+s^{1-N_{i-1}} \sigma \\
v_{j} & =s^{-p_{j}} u_{j} \\
y_{C} & =\tau_{C}\left(x_{C}\right)
\end{aligned}\right.
$$

Then

$$
N_{C / X} \cong \mathcal{O}_{C}\left(-n_{1} D\right) \oplus \cdots \oplus \mathcal{O}_{C}\left(-n_{q} D\right) \oplus \mathcal{O}_{C}\left(p_{1} D\right) \oplus \cdots \oplus \mathcal{O}_{C}\left(p_{r} D\right)
$$

Let

$$
\begin{aligned}
f_{1} & =y_{1}=s^{n_{1}} x_{1}+s \sigma \\
f_{i} & =y_{i}-t^{n_{i-1}-1} y_{i-1}=s^{n_{i}} x_{i}-s x_{i-1} \quad(i=2,3, \ldots, q)
\end{aligned}
$$

It is easy to see that f_{1}, \ldots, f_{q} are holomorphic on X. Let

$$
\sigma_{j}=\sum_{k=j}^{r} s^{P_{k-1}-P_{j-1}} u_{k}^{2}
$$

for $1 \leqslant j \leqslant r$. Formally, put $\sigma_{r+1}=0$. Note that $\sigma_{1}=\sigma$. For $1 \leqslant j \leqslant r$, let $I(j)$ be an integer such that $N_{I(j)}+1>P_{j} \geqslant N_{I(j)-1}\left(I(j)\right.$ is not always unique). Since $N_{q} \geqslant P_{r}$, we have $1 \leqslant I(1) \leqslant \cdots \leqslant$ $I(r) \leqslant q$. Let

$$
g_{j}=t^{P_{j}-N_{I(j)-1}} y_{I(j)}-\sum_{k=1}^{j} t^{P_{j}-P_{k}} v_{k}^{2}=s^{1+N_{I(j)}-P_{j}} x_{I(j)}+s \sigma_{j+1} .
$$

Then g_{1}, \ldots, g_{r} are holomorphic functions on X which vanish on C. Moreover, f_{i} and g_{j} can be divided by s on U_{1}. Thus $t f_{i}, t g_{j}, v_{k} f_{i}^{p_{k}}$ and $v_{k} g_{j}^{p_{k}}$ are also such functions $(1 \leqslant i \leqslant q, 1 \leqslant j \leqslant r$, $1 \leqslant k \leqslant r)$.

Now we have $(q+r)(2+r)$ holomorphic functions $f_{i}, g_{j}, t f_{i}, t g_{j}, v_{k} f_{i}^{p_{k}}$ and $v_{k} g_{j}^{p_{k}}$. By these functions, we have the holomorphic generically finite map $h: X \longrightarrow \mathbb{C}^{(n-1)(2+r)}$. Let $X \xrightarrow{\varphi} Y \xrightarrow{g}$ $\mathbb{C}^{(n-1)(2+r)}$ be the Stein factorization of h. Then $\varphi: X \rightarrow Y$ gives a small contraction of C.

Some Examples of Simple Small Singularities

References

A1 T. Ando, An example of exceptional $(-2 n-1, n)$-curve in algebraic 3-fold, Proc. Japan Acad., 66 Ser.A, (1990) 269-271.

A2 T. Ando, On the normal bundle of \mathbf{P}^{1} in the higher dimensional projective variety, Amer. J. Math. 113, (1991) 949-961.

A4 T. Ando, On exceptional $(-3,1)$-curves in algebraic threefolds, J. of the College of Arts and Sciences Chiba University, B-24, (1992) 31-98.
A5 T. Ando, On the normal bundle of an exceptional curve in a higher dimensional algebraic manifold, Math. Ann. 306, (1995) 625-645.
KM S. Katz and D. R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory of Weyl groups, J. Alg. Geom., 1, (1992) 449-530.
K Y. Kawamata, General hyperplane sections of nonsingular flops in dimension 3, Math. Research Letters, 1, (1994) 49-52.
L H. Laufer, On $\mathbf{C P}^{1}$ as an exceptional set, Recent developments in several complex variables, Ann. of Math. Stud., Princeton University Press 100, (1981) 261-275.
M D. R. Morrison, The Birational Geometry of Surfaces with Rational Double Points, Math. Ann., 271, (1985), 415-438.

P H. Pinkham. Factorization of birational maps in dimension 3, Proc. of A.M.S. Summer Inst. on Singularities, Arcata, 1981. Proc. Symposia in Pure Math., A.M.S. 40(1983), Part 2, 343-371.
R M. Reid. Minimal models of canonical 3-folds, Advanced Studies in Pure Math., 1 (1983), Algebraic Varieties and Analytic Varieties, Kinokuniya, 131-180.

Tetsuya Ando ando@math.s.chiba-u.ac.jp
Department of Mathematics and Informatics, Chiba University, Chiba 263-8522, JAPAN

