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Abstract

We provide some examples of simple small singularities of higher dimensional algebraic
varieties. One of them is an E6 type singularity w2−z3+xzw+xy3−3x2yz−x5−x4y = 0 in
C4. We also treat small contractions of curves with heigher genera whose normal bundles
are not negative.

1. Introduction

Let X be a smooth algebraic variety with dimX > 3, and C be a smooth complete curve in X. If
ϕ: X → Y is a morphism such that P = ϕ(C) is a point, and that ϕ|X−C :X − C ∼= Y − P , then ϕ
is called a small contraction of C. Such (Y , P ) is called a simple small singularity. ϕ is also called
a small resolution of (Y , P ). In general, an isolated singularity is called small if it has a resolution
whose exceptional set is one-dimensional. A small singularity is called simple if the exceptional set
is an irreducible curve.

For an example, the hypersurface

Y1 = {(z1, z2, z3, z4) ∈C4 | z1z2 − z3z4 = 0}
has a simple small singularity at the origin 0. Y1 has a small resolution ϕ:X → Y1 such that
C = ϕ−1(0) ∼=P1 with the normal bundle NC/X

∼= OP1(−1)⊕OP1(−1).

Y2,n = {(z1, z2, z3, z4) ∈C4 | z2
1 − z2z3 − z2z

n
4 = 0}

(n > 2) has also a simple small singularity at 0. Y2,n has a small resolution ϕ: X → Y2,n such that
C = ϕ−1(0) ∼=P1 with NC/X

∼= OP1(−2)⊕OP1 .
Laufer([L]) has found a simple small singularity

Y3,n = {(z1, z2, z3, z4) ∈C4 | z2
4 + z3

2 − z1z
2
3 − z2n+1

1 z2 = 0}.
Y3,n has a small resolution ϕ:X → Y3,n such that C = ϕ−1(0) ∼=P1 with NC/X

∼= OP1(−3)⊕OP1(1).
In this paper, we present some more examples of simple small singularities. One of them is

Y4 : z2
4 − z3

3 + z1z3z4 + z1z
3
2 − 3z2

1z2z3 − z5
1 − z4

1z2 = 0.

We also treat the case C has a higher genus in §3.

2. How to construct simple small singularities

We recall that how Y1, Y2,n, Y3,n are constructed by the method of Laufer[L].
Let U1 =C3 with the system of coordinate (s, x1, x2), and U2 =C3 with (t, y1, y2). We patch

U1 and U2 and construct X = U1 ∪ U2 by the following transition function.

y1 = sx1, y2 = sx2, t = s−1 (2.1)
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Let C ⊂ X be the curve defined by x1 = x2 = 0 in U1 and y1 = y2 = 0 in U2. The following four
functions z1,. . ., z4 are holomorphic on X.

z1 = y1 = sx1, z2 = ty2 = x2, z3 = y2 = sx2, z4 = ty1 = x1

These induce a holomorphic map ϕ = (z1, z2, z3, z4):X →C4. It is easy to see that ϕ is a small
contraction of C ∼=P1, and the image ϕ(X) is the hypersurface defined by z1z2 = z3z4. Note that ϕ
is the blowing up of Y1 ⊂C4 with the center z2 = z4 = 0.

Y2,n (n > 2) can be obtained using another transition function instead of (2.1).

y1 = s2x1 + sxn
2 , y2 = x2, t = s−1 (2.2)

In this case we find four holomorphic functions



z1 = ty1 = sx1 + xn
2

z2 = y1 = s2x1 + sxn
2

z3 = t2y1 − yn
2 = x1

z4 = y2 = x2

Then we obtain Y2,n : z2
1 − z2z3 − z2z

n
4 = 0.

This singularity is studied in [R] §5. The defining ideal of C in X is IC = (x1, x2) = (y1, y2).
IC/I2

C decompose as (x1)⊕ (x2) = (y1)⊕ (y2), and transformed as y1 = s2x1, y2 = x2. Thus IC/I2
C

has the bidegree (2, 0), and NC/X
∼= OP1(−2) ⊕ OP1 . Y1 and Y2,n are not isomorphic since whose

normal bundles are not isomorphic.
It will be interesting to consider the sequence of normal bundles ([R], [P]). Let µ1: X1 → X be

the blowing up along C and E1 = µ−1
1 (C). If E1 6=P1 × P1, choose C1 as the minimal section

of the Hirzeburch surface E1. Again let µ2:X2 → X1 be the blowing up along C1, E2 = µ−1
2 (C1),

and E′
1 be the strict transform of E1. If E2 6=P1 × P1, choose C2 as the minimal section of E2. If

E2
∼=P1 × P1 or C2 ⊂ E′

1, we stop here. Otherwise we continue this process. The sequence of the
bidegrees of NC/X , NC1/X1

, . . . is called the sequence of normal bundles.

Theorem 2.1. ([P], [A4]) If (Y , P ) is a simple small singularity with C ∼=P1 and (KX · C)X = 0,
then the sequence of normal bundles is one of the followings:

(i) (−1, −1).
(ii) (−2, 0),. . ., (−2, 0), (−1, −1).
(iii) (−3, 1), (−2, −1), (−1, −1).
(iv) (−3, 1), (−3, 0), (−2, −1), (−1, −1).
(v) (−3, 1), (−3, 0), (−3, 0), (−2, −1), (−1, −1).

Let (a0, b0), (a1, b1),. . . be the sequence of normal bundles of Y2,n. Then (a0, b0) = (−2, 0).
We can choose the unique ideal J such that IC ⊃ J ⊃ I2

C and that IC/J = OC(−b0). Then
JC/ICJ ∼= I1/I2

1 ⊗ IC/J via µ1: C1 → C, here C1 is the defining ideal of C1 in X1. It is easy to see
that J = (y1, y2

2) = (x1, x2
2). This observation implies

Ik/I2
k
∼= (x1)⊕ (xk+1

2 ) = (y1)⊕ (yk+1
2 ) ∼= OP1(2)⊕OP1 (k 6 n− 2)

In−1/I2
n−1

∼= (x1)⊕ (x2
2 + sx1) = (yn

2 − ty1)⊕ (y1) ∼= OP1(1)⊕OP1(1)

Thus we have (a0, b0) = · · · = (an−2, bn−2) = (−2, 0) and (an−1, bn−1) = (−1, −1). Therefore,
if m 6= n, then Y2,m and Y2,n are not isomorphic. Note that this consideration is useful to find
transition functions.
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Laufer ([L]) has found a transition function

y1 = s3x1 + x2
2 + s2x2n+1

2 , y2 = s−1x2, t = s−1

(n > 1). He fond four holomorphic functions

z1 = y1, z2 = t2y1 − y2
2 = sx1 + x2n+1

2 , z3 = tz2 − zn
1 y2, z4 = y2z2 − szn+1

1 ,

and he obtained Y3,n : z2
4 + z3

2 − z1z
2
3 − z2n+1

1 z2 = 0 with NC/X
∼= OP1(−3) ⊕ OP1(1). Since

J/ICJ ∼= I1/I2
1 ⊗OP1(−1) (J = (x1) + I2

C = (y1) + I2
C), and J/ICJ splits as

J/ICJ = (x1)⊕ (x2
2 + s3x1) = (y2

2 − t2y1)⊕ (y1) ∼= OP1(1)⊕OP1 ,

we have (a1, b1) = (−2, −1). Thus, Y3,n is of type (iii) of Theorem 2.1. This singularity with its
family

z2
4 + z3

2 − z1z
2
3 − z3

1z2 + λ(z1z
2
2 − z4

1) = 0
is studied in [P] Example 10.

We consider a transition function

y1 = s3x1 + s2x2
2 + s−1x3

2 + s−3x4
2, y2 = s−1x2, t = s−1.

The inverse map is given by

x1 = t3y1 − t−1y2
2 − ty3

2 − t2y4
2, x2 = t−1y2, s = t−1.

It is not hard to check that the following four functions are holomorphic on X.




z1 = sx1 + x2
2

z2 = −s2z1 + x1x2 + x2z1

z3 = x2
1 + sx2z1 + x1z1

z4 = sz1z2 + x1z3 + x2z
2
1

Mathematica will show that

Y4 : z2
4 − z3

3 + z1z3z4 + z1z
3
2 − 3z2

1z2z3 − z5
1 − z4

1z2 = 0.

Since 



t =
z3
3 + 3z2

1z2z3 − z1z
3
2 + z5

1

z1z3z4 + z4
1z2 + z2

1z
2
3 − z2

2z4
,

y1 =
z2
3z4 + z2

1z2z4 − z3
1z2z3 − z6

1

z1z3z4 + z4
1z2 + z2

1z
2
3 − z2

2z4

y2 =
z2z3z4 + z3

1z4 + z4
1z3 − z3

1z
2
2

z1z3z4 + z4
1z2 + z2

1z
2
3 − z2

2z4

we know that ϕ: X → Y5 is a small contraction.
Since J/ICJ splits as

J/ICJ = (x1)⊕ (x2
2 + sx1) = (y2

2 − t4y1)⊕ (y1) ∼= OP1(−1)⊕OP1(2),

we have (a1, b1) = (−3, 0). We choose an ideal J ⊃ L ⊃ ICJ such that J/L ∼= OP1(−1). That is L =
(x2

2 + sx1, x1x2, x2
1) = (y1, y3

2). Then, there exists an injection I2/I2
2 ⊗OP2(−2) −→ L/(ICL + J2).

Since y1 = s2x2
2 + s3x1 + s−1x3

2 = s2x2
2 + s3x1 − x1x2 in ICL + J2, we have

L/(ICL + J2) = (−x1x2 + s2x2
2 + s3x1)⊕ (x2

2 + sx1)

= (y1)⊕ (−y3
2 + t2y1) ∼= OP1 ⊕OP1 .

Thus I2/I2
2
∼= OP2(1)⊕OP2(2), and, Y4 is of type (iv) of Theorem 2.1.
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The following transition function also provides a simple small singularity.

y1 = s3x1 + s2x2
2 + s−1x3

2 + s−5x6
2, y2 = s−1x2, t = s−1

x1 = t3y1 − t−1y2
2 − ty3

2 − t2y6
2, x2 = t−1y2, s = t−1

Four holomorphic functions are




z1 =x2
2 + sx1 = −y3

2 − ty6
2 + t2y1,

z2 =x1x2 − sx4
2 − s2(x2

2 + 2x1x
2
2)− s3(x1 + x2

1)

=(−y1 − y4
2 − 2y9

2) + t(2y1y
3
2 − y7

2 − y12
2 ) + t2(y2

1y2 + 2y1y
6
2)− t3y2

1,

z3 =x2
1 + sx2z1 + x2z

2
1 ,

z4 =sz1z2 + x1z3 + x2z
2
1

This present a simple small singularity

Y5 : z2
4 − z3

3 + z1z
3
2 − 3z2

1z2z3 + z2
1z2z4 − z5

1 + z5
1z3 = 0.

But this is isomorphic to Y4.

Note that general hyperplane sections of (Yi, 0) passing through the origin are the rational
double points. Those of Y1, Y2,n, Y3,n, Y4 are of type A1, A1, D4, E6 respectively. It is known there
exist also those of the type E7 (length 4) and E8 (length 5, 6) (see [K], [KM], [R], [M]). But I don’t
succeed to construct such equations in the above method.

3. Exceptional curves of higher genus

Now we study a small contraction ϕ: X → Y whose exceptional set is a smooth curve C of the genus
g(C) > 1 and the normal bundle of C is not negative. To begin with, we construct an easy example
to understand our method.

Let C be a smooth curve of genus g, D be a base point free effective divisor on C. Take
two effective divisors D1 and D2 such that D1 ∼ D2 ∼ D and SuppD1 ∩ SuppD2 = φ. Put
Ci = C − SuppDi and Ui = Ci× C2. We represent a point in U1 by (xC , x1, x2) where xC ∈ C1,
and x1, x2 ∈C. Similarly, (yC , y1, y2) ∈ U2.

There exists a rational function s on C such that D1 = D2 + div(s). D1 and D2 are zeros and
poles of s respectively. We extend the rational function s on C to X by

s(xC , x1, x2) = s(xC), s(yC , y1, y2) = s(yC).

Note that s is holomorphic on U1 and t = 1/s is holomorphic on U2.

Let yC = τC(xC) be the transition function on C1∩C2 ⊂ C which patches C1 and C2. We patch
U1 and U2 and construct X = U1 ∪ U2 by the following transition function.

y1 = s4x1 + sx2
2, y2 = s−1x2, yC = τC(xC)

We identify C with the zero section of X defined by x1 = x2 = 0 in U1 and by y1 = y2 = 0 in U2.
Since IC/I2

C
∼= OC(4D)⊕OC(−D). We have NC/X = OC(−4D)⊕OC(D).
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We find the following holomorphic functions on X.




z1 = s4x1 + sx2
2 = y1

z2 = s3x1 + x2
2 = ty1

z3 = sx1 = t3y1 − y2
2

z4 = x1 = t4y1 − ty2
2

z5 = x1x2 = t3y1y2 − y3
2

z6 = s3x1x2 + x3
2 = y1y2

Let h: X →C6 be the holomorphic map defined by (z1,. . ., z6), and let Z = h(X). It is easy to see
that Q = h(C) is a point, and that h: (X −C) −→ (Z−Q) is a finite map. Let X

ϕ−→Y
ψ−→Z be the

Stein factorization of h. Then ϕ: X → Y is a small contraction of C.
Recall that a small singularity is Cohen-Macaulay if and only if R1ϕ∗OX = 0. Since there exists

the natural surjection R1ϕ∗OX → H1(C, IC/I2
C), (Y , P ) can not be Cohen-Macauley if g(C) > 1.

Thus Y is never complete intersection.

Now, remember the following theorem.

Theorem 3.1. ([A5]) Let C be a smooth exceptional curve of genus g in a smooth variety X with
dimX > 3, and let M be a subbundle of NC/X of the maximal degree. Put b = deg M > 0 and
a = deg NC/X − deg M < 0. (i.e. a is the degree of the negative part of NC/X , and b is the degree
of the positive part of NC/X .) Then

a + 2b < 0

We present two examples as theorems. These examples encourage the above theorem.

Theorem 3.2. We use the same notation as above. Define the transition function by




y1 = s2m+1x1 + x2
2 + s2mx3

2

y2 = s−mx2

yC = τC(yC)

Then C admits a small contraction, and

NC/X
∼= OP1(−(2m + 1)D)⊕OP1(mD).

Proof. It is easy to check the following z1 and z2 are holomorphic on X.

z1 = y1 = s2m+1x1 + x2
2 + s2mx3

2

z2 = s−2my1 − y2
2 = sx1 + x3

2.

Since

u = z2
2 − z3

1 = 2sx3
2x1 + s2x2

1 + s2mu0(xC , x1, x2)

can be divided by s, the following z3 and z4 are holomorphic on X.

z3 = y2u
m

z4 = s−1u

5



Tetsuya Ando

For r > 0, We define inductively

f0,r =

{
s−my

r/2
1 if r is even

y2y
(r−1)/2
1 if r is odd

fq,r = f0,rz
q
2 −

q−1∑

i=0

(
q

i

)
fi,3q−3i+r (q = 1, 2, . . . , m)

σ
(q,r)
i =

{
tmy

(3q+r−3i)/2
1 zi

2 if q + r + i is even
y2y

(3q+r−3i−1)/2
1 zi

2 if q + r + i is odd.

Since σ
(k,3q−3k+r)
i = σ

(q,r)
i , and since

b∑

i=a

(−1)i−a

(
b

i

)(
i

a

)
= 0, we obtain

fq,r =
q∑

i=0

(−1)q−i

(
q

i

)
σ

(q,r)
i .

Since fq,r is a polynomial on t, y1, y2, fq,r is holomorphic on U2. On the other hand, by construction,

fq,r = sq−mxq
1x

r
2 + smgq,r(s, x1, x2),

where gq,r is a suitable polynomial. So, z5 = fm,0 is a holomorphic on X.
Now we have a holomorphic mapping h = (z1, . . ., z5):X −→C5. Let X

ϕ−→Y
g−→ C5 be the Stein

factorization of h. Since C = h−1(0), ϕ(C) is a point. We shall show that h: (X −C) −→ h(X −C)
is a finite map. Let z = (z1, . . ., z5) ∈ h(U1)− {0}.

If z2
2 − z3

1 6= 0, then

y1 = z1, y2 =
z3

(z2
2 − z3

1)m
, t =

z4

z2
2 − z3

1

.

Thus h−1(z) is a finite set.
Assume z2

2 − z3
1 = 0. If z2 = 0, then z1 = z2 = z3 = z4 = z5 = 0. Thus we assume z2 6= 0. Let

α =





m/2∑

j=0

(
m

2j

)
z
(3m−6j)/2
1 z2j

2 if m is even

(m−1)/2∑

j=0

(
m

2j + 1

)
z
(3m−6j−3)/2
1 z2j+1

2 if m is odd

β =





(m/2)−1∑

j=0

(
m

2j + 1

)
z
(3m−6j−4)/2
1 z2j+1

2 if m is even

(m−1)/2∑

j=0

(
m

2j

)
z
(3m−6j−1)/2
1 z2j

2 if m is odd.

Then we have αtm − βy2 = fm,0 = z5. Since z3
1 = z2

2 6= 0, we have (α, β) 6= (0, 0). Thus the system
of equations on t and y2

αtm − βy2 = z5, z1t
2m − y2

2 = z2

has only finite solutions. Thus h is finite on U1 − C.
If z = (z1, . . ., z5) ∈ h(U2 − U1)− {0}, then s = 0. Thus

z1 = x2
2, z2 = x3

2, z3 = 2mxm
1 x3m+1

2 , z4 = 2x1x
3
2, z5 = xm

1 .

Therefore h is finite on X − C.
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Theorem 3.3. Let C be a smooth projective curve of any genus, and n > 3 be an integer. Let q
and r are non-negative integers with q + r = n−1, and let n1, . . ., nq and p1, . . ., pr be any integers
such that ni > 1, pj > 0 for 1 6 i 6 q, 1 6 j 6 r, and that

−(n1 + · · ·+ nq) + 2(p1 + · · ·+ pr) 6 −n + 1.

If D is a base point free effective divisor on C, we can construct a smooth n-dimensional variety
X ⊃ C which satisfies the following conditions.

(i) There exists a small contraction ϕ: X → Y whose exceptional set is C,

(ii) NC/X
∼= OC(−n1D)⊕ · · · ⊕ OC(−nqD)⊕OC(p1D)⊕ · · · ⊕ OC(prD).

Proof. Take two effective divisors D1 and D2 such that D1 ∼ D2 ∼ D and SuppD1 ∩ SuppD2 = φ.
Put Ci = C−SuppDi and Ui = Ci× Cn−1 (i = 1, 2). We represent points in U1 and U2 by x = (xC ,
x1,. . ., xq, u1,. . ., ur) ∈ U1 and y = (yC , y1,. . ., yq, v1,. . ., vr) ∈ U2 as before. Let s be a rational
function on C such that D1 = D2 + div(s). We extend s to U1, U2 by s(xC , x1,. . ., ur) = s(xC)
and s(yC , y1,. . ., vr) = s(yC). Note that s is holomorphic on U1, and t = 1/s is holomorphic on
U2. We identify C with the curve in X defined by x1 = · · · = xq = u1 = · · · = ur = 0 in U1 and
y1 = · · · = yq = v1 = · · · = vr = 0 in U2.

Let Pj = 2(p1 + · · · pj) + j (0 6 j 6 r, P0 = 0) and Ni = n1 + · · ·+ ni − i (0 6 i 6 q, N0 = 0).
Note that Ni > 0. Let

σ = u2
1 + sP1u2

2 + sP2u2
3 + · · ·+ sPr−1u2

r

(if r = 0 then σ = 0). We patch U1 and U2 and construct X = U1 ∪ U2 by the following transition
function. 




yi = snixi + s1−Ni−1σ

vj = s−pjuj

yC = τC(xC)
Then

NC/X
∼= OC(−n1D)⊕ · · · ⊕ OC(−nqD)⊕OC(p1D)⊕ · · · ⊕ OC(prD).

Let
f1 = y1 = sn1x1 + sσ

fi = yi − tni−1−1yi−1 = snixi − sxi−1 (i = 2, 3,. . ., q)
It is easy to see that f1,. . ., fq are holomorphic on X. Let

σj =
r∑

k=j

sPk−1−Pj−1u2
k

for 1 6 j 6 r. Formally, put σr+1 = 0. Note that σ1 = σ. For 1 6 j 6 r, let I(j) be an integer such
that NI(j) + 1 > Pj > NI(j)−1 (I(j) is not always unique). Since Nq > Pr, we have 1 6 I(1) 6 · · · 6
I(r) 6 q. Let

gj = tPj−NI(j)−1yI(j) −
j∑

k=1

tPj−Pkv2
k = s1+NI(j)−PjxI(j) + sσj+1.

Then g1, . . . , gr are holomorphic functions on X which vanish on C. Moreover, fi and gj can be
divided by s on U1. Thus tfi, tgj , vkf

pk
i and vkg

pk
j are also such functions (1 6 i 6 q, 1 6 j 6 r,

1 6 k 6 r).
Now we have (q + r)(2 + r) holomorphic functions fi, gj , tfi, tgj , vkf

pk
i and vkg

pk
j . By these

functions, we have the holomorphic generically finite map h: X −→C(n−1)(2+r). Let X
ϕ−→Y

g−→
C(n−1)(2+r) be the Stein factorization of h. Then ϕ: X → Y gives a small contraction of C.
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