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Abstract We present a new proof of Shapiro cyclic inequality. Especially, we treat the case
n = 23 precisely.

§1. Introduction.
Let n ≥ 3 be an integer, x1, x2,. . ., xn be positive real numbers, and let

En(x1, . . . , xn) :=
n∑

i=1

xi

xi+1 + xi+2
,

here we regard xi+n = xi for i ∈ Z. In this article, we present a new proof of the following
theorem:

Theorem 1.1. (1) If n is an odd integer with 3 ≤ n ≤ 23, then

En(x1, . . . , xn) ≥ n/2. (Pn)

Moreover, En(x1,. . ., xn) = n/2 holds only if x1 = x2 = · · · = xn.
(2) If n is an even integer with 4 ≤ n ≤ 12, then (Pn) holds. Moreover, the equality

holds only if (x1,. . ., xn) = (a, b, a, b,. . ., a, b) (∃a > 0, ∃b > 0).
(3) If n is an even integer with n ≥ 14 or an odd integer with n ≥ 25, then there exists

x1 > 0,. . ., xn > 0 such that En(x1,. . ., xn) < n/2.

(3) was proved by [4] in 1979. It is said that (1) was proved by [6] in 1989. (2) was
proved by [2] in 2002. Note that [2] treat (1) to be an open problem. The author also thinks
we should give a more agreeable proof of (1). In this article, we give more precise proof of
(1) than [6].

§2. Basic Facts.

Throughout this article, we use the following notations:

∂iEn(x) :=
∂

∂xi
En(x) =

1
xi+1 + xi+2

− xi−2

(xi−1 + xi)2
− xi−1

(xi + xi+1)2
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Kn :=
{
(x1, . . . , xn) ∈ Rn

∣∣ x1 ≥ 0,. . ., xn ≥ 0
}

K◦
n :=

{
(x1, . . . , xn) ∈ Rn

∣∣ x1 > 0,. . ., xn > 0
}

K
q
n :=

{
(x1, . . . , xn) ∈ Kn

∣∣∣∣
(x1, . . . , xn) /∈ K◦

n,
(xi, xi+1) 6= (0, 0) for any i ∈ Z.

}

Kn = K◦
n ∪K

q
n

It is easy to see that there exists a ∈ K
q
n such that

inf
x∈K◦

n

En(x) = En(a).

Thus, we consider En(x) to be a continious function on K
q
n.

Proposition 2.1.([3]) (1) If (Pn) is false, then (Pn+2) is also false．
(2) If (Pn) is false for an odd integer n ≥ 3, then (Pn+1) is also false.

Proof. Assume that there exists positive real numbers a1,. . ., an such that En(a1,. . .,
an) < n/2.

(1) Since, En+2(a1, . . . , an, a1, a2) = 1 + En(a1, . . . , an) <
n + 2

2
, (Pn+2) is false.

(2) Note that

En+1(a1, . . . , ar−1, ar, ar, ar+1, . . . , an)− En(a1, . . . , an)− 1
2

=
ar−1

ar + ar
+

ar

ar + ar+1
− ar−1

ar + ar+1
− 1

2

=
(ar − ar−1)(ar − ar+1)

2ar(ar + ar+1)
for 1 ≤ r ≤ n. Thus, it is sufficient to show that there exists r such that (ar − ar−1)(ar −
ar+1) ≤ 0.

Assume that (ar − ar−1)(ar − ar+1) > 0 for all 1 ≤ r ≤ n. Since n is odd,
n∏

r=1

(ar − ar+1)2 =
n∏

r=1

(ar−1 − ar)(ar − ar+1) < 0.

This is a contradiction．

Proposition 2.2.([4]) (1) E14(42, 2, 42, 4, 41, 5, 39, 4, 38, 2, 38, 0, 40, 0) < 7. Thus (P14)
is false.

(2) E25(34, 5, 35, 13, 30, 17, 24, 18, 18, 17, 13, 16, 9, 16, 5, 16, 2, 18, 0, 21, 0, 25, 0,
29, 0) < 25/2. Thus (P25) is false.

Thus, Theorem 1.1 (3) is proved by Proposition 2.1 and 2.2. It is essential to show
(P12) and (P23) for a proof of Theorem 1.1 (2) and (3).

Definition 2.3. We say that x = (x1,. . ., xn) ∈ Kn and y = (y1,. . ., yn) ∈ Kn belong to
the same component if “xi = 0 ⇐⇒ yi = 0” for all i = 1,. . ., n.

Let x = (x1,. . ., xn) ∈ K
q
n. If xi−1 = 0, xi 6= 0, xi+1 6= 0,. . ., xj 6= 0, and xj+1 = 0 for

i < j ∈ Z, then we call (xi,. . ., xj) to be a segment of a, and we define j − i + 1 to be the
length of this segment. A segment of length l is called l-semgent.

2



For a segment s := (xi,. . ., xj) of x, we denote

S(s) :=
j−1∑

k=i

xk

xk+1 + xk+2
, Head(s) := xi, Tail(s) := xj .

Here we define S(s) = 0, if the length of s is 1.
Let s1,. . ., sr be all the segments of x in this order. Let lk be the length of sk. Then

(l1,. . ., lr) is called the index of x. Note that

En(a) =
r∑

k=1

S(sk) +
r∑

k=1

Tail(sk−1)
Head(sk)

.

Here we regard sk+r = sk for k ∈ Z.

Theorem 2.4. Assume that min
x∈K

q
n

En(x) = En(a) at a = (a1,. . ., an) ∈ K
q
n. Let s1,. . ., sr

be all the segments of a in this order, and let lk be the length of sk. Then the followings
hold.

(1)
Tail(s1)
Head(s2)

=
Tail(s2)
Head(s3)

= · · · = Tail(sr−1)
Head(sr)

=
Tail(sr)
Head(s1)

.

(2) Assume that a = (s1, 0, s2, 0,. . ., sr, 0), and let σ be a permutation of {1, 2,. . ., r}.
Then there exist real numbers t1 > 0, t2 > 0,. . ., tr > 0 such that

b :=
(
t1sσ(1), 0, t2sσ(2), 0, . . . , trsσ(r), 0

)

satisfies En(b) = En(a).

Proof. (1) Since En(a1+k, a2+k, . . . , an+k) = En(a1, a2, . . . , an), we may assume a = (s1, 0,
s2, 0,. . ., sr, 0). Let xi := Head(si), yi := Tail(si). Define t1,. . ., tr by t1 := 1 and

tj :=
y1y2 · · · yj−1

x2x3 · · ·xj
·
(

x1x2 · · ·xr

y1y2 · · · yr

) j−1
r

for j = 2, 3,. . ., r. It is easy to see that

tj−1yj−1

tjxj
= r

√
y1 · · · yr

x1 · · ·xr
=

tryr

t1x1
.

Take t1 > 0,. . ., tr > 0, and let

c = (t1s1, 0, t2s2, 0, . . . , trsr, 0).

Note that S(tisi) = S(si). By AM-GM inequality,

En(a) =
r∑

i=1

S(si) +
r∑

i=1

yi−1

xi

≥
r∑

i=1

S(si) + r · r

√
y1 · · · yr

x1 · · ·xr
=

r∑

i=1

S(tisi) +
r∑

i=1

ti−1yi−1

tixi
= En(c).

Since En(a) is the minimum, we have En(a) = En(c). By the equality condition of AM-GM
inequality, we have t1 = t2 = · · · = tr = 1. Thus

yj−1

xj
= r

√
y1 · · · yr

x1 · · ·xr
,

and we have (1).
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(2) By the same argument as (1), we conclude that there exists positive integers t′1,. . .,
t′r such that

b := (t′1sσ(1), 0, t′2sσ(2), 0, . . . , t′rsσ(r), 0)
satisfies

En(b) =
r∑

i=1

S(si) + r · r

√
y1 · · · yr

x1 · · ·xr
.

Thus En(b) = En(a).

Remark 2.5. By the above theorem, we may assume that the index (l1,. . ., lr) of a satisfies
l1 ≥ l2 ≥ · · · ≥ lr, if min

x∈K
q

n

En(x) = En(a). Thus, we always write the index of such a in

descending order.

Definition 2.6. Assume that a ∈ K
q
n satisfies the condition of the above theorem. Then

we define U(a) to be

U(a) :=
Tail(s1)
Head(s2)

=
Tail(s2)
Head(s3)

= · · · = Tail(sr−1)
Head(sr)

=
Tail(sr)
Head(s1)

.

Note that En(a) = rU(a) +
r∑

k=1

S(sk), for a = (s1, 0, s2, 0,. . ., sr, 0).

§3. Bushell Theorem.

We survey and improve the results of [1]. In this section, we denote

Ai(x) :=
xi

xi+1 + xi+2

B(x) :=
(
x2 + x3, x3 + x4, . . . , xn + x1, x1 + x2

)

R(x) :=
(

1
xn

,
1

xn−1
,

1
xn−2

, . . . ,
1
x1

)

T (x) =
(

xn

(x1 + x2)2
, . . . ,

xn+1−i

(xn+2−i + xn+3−i)2
, . . . ,

x1

(x2 + x3)2

)

for x = (x1,. . ., xn). We also denote the i-th element of B(x) by B(x)i = xi+1 +xi+2. R(x)i

and T (x)i are also defined similarly. The symbol T (x) are used throughout this article.

Lemma 3.1.([1] Lemma 3.2, 4.2) The above functions satisfy the followings.
(1) ∂iEn(x) = (R(B(x))n+1−i − (B(T (x)))n+1−i.
(2) (T 2(x))i =

xi(
1− (B(x))i∂iEn(x)

)2 .

(3) En(T (x))− En(x) =
n∑

i=1

xi

(
∂iEn(x)

)2

(B(T (x)))n+1−i
.

(4) En(x) + En(y)
= En(x + y) + En(T (x) + T (y))

−
n∑

i=1

(T (x) + T (y))n+1−i

(
∂iEn(x) + ∂iEn(y)

)
(
R(B(x)) + R(B(y))

)
n+1−i

· (B(T (x) + T (y)))n+1−i

.
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Proof. (1) ∂iEn(x) =
1

xi+1 + xi+2
−

(
xi−2

(xi−1 + xi)2
+

xi−1

(xi + xi+1)2

)
= (R(B(x))n+1−i −

(B(T (x)))n+1−i.

(2) (T (x))i =
xn+1−i

(B(x))2n+1−i

. Combine this with (1), we obtain

(T 2(x))i =
(T (x))n+1−i

(B(T (x)))2n+1−i

=
xi/(B(x))2i(

(R(B(x)))n+1−i − ∂iEn(x)
)2 . (3.1.1)

Since (B(x))i · (R(B(x)))n+1−i = 1, we obtain (2).
(3) By the similar calculation as above, we obtain

En(T (x))− En(x) =
n∑

i=1

(T (x))i

(B(T (x)))i
−

n∑

i=1

xi

(B(x))i

=
n∑

i=1

(
(T (x))n+1−i

(B(T (x)))n+1−i
− xi

(B(x))i

)

=
n∑

i=1

(
xi

(B(x))i

(
1− (B(x))i∂iEn(x)

) − xi

(B(x))i

)

=
n∑

i=1

xi∂iEn(x)
1− (B(x))i∂iEn(x)

.

Since,
n∑

i=1

xi∂iEn(x) =
n∑

i=1

xi

xi+1 + xi+2
−

n∑

i=1

xi−2xi

(xi−1 + xi)2
−

n∑

i=1

xi−1xi

(xi + xi+1)2

=
n∑

i=1

xi−1(xi + xi+1)
(xi + xi+1)2

−
n∑

i=1

xi−1xi+1

(xi + xi+1)2
−

n∑

i=1

xi−1xi

(xi + xi+1)2
= 0,

we obtain

En(T (x))− En(x) =
n∑

i=1

xi∂iEn(x)
(

1
1− (B(x))i∂iEn(x)

− 1
)

=
n∑

i=1

xi

(
∂iEn(x)

)2

(B(T (x)))n+1−i
.

(4) Let a := xi, b := xi+1 + xi+2 = (B(x))i, c := yi, d := (B(y))i.
xi + yi

(B(x + y))i
+

(T (x) + T (y))n+1−i(
R(B(x)) + R(B(y))

)
n+1−i

(3.1.2)

=
a + c

b + d
+

a/b2 + c/d2

1/b + 1/d
=

a

b
+

c

d
= Ai(x) + Ai(y)

By (1), we have
(T (x) + T (y))n+1−i

(B(T (x) + T (y)))n+1−i
− (T (x) + T (y))n+1−i(

R(B(x)) + R(B(y))
)
n+1−i

=
(T (x) + T (y))n+1−i

(
∂iEn(x) + ∂iEn(y)

)
(
R(B(x)) + R(B(y))

)
n+1−i

· (B(T (x) + T (y)))n+1−i

. (3.1.3)
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Take
n∑

i=1

of (3.1.2) and (3.1.3), we obtain (4).

Theorem 3.2.([1] Theorem 3.3) (1) En(T (x)) ≥ En(x) holds for x ∈ Kn. Moreover, if
En(T (x)) = En(x), then T 2(x) = x holds.

(2) If min
x∈K

q
n

En(x) = En(a) at a ∈ Kn, then the following holds.

T 2(a) = a, En(T (a)) = En(a).

Proof. (1) En(T (x)) ≥ En(x) follows from Lemma 3.1 (3). Assume that En(T (x)) = En(x).
Then xi

(
∂iEn(x)

)2 = 0 (∀i = 1,. . ., n), by Lemma 3.1 (3). Thus xi = 0 or ∂iEn(x) = 0. By
Lemma 3.1 (2), we obtain (T 2(x))i = xi.

(2) If En is minimum at a, then ai = 0 or ∂iEn(a) = 0. By Lemma 3.1 (2), we have
(T 2(a))i = ai. We also have En(T (a)) = En(a) by Lemma 3.1 (3).

Lemma 3.3.([1] Lemma 4.3) Let a, b, c, d, e be positive real numbers, and p, q be real
numbers. Assume that

p
1 + λa

(1 + λc)2
+ q

1 + λb

(1 + λd)2
=

1
1 + λe

(3.3.1)

for all real numbers λ ≥ 0. Then the followings hold.
(1) If p = 0, then q = 1 and b = d = e.
(2) If q = 0, then p = 1 and a = c = e.
(3) If p 6= 0 and q 6= 0, then c = d = e.

Proof. (1) Substitute λ = 0, p = 0 for (3.3.1), we have q = 1. In this case, (3.3.1) is
equivalent to

(1 + λb)(1 + λe) = (1 + λd)2.
As an equality of a polynomial in λ, we have b = d = e.

(2) can be proved similarly as (1).

(3) Let

g(λ) := p(1 + λa)(1 + λd)2(1 + λe)
+ q(1 + λb)(1 + λc)2(1 + λe)− (1 + λc)2(1 + λd)2. (3.3.2)

g(λ) = 0 as a polynomial in λ. Thus

0 = g

(
−1

e

)
= −

(
1− c

e

)2
(

1− d

e

)2

,

and we have c = e or d = e.
Assume that d 6= e. Then c = e. From (3.3.2), we obtain

p(1 + λa)(1 + λd)2 + q(1 + λb)(1 + λe)2 − (1 + λe)(1 + λd)2 = 0. (3.3.3)

Substitute λ = −1/e for (3.3.3), we obtain p(1− a/e)(1− d/e)2 = 0. Thus a = e. Then

p(1 + λd)2 + q(1 + λb)(1 + λe)− (1 + λd)2 = 0. (3.3.4)

Substitute λ = −1/e for (3.3.4), we have d = e. A contradiction. Thus d = e.
Similarly, we have c = e.
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Theorem 3.4. (1) Assume that min
x∈Kn

En(x) = En(a) = En(b) at a, b ∈ K
q
n and that a

and b belong to the same component. Then, there exists a real number µ > 0 such that
a = µb.

(2) Assume that min
x∈Kn

En(x) = En(a) at a ∈ K◦
n. Then En(a) = n/2. Moreover a = (a,

a, a,. . ., a) (∃a > 0), or a = (a, b, a, b, . . ., a, b) (∃a > 0, b > 0).

Proof. Assume that min
x∈Kn

En(x) = En(a) = En(b) for a, b ∈ Kn, and that a and b belong

to the same component. Let λ > 0 be any real number.
If ai 6= 0, then ∂iEn(a) = ∂iEn(λb) = 0. If ai = 0, then bi = 0 and (T (a))n+1−i = 0,

(T (λb))n+1−i = 0. Thus we have

(T (a) + T (λb))n+1−i ·
(
∂iEn(a) + ∂iEn(λb)

)
= 0

(∀i ∈ Z). We use the Lemma 3.1 (4) with x = T (a), y = λb. Since the numerators of the
fractions in

∑
in Lemma 3.1 (4) are zero, we have

En(a) + En(λb) = En(a + λb) + En(T (a) + T (λb)).

Since En(λb) = En(b) = En(a) is minimum, we have

En(a + λb) = En(T (a) + T (λb)) = En(a).

Since En(x) is minimum at x = a + λb for any λ > 0, we have

0 = ∂iEn(a + λb) =
1

(B(a + λb))i
− ai−2 + λbi−2

(B(a + λb))2i−2

− ai−1 + λbi−1

(B(a + λb))2i−1

(3.4.1)

when ai 6= 0. Let

a :=
bi−2

ai−2
, b :=

bi−1

ai−1
, c :=

(B(b))i−2

(B(a))i−2
, d :=

(B(b))i−1

(B(a))i−1
,

e :=
(B(b))i

(B(a))i
, p :=

ai−2(B(a))i

(B(a))2i−2

, q :=
ai−1(B(a))i

(B(a))2i−1

.

Then, (3.4.1) become (3.3.1). It is easy to see that the cases (1) and (2) of Lemma 3.3 do
not occur. Lemma 3.3 (3) implies

(B(b))i−2

(B(a))i−2
=

(B(b))i−1

(B(a))i−1
=

(B(b))i

(B(a))i
=:

1
µ

> 0.

Thus
ai+1 + ai+2 = B(u) = µB(v) = µ(bi+1 + bi+2) (3.4.2)

(∀i ∈ Z). If n is odd, then ai = µbi (∀i ∈ Z) from (3.4.2). Thus a = µb.
We treat the case n is even. Let w = (1, −1, 1, −1,. . ., −1) ∈ Rn. By elementary linear

algebra, we conclude that the solutions of the system of equations (3.4.2) is of the form

a− µb = νw (∃ν ∈ R).

If a ∈ K
q
n, then a and b have zeros at the same place. Thus, ν must be zero. Thus we

obtain (1).
We shall prove (2). Apply above argument to b = (a2, a3,. . ., an, a1). If n is odd, then

a = µb. Thus µ = 1, and a1 = a2 = · · · = an. In this case, En(a) = n/2.
If n is even, a−µb = νw. Thus a = (a1, a2, a1, a2,. . ., a1, a2). Then En(a) = n/2.

Corollary 3.5. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K
q
n. Let s and t be segments of

a with the same length l. Then, there exists a real number c > 0 such that s = ct.
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Proof. We construct a vector b as in the proof of Theorem 2.4 (2), where σ is the transpo-
sition of s and t. Then En(a) = En(b). By Theorem 3.4, a = µb (∃µ > 0). Thus s = ct
(∃c > 0).

Corollary 3.6. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K
q
n. Let s = (a1,. . ., al) be a

l-segment of a with l ≥ 2. Let U := U(a). Then there exists a real number µ > 0 such that(
U2

al
,

al−1

a2
l

,
al−2

(al−1 + al)2
,

al−3

(al−2 + al−1)2
, · · · , a2

(a3 + a4)2
,

a1

(a2 + a3)2

)

= µ(a1, a2, a3, a4, . . . , al−1, al). (3.6.1)

Proof. We may assume that a = (s, 0,. . .). Rotate the elements of T (a) so that the segment
corresponding to s comes to be the same place with s, and we denote this vector by b. Then
the top segment of b is(

al

a2
l+2

,
al−1

a2
l

,
al−2

(al−1 + al)2
,

al−3

(al−2 + al−1)2
, · · · , a2

(a3 + a4)2
,

a1

(a2 + a3)2

)
.

By Theorem 3.2 (2), En(b) = En(T (a)) = En(a). By Theorem 3.4, b = µa (∃µ > 0). Since
U = al/al+2, al/a2

l+2 = U2/al. Thus, we have (3.6.1).

§4. Bushell-McLead Theorem.

The aim of this section is to explain Theorem 4.3, according to [2]. In This section, we
denote

K4
n :=

{
(x1, . . . , xn) ∈ K

q
n

∣∣ xn−1 = 1, xn = 0
}

yi :=
xi

xi+1 + xi+2
= Ai(x).

Note that yn = 0, yn−1 = xn−1/x1, and yn−2 = xn−2 for x = (x1,. . ., xn) ∈ K4
n . The map

Φ: K4
n → Φ(K4

n ) defined by Φ(x1,. . ., xn) = (y1,. . ., yn) is bijective. The inverse map Φ−1

is obtained as the solution of the system of equations yi(xi+1 + xi+2) − xi = 0 (i = 1,. . .,
n− 2). Let

Pk(z1, z2, . . . , zk) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z1 z1

−1 z2 z2

−1 z3 z3

. . . . . . . . .
. . . . . . . . .

−1 zk−2 zk−2

−1 zk−1 zk−1

−1 zk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Inductively, we can prove that xi = Pn−i−1(yi, yi+1,. . ., yn−2). By the properties of deter-
minant, we can prove the following lemma.

Lemma 4.1.([2] Lemma 3.1) The followings hold. Here we put P0 := 1 and P−1 = 1.
(1) Pk(z1,. . ., zk) = zkPk−1(z1,. . ., zk−1) + zk−1Pk−2(z1,. . ., zk−2).
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(2) For 1 ≤ j < k,

Pk(z1, . . . , zk) = Pj(z1, . . . , zj)Pk−j(zj+1, . . . , zk)
+ zjPj−1(z1, . . . , zj−1)Pk−j−1(zj+2, . . . , zk).

Lemma 4.2.([2] Lemma 3.2) Let x = (x1,. . ., xn) ∈ K4
n , and (y1,. . ., yn) = Φ(x1,. . ., xn).

Assume that xi∂iEn(x) = 0 for all i = 1, 2,. . ., n. Then the followings hold.
(1) yi = y2

1Pi−1(y1,. . ., yi−1)Pn−i−1(yi,. . ., yn−2)
(2) y1 − yi = y2

1yi−1Pi−2(y1,. . ., yi−2)Pn−i−2(yi+1,. . ., yn−2)

Proof. Put pi := Pi(y1,. . ., yi). Then (1), (2) can be written as (1) yi = y2
1pi−1xi, and (2)

y1 − yi = y2
1yi−1pi−2xi+1.

(1) As a formal rational function

xi∂iEn(x) =
xi

xi+1 + xi+2
− xi−2xi

(xi−1 + xi)2
− xi−1xi

(xi + xi+1)2

= yi −
y2

i−2xi

xi−2
− y2

i−1xi

xi−1
.

So, the condition xi∂iEn(x) = 0 can be represented as

yi

xi
=

y2
i−2

xi−2
+

y2
i−1

xi−1
(4.2.1)

as an equation in the field R(x1,. . ., xn−2). Here, we regard x0 = xn = 0, x−1 = xn−1 = 1,
y0 = yn = 0, and y−1 = yn−1 = 1/x1. It is enough to show

yi

xi
= y2

1pi−1 (4.2.2)

in R(x1,. . ., xn−2).
Consider the case i = 1. Then, p0 = 1. (4.2.1) can be written as y1/x1 = 1/x2

1.
Multiply x2

1y1, then we have (4.2.2).
Consider the case i = 2. By (4.2.1) and x1y1 = 1, y1 = P1(y1) = p1, we have

y2

x2
=

y2
1

x1
= y3

1 = y2
1p1.

Thus we obtain (4.2.2).
Consider the case i ≥ 3. We shall prove (4.2.2) by induction on i. By induction

assumption, yj/xj = y2
1pj−1 for 1 ≤ j < i. By Lemma 4.1 (1), pi−1 = yi−1pi−2 + yi−2pi−3.

Thus
yi

xi
=

y2
i−2

xi−2
+

y2
i−1

xi−1
= y2

1(yi−2pi−3 + yi−1pi−2) = y2
1pi−1.

(2) Apply Lemma 4.1 (5) with k = n − 2, j = i − 1, then we obtain x1 = pi−1xi +
yi−1pi−2xi+1. Since x1 = 1/y1, after multiplying y2

1 to the both hand sides, we obtain
y1 = y2

1pi−1xi + y2
1yi−1pi−2xi+1. By (1),

y1 − yi = y1 − y2
1pi−1xi = y2

1yi−1pi−2xi+1.

Thus we obtain (2).

Theorem 4.3.([2] Proposition 3.3) If min
x∈Kn

En(x) = En(a) at a ∈ K
q
n, then U(a) ≥ 1/2.
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Proof. We may assume a = (x1,. . ., xn) ∈ K4
n . By Lemma 4.2 (1), (2), we have 0 ≤

xi/(xi+1 + xi+2) = yi ≤ y1 = 1/x1 = U(a) (i = 1,. . ., n). Assume that U(a) < 1/2. Then
x1 > 2, and 2xi ≤ xi+1 + xi+2. Take

∑
, we obtain

2
n∑

i=1

xi <

n∑

i=1

(xi+1 + xi+2) = 2
n∑

i=1

xi.

A contradiction.

§5. Short segments.

The following Theorem is an extenstion of [2] Lemma 4.1, [5] §4, §5 and [6] §5.

Theorem 5.1. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K
q
n. Then a does not contain

segments of length 2, 3, 4, 5, 7, or 9.

Proof. Let s = (a1,. . ., al) be a l-segment of a (l ≥ 2). Put U := U(a), V :=
al−1 + al

al
> 1.

Note that al+1 = 0, al+2 = al/U by Theorem 2.4 (1). By Theorem 4.3, U ≥ 1/2.
Since al+2 + al+3 ≥ al+2 = al/U , we have

0 ≤ ∂l+1En(a) =
1

al+2 + al+3
− al−1

a2
l

− al

a2
l+2

≤ 1
al

(
U − (V − 1)− U2

)
.

Thus, we have V ≤ 1 + U − U2. Since 1 < V ≤ 1 + U − U2, we have U < 1 and

1 < V ≤ 5
4
−

(
U − 1

2

)2

≤ 5
4
. Thus (U , V ) is included in the set

D :=
{
(u, v) ∈ R2

∣∣ 1/2 ≤ u < 1, 1 < v ≤ 1 + u− u2
}
.

By (3.6.1),
a1al

U2
=

1
µ

=
a2a

2
l

al−1
. Thus we have

a2 =
a1al−1

alU2
=

V − 1
U2

a1.

Since ∂i−2En(a) = 0 (i = 3, 4,. . ., l + 2), we have

ai =
1

ai−4

(ai−3 + ai−2)2
+

ai−3

(ai−2 + ai−1)2
− ai−1.

Here a−1 = an−1 = Ua1 and a0 = an = 0. Inductively, we obtain

a3 =
1

an−1/a2
1

− a2 =
U − V + 1

U2
a1 (if l ≥ 3)

a4 =
V − U

U2
a1 (if l ≥ 4)

a5 =
1 + UV − V 2

U2V
a1 (if l ≥ 5).

10



Thus, we define a series of rational functions by

f1(u, v) := 1, f2(u, v) :=
v − 1
u2

, f3(u, v) :=
u− v + 1

u2
, f4(u, v) :=

v − u

u2

fi(u, v) :=
1

fi−4(u, v)
(fi−3(u, v) + fi−2(u, v))2

+
fi−3(u, v)

(fi−2(u, v) + fi−1(u, v))2

− fi−1(u, v)

(i ≥ 5). Then, ai = fi(U , V )a1 for 1 ≤ i ≤ l + 2. Especially, fl+1(U , V ) = al+1/a1 = 0.
Since u− v + 1 > 0, v − u > 0, 1 + uv − v2 > 0 on D, we obtain fi(u, v) > 0 on D for

i = 3, 4, 5. Thus al+1 6= 0 for l = 2, 3, 4. Therefore, a does not contain segments of length
2, 3, or 4.

Similarly, fi(u, v) > 0 on D for i = 6, 8, 10. We need numerical analysis to prove this.
If you have ‘Mathematica’, execute the following.

<< Graphics‘ImplicitPlot‘;
fi[i_, u_, v_] := (a = 1; b = (v-1)/u^2;

c = (1+u-v)/u^2; d = (v-u)/u^2;
Do[(e=1/(a/(b+c)^2 + b/(c+d)^2) - d; a=b; b=c; c=d; d = e),
{k, 5, i, 1}]; e)

G1[i_]:=(Plot3D[fi[i, u, v], {u, 1/2, 1}, {v, 1, 1 + u - u^2}])
G2[i_]:=(ImplicitPlot[(u^2 - u + v - 1) fi[i, u, v] == 0,

{u, 1/2, 1}, {v, 1, 5/4}])

For example, you can observe the graph of f10(u, v) by G1[10]. You can also draw the
graph of f10(u, v) = 0 by G2[10].

(1/2, 1) (1, 1)

(1/2, 5/4)
f10 = 0

D

f10(u, 1 + u − u2) have a zero of the order 2 at u = 1. Thus, as the above figure, the
graph of f10(u, v) = 0 tangents to the parabola v = 1+u−u2 at (1, 1), but have no common
point with D. Thus we know that f10(u, v) > 0 on D.

We know also f8(u, v) > 0 on D similarly.
It is possible to prove f6(u, v) > 0 on D directly. f6(u, v) can be written as f6(u, v) =

f6,1(u, v)f6,2(u, v)
u2vf6,3(u, v)

, here

f6,1(u, v) := 1− v + v3 − uv2

f6,2(u, v) := (1 + v − v2) + uv

f6,3(u, v) := −1 + v + v3 − v3 + uv2.

It is easy too see that f6,1(u, v) > 0, f6,2(u, v) > 0, f6,3(u, v) > 0 on D. Thus f6(u, v) > 0
on D. Since f6(u, v) > 0, f8(u, v) > 0 and f10(u, v) > 0 on D, we conclude that a does not
contain segments of length 5, 7, or 9.
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Corollary 5.2. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K
q
n.

(1) If n = 12, then the index of a must be (11).
(2) If n = 23, then the index of a must be one of the following 17 indexes: (22), (20, 1),

(18, 1, 1), (16, 1, 1, 1), (15, 6), (14, 1, 1, 1, 1), (13, 8), (13, 6, 1), (12, 1, 1, 1, 1, 1), (11,
10), (11, 8, 1), (11, 6, 1, 1), (10, 1, 1, 1, 1, 1, 1), (8, 6, 6), (8, 1, 1 ,1, 1, 1, 1, 1), (6, 6,
6, 1), (6, 1, 1, 1, 1, 1, 1, 1, 1).

Definition 5.3. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K
q
n, and that s = (s1, s2,. . ., sl)

is a l-segment of a with l ≥ 2. Then, we define

Vl(a) := 1 +
sl−1

sl
,

Rl(a) :=
s1

sl
=

Head(s)
Tail(s)

.

If there are no segment of length l in a, we define Rl(a) := 1. Moreover we define R1(a) := 1.
By Corollary 3.5, Vl(a) and Rl(a) do not depend the choice of s.

Theorem 5.4. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K
q
n.

(1) If a contains segment of length 6, then the following holds.

1/2 ≤ U(a) < 0.63894, R6(a) < 1/2

(2) If a contains a segment of length 8, then the following holds.

1/2 ≤ U(a) < 0.73254, R8(a) < 0.65994

(3) If a contains a segment of length 10, then the following holds.

0.63893 < U(a) < 0.78332, R10(a) < 0.90213

(4) If a contains a segment of length 11, then the following holds.

0.94197 < U(a) < 1

(5) If a contains a segment of length 12, then the following holds.

0.73253 < U(a) < 0.81295, R12(a) < 1.20768

(6) If a contains a segment of length 13, then the following holds.

0.90868 < U(a) < 1

(7) If a contains a segment of length 14, then the following holds.

0.78331 < U(a) < 0.83098, R14(a) < 1.61530

(8) If a contains a segment of length 15, then the following holds.

1/2 ≤ U(a) < 0.63894 or 0.88942 < U(a) < 0.94198

(9) If a contains a segment of length 16, then the following holds.

0.81294 < U(a) < 0.84220, R16(a) < 2.20409

Proof. We use the same notation with the proof of Theorem 5.1. Moreover put U := U(a),
V := Vl(a), and

D′
i :=

{
(u, v) ∈ D

∣∣ fi(u, v) > 0
}
,

Di := D′
2 ∩D′

3 ∩D′
4 ∩ · · · ∩D′

i.
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Note that D′
2 = D′

3 = D′
4 = D′

5 = D′
6 = D′

8 = D′
10 = D.

(1) Consider the case l = 6. The graph Γ7 of f7(u,v) = 0 on D is as following.

(1/2, 1) (1, 1)

(1/2, 5/4)

(0.5, 1.15239)

(0.63894, 1.23070)

D+

f7 = 0

−

This curve Γ7 is the hyper elliptic curve defined by

(2v − 2v2 − v3 + v4) + u(−1 + 2v + v2 − 2v3) + u2v2 = 0.

Thus, we put

f7,1(v) :=
(v2 − 1)(2v − 1) +

√
(v − 1)(v3 + v2 + 3v − 1)
2v2

.

We obtain the intersection of Γ7 and the parabola v = 1 + u − u2 on D by solving f7(u,
1 + u − u2) = 0. This root is u ∼ 0.6389355101 (rounded up). If a has a 6-segment,
then f7(U , V ) = 0. Thus 1/2 ≤ U < 0.6389355101. Since f6(f7,1(v), v) is monotonically
increasing on 1.15239 < v < 1.23070, we have

R6(a) ≤ 1/f6(f7,1(1.23070), 1.23070) < 0.42657 < 1/2

(2) Consider the case l = 8. The graph Γ9 of f9(u,v) = 0 on D is as following.

(1/2, 1) (1, 1)(0.63894, 1)

(1/2, 5/4)

(0.5, 1.03252)

(0.63894, 1.23070)
(0.73254, 1.19593)

D

f9 = 0

f9 = 0
+

−

−

+

We can calculate the root of f9(u, 1 + u− u2) = 0 with 1/2 ≤ u < 1 by

FindRoot[fi[9, u, 1+u-u^2] == 0, {u, 0.7}]

and we have u ∼ 0.7325361425 (rounded up). Thus 1/2 ≤ U < 0.7325361425. Execute

Plot3D[1/fi[8, u, v], {u, 1/2, 0.7325361425}, {v, 1, 1 + u - u^2}]
Maximize[{1/fi[8, 0.7325361425, v], 1<v <= 5/4}, v] // N

and we conclude that
1

f8(u, v)
<

1
f8(0.73254, 1.10735)

< 0.65994
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on Γ9 ∩D. Thus R8(a) < 0.65994.

(3) Consider the case l = 10. The graph Γ11 of f11(u,v) = 0 on D is as following.

(1/2, 1)
(1, 1)

(1/2, 5/4)

(0.63894, 1) (0.73254, 1)

(0.73254, 1.19593)
(0.78332, 1.16973)

+ +

f11 = 0 −

−

Thus，0.6389355100 < U < 0.7833151924. Since 1/f10 < 1/f10(0.78332, 1.09863) <
0.90213 on Γ11 ∩D, we have R10(a) < 0.90213.

(4) Consider the case l = 11. The graph of f12(u,v) = 0 on D is a curve connecting (1,
1) and (0.94197, 1.05466) as following.

(1/2, 1) (1, 1)

(1/2, 5/4)

(0.94197, 1.05466)
+

f12 = 0 −

Thus, 0.9419748741 < U < 1.

(5) Consider the case l = 12. The graph Γ13 of f13(u,v) = 0 on D is as following.

(1/2, 1) (1, 1)(0.73256, 1) (0.78332, 1)

(1/2, 5/4)

(0.81295, 1.15207)
(0.78332, 1.16973)

+
+

f13 = 0

−

−

Thus, 0.7325361424 < U < 0.8129451277. Since 1/f13(u, v) < 1/f13(0.81295, 1.08843)
< 1.20768 on Γ13 ∩D, we have R12(a) < 1.20768.

(6) Consider the case l = 13. The graph of f14(u,v) = 0 on D is as following. But
the curve connecting (1/2, 1.19728) and (0.55413, 1.24707) is included in D −D′

6 on which
a6 < 0. Thus, we omit this curve.
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(1/2, 1) (1, 1)

(1/2, 1.19728)

(0.55413, 1.24707)
(1/2, 5/4)

(0.94197, 1)

(0.94197, 1.05466)
(0.90869, 1.08297)

f14 = 0

+

+

−

−
−

Thus we have 0.9086897811 < U < 1.

(7) Consider the case l = 14. The graph Γ15 of f15(u,v) = 0 on D is as following.

(1/2, 1) (1, 1)(0.78332, 1) (0.81295, 1)

(1/2, 5/4)

(0.81295, 1.15207)
(0.83098, 1.14045)

+

+
f15 = 0

−

−

Thus, 0.7833151923 < U < 0.8309779815. Since 1/f14(u, v) < 1/f14(0.83098, 1.08039)
< 1.61530, we have R14(a) < 1.61530.

(8) Consider the case l = 15. The graph Γ16 of f16(u,v) = 0 on D is as following.

(1/2, 1) (1, 1)

(1/2, 1.19728)

(0.55413, 1) (0.90869, 1) (0.94197, 1)

(0.55413, 1.24707)
(0.63894, 1.23070)(1/2, 5/4)

(1/2, 1.08015) (0.90869, 1.08297)
(0.88943, 1.09835)

f16 = 0

+

+

+

−

−

−

−

Thus, 1/2 ≤ U < 0.6389355101 or 0.8894259160 < U < 0.9419748742.
(9) Consider the case l = 16. The graph Γ17 of f17(u,v) = 0 on D is as following.

(1/2, 1)
(1, 1)

(0.81295, 1) (0.83098, 1)

(1/2, 5/4)

(0.83098, 1.14045)
(0.84220, 1.13290)

+

+
f17 = 0

−

−
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Thus, 0.8129451276 < U < 0.8421985095. Since 1/f16(u, v) < 1/f16(0.84220, 1.07460)
< 2.20409 on Γ17 ∩D, we have R16(a) < 2.20409.

§6. Proof of Theorem 1.1.

Theorem 6.1. Assume that min
x∈K23

E23(x) = E23(a) at a ∈ K
q
23. Then the index of a can

not be any of the following values.
(1) (6, 6, 6, 1), (6, 1, 1, 1, 1, 1, 1, 1, 1).
(2) (8, 6, 6), (8, 1, 1 ,1, 1, 1, 1, 1).
(3) (10, 1, 1, 1, 1, 1, 1).
(4) (11, 10), (11, 8, 1), (11, 6, 1, 1).
(5) (13, 8), (13, 6, 1).
(6) (15, 6).
(7) (12, 1, 1, 1, 1, 1).
(8) (14, 1, 1, 1, 1).
(9) (16, 1, 1, 1).

Proof. We use the same notation with the proof of Theorem 5.1. Let U := U(a), Rl := Rl(a),
and let mi be the number of li-segments in a (i = 1,. . ., q), and let r := m1 + m2 + · · ·+ mq

be the number of segments in a. Then,

UrRm1
l1
· · ·Rmq

lq
= 1. (6.1.1)

(1) In these cases, U < 1, R6 < 1 by Theorem 5.4 (1). Thus (6.1.1) can not hold.
(2) In these cases, U < 1, R6 < 1, R8 < 1 by Theorem 5.4 (1), (2). Thus (6.1.1) can

not hold.
(3) In this case, U < 1, R10 < 1 by Theorem 5.4 (3). Thus (6.1.1) can not hold.
(4) In these cases, 0.94197 < U < 1 by Theorem 5.4 (4). But if a have a segment of

length 10, 8 or 6, then 0.63893 < U < 0.78332, 1/2 ≤ U < 0.73254, 1/2 ≤ U < 0.63894
respectively. There exists no such U .

(5) is similar to (4).
(6) Consider the case (15, 6). 1/2 ≤ U < 0.63894 and R6(a) < 1/2 by Theorem 5.4 (1),

(8). Execute

Plot3D[Ri[15, u, v], {u, 1/2, 0.6389355101}, {v, 1, 1 + u - u^2}]
Maximize[{Ri[15, 0.6389355101, V], 1 <= V <= 5/4}, V] // N

Thus we have 1/f15(u, v) < 1/f15(0.63894, 1.09583) < 0.08952 on the set Γ16 ∩
{
(u, v) ∈ D∣∣ 1/2 ≤ u ≤ 0.63894

}
. Thus R15 < 0.08952 and (6.1.1) can not hold.

(7) In this case, 1 = U6R12 < 0.812956 × 1.20768 < 1. A contradiction.
(8) In this case, 1 = U5R14 < 0.830985 × 1.61530 < 1. A contradiction.
(9) In this case, 1 = U4R16 < 0.842204 × 2.20409 < 1. A contradiction.

The left cases are (11) when n = 12, and (22), (20, 1), (18, 1, 1) when n = 23.

Theorem 6.2. (1) Assume that min
x∈K12

E12(x) = E12(a) at a ∈ K
q
12. Then the index of a

can not be (11). Thus, Theorem 1.1 (2) holds.
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(2) Assume that min
x∈K23

E23(x) = E23(a) at a ∈ K
q
23. Then the index of a can not be

(22).

Proof. We use the same notation with the proof of Theorem 6.1.
(1) We may assume a = (1, a2,. . ., a11, 0). Note that a11 = Ua1 = U . We draw the

graph of f11(u, v)− u = 0 on D. Execute

Plot3D[Ai[11,u,v]-u, {u, 0.5, 1}, {v, 1, 1.25}]
ImplicitPlot[(u^2-u+v-1) (Ai[11,u,v]-u)==0, {u, 0.5, 1}, {v, 1, 1.25}]

We obtain the following.

(1/2, 1) (1, 1)

(1/2, 5/4)

(0.60824, 1)

(0.68938, 1.21414)

f11 − u = 0

−

+

Thus 0.6082388995 < U < 0.6893774937. But 0.94197 < U < 1 by Theorem 5.4 (4). Thus
the index (11) can not occur.

(2) We may assume a = (1, a2,. . ., a21, 0), here a21 = U . The graph of f23(u, v) = 0
and the graph of f22(u, v)− u = 0 on D are as following.

(1/2, 1)
(1, 1)

(1/2, 5/4)

(1/2, 1.02526)

(1/2, 1.12731)

(1/2, 1.20417)

(0.51615, 1)

(0.51615, 1.24974)
(0.58706, 1.24242)

(0.68507, 1)

(0.72164, 1.20088)

(0.75947, 1)
(0.84484, 1) (0.84925, 1)

(0.85369, 1)

(0.81969, 1.14780)
(0.83898, 1.13510)

(0.85369, 1.12491)
(0.85648, 1.12292)

The graph Γ23 of f23(u, v) = 0 consists of five parts. The first is the curve connecting
(1/2, 1.20417) and (0.51615, 1.24974), the second is (1/2, 1.12731) — (0.58706, 1.24242), the
third is (1/2, 1.02526) — (0.51615, 1), the fourth is (0.84925, 1) — (0.85648, 1.12292), and
the fifth is (0.85369, 1) — (0.85369, 1.12491). The graph Γ ′22 of f22(u, v) − u = 0 consists
of three parts. The first is (0.68507, 1) — (0.72164, 1.20088), the second is (0.75947, 1) —
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(0.81969, 1.14780), and the third is (0.84484, 1) — (0.83898, 1.13510). As the above figure,
Γ23 ∩ Γ ′22 ∩D = ∅. Thus, (U , V23) can not exists if the index of a is (23).

Theorem 6.3. Assume that min
x∈K23

E23(x) = E23(a) at a ∈ K
q
23. Then, the index of a can

not be any of the following values. Thus, Theorem 1.1 (1) holds.

(1) (18, 1, 1).

(2) (20, 1).

Proof. (1) We may assume that a = (1, a2,. . ., a18, 0, a20, 0, a22, 0). Let U := U(a) and
V := V18(a). Then, a22 = U , a20 = U2, a18 = U3, f19(U , V ) = 0 and f18(U , V ) = U3.

The graph of f19(u, v) = 0 and the graph of f18(u, v)− u3 = 0 on D are as following.

(1/2, 1)
(1, 1)

(1/2, 5/4)

(0.55362, 1) (0.64255, 1) (0.83098, 1)
(0.84220, 1) (0.84496, 1)

(0.63606, 1.23149)

(0.70658, 1.20733)
(0.84220, 1.13290)

(0.84454, 1.13129)

(0.84925, 1.12803)

The graph Γ19 of f19(u, v) = 0 consists of two parts. The first is the curve C1 connecting
(0.83098, 1) and (0.84925, 1.12803), and the second is (0.84220, 1) — (0.84220, 1.13290).
The graph Γ ′18 of f18(u, v) − u3 = 0 consists of three parts. The first is (0.55362, 1) —
(0.63606, 1.23149), the second is (0.64255, 1) — (0.70658, 1.20733), and the third is the curve
C2 connecting (0.84496, 1) and (0.84454, 1.13129). As the above figure, Γ19 ∩ Γ ′18 ∩ D =
C1 ∩ C2 ∼ (0.8391429974, 1.0981287467). Thus U ∼ 0.8391429974 and V ∼ 1.0981287467.
In this case E23(a) > 11.511 > 23/2 = E23(1, 1,. . ., 1). So, E23(a) can not be minimum.

(2) We may assume a = (1, a2,. . ., a20, 0, a22, 0). Let U := U(a) and V := V18(a).
Then a22 = U , a20 = U2, f21(U , V ) = 0 and f20(U , V ) = U3.

The graph of f21(u, v) = 0 and the graph of f20(u, v)− u2 = 0 on D are as following.
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(1/2, 1)
(1, 1)

(1/2, 5/4)
(1/2, 1.23198)

(0.51615, 1.24974)

(0.63606, 1)

(0.68507, 1.21575)

(0.70658, 1)

(0.75947, 1.18268)

(0.84220, 1) (0.84454, 1)

(0.84925, 1)

(0.84925, 1.12803)
(0.85369, 1.12491)

(0.84484, 1.13108)

The graph Γ21 of f21(u, v) = 0 consists of three parts. The first is (1/2, 1.23198) —
(0.51615, 1.24974), the second is the curve C3 connecting (0.84220, 1) and (0.85369, 1.12491),
and the third is (0.84925, 1) — (0.84925, 1.12803). The graph Γ ′20 of f20(u, v) − u2 = 0
consists of three parts. The first is (0.63606, 1) — (0.68507, 1.21575), the second is (0.70658,
1) — (0.75947, 1.18268), and the third is the curve C4 connecting (0.84454, 1) and (0.84484,
1.13108). As the above figure, Γ21 ∩ Γ ′20 ∩ D = C3 ∩ C4 ∼ (0.8388196493, 1.0346467269).
Thus U ∼ 0.8388196493, and V ∼ 1.0346467269. Then E23(a) > 11.512 > 23/2 = E23(1,. . .,
1). Thus E23(a) can not be minimum.
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