A New Proof of Shapiro Inequality

Tetsuya Ando

Abstract We present a new proof of Shapiro cyclic inequality. Especially, we treat the case
n = 23 precisely.

§1. Introduction.

Let n > 3 be an integer, x1, x2,. .., T, be positive real numbers, and let
(2
E,(z1,...,2p) = g _—
) Tit1 T Tit2

here we regard z;,, = x; for i € Z. In this article, we present a new proof of the following
theorem:

Theorem 1.1. (1) If n is an odd integer with 3 < n < 23, then
E,(z1,...,2,) > n/2. (P)

Moreover, E,(x1,..., ,) =n/2 holds only if x1 = x5 = -+ = x,,.

(2) If n is an even integer with 4 < n < 12, then (P,) holds. Moreover, the equality
holds only if (z1,..., x,) = (a, b, a, b,..., a, b) (3a > 0, b > 0).

(3) If n is an even integer with n > 14 or an odd integer with n > 25, then there exists
x1 > 0,..., ©, > 0 such that E,(x1,..., z,) <n/2.

(3) was proved by [4] in 1979. It is said that (1) was proved by [6] in 1989. (2) was
proved by [2] in 2002. Note that [2] treat (1) to be an open problem. The author also thinks

we should give a more agreeable proof of (1). In this article, we give more precise proof of
(1) than [6].

§2. Basic Facts.

Throughout this article, we use the following notations:

0 1 Ti—9 Ti—1
0;E,(x) = —F,(x) =
() x; ( Tit1+ Tigo (w1 + )% (x5 + Ti41)?
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{(xl,...,wn)eR”}xle,...,anO}
{(ml,...,xn)ER"}x1>0,...,xn>0}
— | (1, yxn) &€ K,
K Z:{(xly...,xn)eKn (1 )¢ " . }
(xi,iy1) # (0,0) for any i € Z.

It is easy to see that there exists a € K, such that

xlenfg E,(x) = E,(a).

o
n

Thus, we consider E,(x) to be a continious function on K.

Proposition 2.1.([3]) (1) If (P,) is false, then (P,42) is also falsel]
(2) If (P,,) is false for an odd integer n > 3, then (P,,11) is also false.

Proof.  Assume that there exists positive real numbers aq,..., a, such that E,(aq,...,
an) < n/2.
. n+2 .
(1) Since, Epio(a1,...,an,a1,a2) =1+ Ep(ag,...,ap) < 5 (Py42) is false.
(2) Note that
1
Eni1(ar, . oy Qr_1,0py QryQpy1, ..y 0n) — Ep(ay, ... an) — B

Qpr—1 Ay o Qpr—1 i }
ar + ar ar + Ar41 ar + Qpr41 2
o ((I,« - arfl)(ar - ar+1)

B 2ar(ar + ar+1)

for 1 <r < n. Thus, it is sufficient to show that there exists r such that (a, — a,_1)(a, —
ar—i—l) < 0.
Assume that (a, — a,—1)(ar — ar41) >0 for all 1 <7 < n. Since n is odd,

H(ar - ar+1)2 = H(arfl - ar)(ar - ar+l) <0.
r=1 r=1
This is a contradiction[ g

Proposition 2.2.([4]) (1) E14(42, 2, 42, 4, 41, 5, 39, 4, 38, 2, 38, 0, 40, 0) < 7. Thus (P14)
is false.

(2) Eq95(34, 5, 35, 13, 30, 17, 24, 18, 18, 17, 13, 16, 9, 16, 5, 16, 2, 18, 0, 21, 0, 25, 0,
29, 0) < 25/2. Thus (Psy5) is false.

Thus, Theorem 1.1 (3) is proved by Proposition 2.1 and 2.2. It is essential to show
(P12) and (Ps3) for a proof of Theorem 1.1 (2) and (3).

Definition 2.3. We say that x = (21,..., x,,) € K, and y = (y1,. .., Yn) € K,, belong to
the same component if “r; =0 <= y; =0" foralli =1,..., n.

Let x = ((L‘l,. c xn) S K;l If Ti—1 = 0, Z; 7é 0, Tit1 7& 0,. e Ty 7é 0, and Tjt1 = 0 for
i < j € Z, then we call (z;,..., z;) to be a segment of a, and we define j —i + 1 to be the
length of this segment. A segment of length [ is called [-semgent.
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For a segment s := (;,..., ;) of x, we denote
j—1
=
k=i

Here we define S(s) = 0, if the length of s is 1.
Let s1,..., s, be all the segments of x in this order. Let [; be the length of s;. Then
(l1,..., l;) is called the index of x. Note that

a)=) S(sp)+ > m'
k=1 k=1

Here we regard s+, = sy for k € Z.

, Head(s) :=x;, Tail(s):= x;.
k-+1 +95k+2 ®) s) ’

Theorem 2.4. Assume that m}? E,(x) = E,(a) at a = (a1,..., an) € K. Let s1,..., s
xeEK?

n

be all the segments of a in this order, and let I be the length of s;. Then the followings

hold.
Tail(sy)  Tail(sy)  Tail(s,—1)  Tail(s,)

(1) Head(s;) Head(ss)  Head(s,) Head(s;)’
(2) Assume that a = (s1, 0, s2, 0,..., s;-, 0), and let o be a permutation of {1, 2,..., r}.
Then there exist real numbers t; > 0, t5 > 0,..., t, > 0 such that
b= (tlso(1)7 0, t250(2)7 0,..., trsa(r)v O)
satisfies E,(b) = E,(a).

Proof. (1) Since E,(a14k, @24k, - -y an+k) = En(ar,as,...,a,), we may assume a = (s, 0,
s2, 0,..., s, 0). Let x; := Head(s;), y; := Tail(s;). Define t1,..., t, by t; := 1 and
j—1
b Y2 Y- <£B1UC2"'$T> "
/ XT2X3 Ty Yyi1y2 - Yr

for j =2, 3,..., r. It is easy to see that
ti—1Yi—1 _ Y1y ey

tj-fj 1Ty tlxl'

Take t; > 0,..., t, > 0, and let
C = (tlsl, 0, tQSQ, 0, ceey trST, O)
Note that S(t;s;) = S(s;). By AM-GM inequality,

_ - Yi—1
_;S( Z -

=1

> ) S0s) + P Zsm +z S B,

Since E,(a) is the minimum, we have E, (a ) = En(c) By the equahty condition of AM-GM
inequality, we have t; =t5 =--- =1t, = 1. Thus

Yi-1 _ Y1 Yr

x] X1 Ty

and we have (1).



(2) By the same argument as (1), we conclude that there exists positive integers ¢},. . .,
t! such that
b= (tllsg(l)y 0, t/QSU(2), 0, RN t,/rSC.,(T)7 0)

satisfies .
En(b) =Y 8(si) +r- ¢/ 2
g Ty Ty
Thus E,(b) = E,(a). O
Remark 2.5. By the above theorem, we may assume that the index (I1,. .., [,) of a satisfies
h>l> >0, if xrgin. E,(x) = E,(a). Thus, we always write the index of such a in

n

descending order.

Definition 2.6. Assume that a € K satisfies the condition of the above theorem. Then
we define U(a) to be

Ula) = Head(sy;) Head(ss)  Head(s,) Head(s,)’

Tail(sy)  Tail(sy)  Tail(s,—1)  Tail(s,)

Note that E,(a) =rU(a) + ZS(sk), for a= (s1, 0, s2, 0,..., s,, 0).
k=1

§3. Bushell Theorem.

We survey and improve the results of [1]. In this section, we denote

"y
Ai(x) = ———
£(x) Tit1 + Tito

B(x) := (xg + 23, T3+ Tay. .., Tn + X1, T1 +.’L‘2)
1 1 1 1

R(x) := <, , ,...,)
Tpn Tp—1 Tp—2 Mo

T(x) ( Ln Lnt1—i 1 )
X) = ey ey
(r1 + x2)? (Tnt2—i + Tpis—i)? (x2 + x3)?
for x = (x1,. .., ). We also denote the i-th element of B(x) by B(x); = z;j+1+ Zi+2. R(X);
and T'(x); are also defined similarly. The symbol T'(x) are used throughout this article.

Lemma 3.1.([1] Lemma 3.2, 4.2) The above functions satisfy the followings.
(1) 0iEn(x) = (R(B(x))ny1-i = (B(T(X)))nt1-i-

(2) (T°(x)); = . .
(1 - (B(x))z&En X))




1 Ti—2 Ti—1
Proof. (1) 0;En(x) = T1 t T <($i_1 )2 + (fci+$i+1)2> = (R(B(X))n+1-i —
(B(T(x))
(

(2)

)n—i—l Q-
T(x)); = __In1=i  Combine this with (1), we obtain

(B(x))7 41—

R ) I 51/ (B(x)?
TG (BTE))a1-i (RB(X)))nt1-i — 0 En(x))
Since (B(x)); - (R(B(X)))n+1—; = 1, we obtain (2).

(3) By the similar calculation as above, we obtain

n T(x)); - T;
Pu(T00) = B0 = 2 75 ey RGED

n

-2 (G~ )

. (3.1.1)

i1 B(x))ZOZEn(x)
Since,
Zx O ; Tit1+ Tiso ; (%—1_-1— zi)? ; m
e T (@ i) - TiaTigl N~ T _
B ; (Ti + Tit1)? ; (@i + 2i41)? ; (i + Ti41)? b
we obtain
Ful(T(x)) = Balx) = Y 0i0,Fa(x) <1 _ (B(x)l)i@-En(x) - 1>
B Loy (&En(x))2
B ; (B(T(x)))n+1-i
(4) Let a = 21, b= 2141 + 742 = (BO))s, 1= yir d = (B(y)):
Ti +Yi (T(x) + T(y))nt1- (3.1.2)
(Bx+y)i  (RB(X)+ RBY)),,y_ |
_a+4c  a/tP+c/d® a ¢
“bvd  prijd b g ATAD)

By (1), we have

Tx)+T)nt1—i (T +TY))nt1-i
(B(T(x) +T(y))n+1-i  (R(B(x)) + R(B(Y))),, 11
)+3E ¥))

(T(x) + T(y))nr1-i (i En (x
(R(B(x)) + R(B(¥))),, 41, " (

5
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n

Take Z of (3.1.2) and (3.1.3), we obtain (4). O

=1

Theorem 3.2.([1] Theorem 3.3) (1) E,(T(x)) > E,(x) holds for x € K,,. Moreover, if
E,.(T(x)) = En(x), then T?%(x) = x holds.
(2) If m}? E,(x) = E,(a) at a € K,,, then the following holds.
xeK;,

T?(a) =a, E,(T(a)) = E,(a).

Proof. (1) E,(T(x)) > E,(x) follows from Lemma 3.1 (3). Assume that E, (T(x)) = E,(x).
Then z; (8¢En(x))2 =0 (Vi =1,...,n), by Lemma 3.1 (3). Thus z; = 0 or 9,F,(x) = 0. By
Lemma 3.1 (2), we obtain (T?%(x)); = z;.

(2) If E,, is minimum at a, then a; = 0 or 9;E,(a) = 0. By Lemma 3.1 (2), we have
(T%(a)); = a;. We also have E,(T'(a)) = E,(a) by Lemma 3.1 (3). O

Lemma 3.3.([1] Lemma 4.3) Let a, b, ¢, d, e be positive real numbers, and p, ¢ be real

numbers. Assume that
14+ Xa 14+ X 1

PAT2Z T U002~ 1+ re
for all real numbers A > 0. Then the followings hold.
(1) If p=0,theng=1and b=d =e.
(2) Ifg=0,thenp=1anda=c=e.
(3) If p£0 and g #0, then c=d =e.

Proof. (1) Substitute A = 0, p = 0 for (3.3.1), we have ¢ = 1. In this case, (3.3.1) is
equivalent to

(3.3.1)

(1+A)(1+ Xe) = (14 M)
As an equality of a polynomial in A, we have b =d = e.

(2) can be proved similarly as (1).
(3) Let
g(\) == p(1 + Xa)(1 4+ Ad)*(1 + Xe)
+q(1+Ab)(1+ Ac)*(L+ Xe) — (1 + Ae)?(1 + Ad)>. (3.3.2)
g(A\) = 0 as a polynomial in A. Thus

o=o(-1) =02 (1-7)

and we have c = e or d = e.
Assume that d # e. Then ¢ = e. From (3.3.2), we obtain

p(1+ Xa)(1 + Xd)? + q(1 + Ab)(1 + Xe)? — (14 Xe)(1 + Ad)* = 0. (3.3.3)
Substitute A = —1/e for (3.3.3), we obtain p(1 — a/e)(1 — d/e)?> = 0. Thus a = e. Then
p(1+Ad)? + q(1 4+ Ab)(1+ Xe) — (1 4+ Ad)? = 0. (3.3.4)
Substitute A = —1/e for (3.3.4), we have d = e. A contradiction. Thus d = e.
Similarly, we have ¢ = e. 0



Theorem 3.4. (1) Assume that min E,(x) = E,(a) = E,(b) at a, b € K, and that a

XeKn
and b belong to the same component. Then, there exists a real number p > 0 such that

a = ub.
(2) Assume that min E,(x) = E,(a) at a € K. Then E, (a) = n/2. Moreover a = (a,

xeK,
a, a,...,a) (3a>0),ora=(a,b,a,b,...,a,b) (Ja>0b>0).
Proof. Assume that ng}? E,(x) = E,(a) = E,(b) for a, b € K,,, and that a and b belong

to the same component. Let A > 0 be any real number.

If a; # 0, then 0,F,(a) = 0;E,(Ab) = 0. If a; = 0, then b; = 0 and (T'(a))p+1-; = 0,
(T'(Ab))n+1—i = 0. Thus we have
(Vi € Z). We use the Lemma 3.1 (4) with x = T'(a), y = Ab. Since the numerators of the
fractions in ) in Lemma 3.1 (4) are zero, we have

E,(a) + E,(A\b) = E, (a+ Ab) + E,,(T'(a) + T(Ab)).
Since E, (Ab) = E,(b) = E,(a) is minimum, we have
E,(a+ Ab) = E,(T'(a) +T(\b)) = E,(a).
Since E,,(x) is minimum at x = a + Ab for any A > 0, we have
1 a;—o + Abj_o a;—1 + Ab;_1

0= 0Fn @t D) = (5 my, ~ B+ b)), Barwyr, Ot

when a; # 0. Let

bi_2 bia o (B(b))i—2 do— ( ;
a;—2 C a1 - (B(a))i-2’ ‘

_BMm)i _aia(B@) aii(B(a))

T @@y T BaE, T T BRI,

Then, (3.4.1) become (3.3.1). It is easy to see that the cases (1) and (2) of Lemma 3.3 do

not occur. Lemma 3.3 (3) implies

S
I
S
I

—~

(B(®))i—z _ (BM))i-1 _ (BM): _ 1
(B(a))i-2  (B(a))i-1  (B(@)i p
Thus
ait1 + aiv2 = B(u) = pB(v) = p(bit1 + biv2) (3.4.2)
(Vi € Z). If n is odd, then a; = ub; (Vi € Z) from (3.4.2). Thus a = ub.
We treat the case n is even. Let w = (1, —1, 1, —1,..., —1) € R™. By elementary linear

algebra, we conclude that the solutions of the system of equations (3.4.2) is of the form
a—pub=vw (JveR).

If a € K;, then a and b have zeros at the same place. Thus, v must be zero. Thus we
obtain (1).

We shall prove (2). Apply above argument to b = (as, as,. .., a,, a1). If n is odd, then
a=pub. Thus p =1, and a3 = az = -+ = a,,. In this case, F,(a) = n/2.

If n is even, a — ub = vw. Thus a = (a1, as, a1, as,. .., aj, az). Then E,(a) =n/2. [0

Corollary 3.5. Assume that m}? E,(x) = E,(a) at a € K;. Let s and t be segments of
x€

a with the same length /. Then, there exists a real number ¢ > (0 such that s = ct.
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Proof. We construct a vector b as in the proof of Theorem 2.4 (2), where o is the transpo-
sition of s and t. Then E,(a) = E,(b). By Theorem 3.4, a = ub (3p > 0). Thus s = ct
(Je > 0). O

Corollary 3.6. Assume that m}? E,(x) = E,(a) at a € K. Let s = (a1,..., ;) be a
xXeEK,
l-segment of a with [ > 2. Let U := U(a). Then there exists a real number p > 0 such that

<U2 aj—1 aj—2 aj—3 . ao ax )
a’ @l (a1 Fa)? (w2t a—1)? 7 (ag+aq)?’ (a2 + as)?
= p(ay,az,a3,aq,...,a1-1,a1). (3.6.1)

Proof. We may assume that a = (s, 0,...). Rotate the elements of T'(a) so that the segment
corresponding to s comes to be the same place with s, and we denote this vector by b. Then
the top segment of b is

a;  ap—1 ar—2 ar—3 a2 a
) 3 ’ Ty ) .

a12+2 a? 7 (a—1+ a)?’ (ag—2 + a—1)?’ (a3 + a4)?’ (a2 + asz)?
By Theorem 3.2 (2), E,(b) = E,,(T'(a)) = E,(a). By Theorem 3.4, b = pa (3p > 0). Since
U=ay/aiy2, ar/ai, , = U?/a;. Thus, we have (3.6.1). O

§4. Bushell-McLead Theorem.

The aim of this section is to explain Theorem 4.3, according to [2]. In This section, we
denote

KnA = {(xl,...,:vn) e K, ‘ Tpo1=1, 2, = O}
"y
= = A(x).

vi Ti+1 + Tito i(x)
Note that y, =0, yp—1 = Tp—1/21, and y,—o = T2 for x = (z1,..., T,) € KnA. The map
d: K2 — ®(K2) defined by ®(z1,..., ) = (Y1, .., Yn) is bijective. The inverse map ®~*
is obtained as the solution of the system of equations y;(z;y1 + Ziy2) —z; =0 (i = 1,.. .,
n —2). Let

Z1 <1
—1 Z9 Z2
-1 z3 z3

Pk(zl,zg, .. -7Zk) =

Inductively, we can prove that x; = Pp,_;—1(Yi, Yit1s- -+ Yn—2). By the properties of deter-
minant, we can prove the following lemma.

Lemma 4.1.([2] Lemma 3.1) The followings hold. Here we put Py :=1 and P_; = 1.
(1) Pk(zl,. . Zk) = szk_l(zl,. . Zk—l) + zk_lPk_g(zl,. . Zk—2>-

8



(2) For 1 <j <k,
Pk(zl, e ,Zk) = Pj(zl, e 7Zj)Pk—j(Zj+17 e ;Zk)
—I-Zij_l(Zl,... 7Zj—1)Pk—j—1(Zj+27--~7Zk>-

Lemma 4.2.([2] Lemma 3.2) Let x = (21,..., 7,,) € K2, and (y1,.. ., Yn) = ®(z1,..., Tp).
Assume that z;0;F, (x) = 0 for all i = 1, 2,..., n. Then the followings hold.
(1) yi= y%Pi—l(yl,- o Yie1) Proic1(Wine - 5 Yn—2)

(2) y1 — i = ¥3yic1 Pica(Y1s - oy Yie2) Pocic2(Yit1ye - s Yn—2)

Proof. Put p; := Pi(y1,..., y;). Then (1), (2) can be written as (1) y; = yip;_17;, and (2)
Y1 —Yi = y%yi—lpi—Qxi—i-l-
(1) As a formal rational function
T LTi—2L4 Ti—175
xz@En X) = — —
(x) Tiv1 + Tive  (Tic1+ )% (4 Tig1)?
_ yz‘{zxz‘ B ?/12711’@‘

Ti—2 Ti—1

— Y

So, the condition x;0;E, (x) = 0 can be represented as

, 2 2
Ui Bz B (4.2.1)
£ Lj—2 LTi—1
as an equation in the field R(zy,..., z,—2). Here, we regard xg =z, =0, 2_1 = 2,1 = 1,
Yo=1Yn =0, and y_; = yp—1 = 1/x1. It is enough to show
Yi
€
in R(zq,..., Tpn_2).

Consider the case i = 1. Then, pg = 1. (4.2.1) can be written as y;/z1 = 1/z3.
Multiply 22y;, then we have (4.2.2).

Consider the case i = 2. By (4.2.1) and z1y1 = 1, y1 = P1(y1) = p1, we have

2
Y2 )
*:*l:yf:y%]?r
) T
Thus we obtain (4.2.2).

Consider the case i > 3. We shall prove (4.2.2) by induction on i. By induction
assumption, y;/z; = yip;_1 for 1 < j <i. By Lemma 4.1 (1), p;—1 = yi—1pi—2 + Yi—2Di—3-
Thus

Yi 93—2 3/12—1 2 2
=== = =y (Yi—2Pi—3 + Yi—1Di—2) = Y1 Di—1-
Z; Ti—2 Ti-1

(2) Apply Lemma 4.1 (5) with k = n — 2, j = i — 1, then we obtain 1 = p,_12; +
Yi—1Pi—2%it1. Since z1 = 1/y;, after multiplying y% to the both hand sides, we obtain
Y1 = YiPi—1Zi + Yiyi—1Pi—2%it1. By (1),

Y1 — Y =Y — y%pi—ll‘i = y%yi—lpi—Qxi—i-l-
Thus we obtain (2). 0

Theorem 4.3.([2] Proposition 3.3) If m}? E,(x) = E,(a) at a€ K, then U(a) > 1/2.
xXEKn



Proof. We may assume a = (x1,..., r,) € K2. By Lemma 4.2 (1), (2), we have 0 <
Tif(Tig1 + Tig2) =y <y1=1/z1 =U(a) (i =1,..., n). Assume that U(a) < 1/2. Then
x1 > 2, and 2z; < ;41 + x;42. Take ), we obtain

n

221’1' < Z(Q,’H_l + xi+2) = Qin.
=1 =1

i=1

A contradiction. O

§5. Short segments.

The following Theorem is an extenstion of [2] Lemma 4.1, [5] §4, §5 and [6] §5.

Theorem 5.1. Assume that m}? E,(x) = E,(a) at a € K;. Then a does not contain
XEKp

segments of length 2, 3, 4, 5, 7, or 9.

Proof. Let s = (ay,. .., a;) be a l-segment of a (I > 2). Put U :=U(a), V := -1t a > 1.

a
Note that a;4+1 = 0, aj42 = a;/U by Theorem 2.4 (1). By Theorem 4.3, U > 1/2.
Since aj12 + aj3 > aj+2 = a;/U, we have
1 L a— a 1

2 2 <
aj42 + aj43 aj ar, o a

0 < O41En(a) = (U—(V-1)-U?).

Thus, we have V < 14+ U — U?. Since 1 < V < 14+ U — U?, we have U < 1 and
1
<

5 2
1 ‘/ < - — -

. Thus (U, V) is included in the set

By (3.6.1), T2 0 a Thus we have
a1a;—1 V-1
“Tur T
Since 0;_oE,(a) =0 (i = 3, 4,..., L + 2), we have
1
a; = Qi1 a;—3 — Qi—1.

(ai—3+a;—2)?  (aj—2+a;—1)?

Here a_1 = a,_1 = Uay and ag = a,, = 0. Inductively, we obtain

1 U-V+1 .
4= an-1/a3 ST gz 4 G =3)
V-U .
1 _ /2
oo LIV V2, s

10



Thus, we define a series of rational functions by

filu,v) =1,  folu,v) = Uu_217 fa(u,v) = U_Tv;—l’ Falu,v) = 0;2”
1
f’i(u7 U) = fi_4(u7’U) fi_3(u7v) - fi—l(uav)

(sl 0) + Fial )2 (oo, ) + fi1(u, )2
(i > 5). Then, a; = f;(U, V)ay for 1 <i <1+ 2. Especially, fi+1(U, V) =a;+1/a; =0.
Sinceu —v+1>0,v—u>0,1+uv—2v2>0o0n D, we obtain f;(u, v) >0 on D for
1 =3,4,5. Thus a;41 # 0 for [ = 2, 3, 4. Therefore, a does not contain segments of length
2, 3, or 4.
Similarly, f;(u, v) > 0 on D for i = 6, 8, 10. We need numerical analysis to prove this.
If you have ‘Mathematica’, execute the following.

<< Graphics‘ImplicitPlot‘;
fili_, u_, v_.] := (a=1; b = (v-1)/u"2;
c = (1+u-v)/u"2; d = (v-u)/u"2;
Do[(e=1/(a/(b+c)"2 + b/(c+d)"2) - d; a=b; b=c; c=d; d = e),
{k, 5, i, 1}1; e)
G1[i_]:=(Plot3D[fil[i, u, v], {u, 1/2, 1}, {v, 1, 1 + u - u"2}])
G2[i_]:=(ImplicitPlot[(u"2 - u + v - 1) fi[i, u, v] == 0,
{u, 1/2, 1}, {v, 1, 5/4}1)

For example, you can observe the graph of fio(u, v) by G1[10]. You can also draw the
graph of fio(u, v) =0 by G2[10].

(1/2,5/4) Jio =0

(1/2,1) (1,1

fio(u, 1 +u — u?) have a zero of the order 2 at u = 1. Thus, as the above figure, the
graph of fio(u, v) = 0 tangents to the parabola v = 1+u—wu? at (1, 1), but have no common
point with D. Thus we know that fio(u, v) > 0 on D.

We know also fs(u, v) > 0 on D similarly.

It is possible to prove fs(u, v) > 0 on D directly. fs(u, v) can be written as fs(u,v) =
fo,1(u,v) fe,2(u,v)

u?v fe 3(u,v)

, here

u,v) =1 —v+ 03 — uw?

A

af (14 v —v?) +uv
3(u,v) ~1+v+v®—0® +u?
It is easy too see that fg1(u, v) >0, fe2(u, v) >0, fe3(u, v) >0 on D. Thus fs(u, v) >0

fs,
on D. Since fs(u, v) >0, fg(u v) >0 and fio(u, v) > 0 on D, we conclude that a does not
contain segments of length 5, 7, or 9. 0

u,v) :
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Corollary 5.2. Assume that min E,(x) = E,(a) at a € K.

XeKn

(1) If n =12, then the index of a must be (11).

(2) If n = 23, then the index of a must be one of the following 17 indexes: (22), (20, 1),
(18,1, 1), (16, 1, 1, 1), (15, 6), (14, 1, 1, 1, 1), (13, 8), (13, 6, 1), (12,1, 1, 1, 1, 1), (11,
10), (11, 8, 1), (11, 6, 1, 1), (10, 1, 1, 1, 1, 1, 1), (8, 6, 6), (8, 1, 1 ,1, 1, 1, 1, 1), (6, 6,
6,1),(6,1,1,1,1,1,1, 1, 1).

Definition 5.3. Assume that min F,(x) = E,(a) at a € K, , and that s = (s1, S2,..., 5)

xeK,
is a [-segment of a with [ > 2. Then, we define
Vi(a) =14 =L
S1
s1 Head(s)
R === 2.
@) S Tail(s)

If there are no segment of length [ in a, we define R;(a) := 1. Moreover we define R;(a) := 1.
By Corollary 3.5, Vi(a) and R;(a) do not depend the choice of s.

Theorem 5.4. Assume that xng}?n E,(x)=FE,(a) at ac K.
(1) If a contains segment of length 6, then the following holds.
1/2 < U(a) < 0.63894, Rg(a) <1/2
(2) If a contains a segment of length 8, then the following holds.
1/2 < U(a) < 0.73254, Rg(a) < 0.65994
(3) If a contains a segment of length 10, then the following holds.
0.63893 < U(a) < 0.78332, Rio(a) < 0.90213
(4) If a contains a segment of length 11, then the following holds.
0.94197 < U(a) < 1
(5) If a contains a segment of length 12, then the following holds.
0.73253 < U(a) < 0.81295, Ris(a) < 1.20768
(6) If a contains a segment of length 13, then the following holds.
0.90868 < U(a) < 1
(7) If a contains a segment of length 14, then the following holds.
0.78331 < U(a) < 0.83098, Ris(a) < 1.61530
(8) If a contains a segment of length 15, then the following holds.
1/2 < U(a) < 0.63894 or 0.88942 < U(a) < 0.94198
(9) If a contains a segment of length 16, then the following holds.
0.81294 < U(a) < 0.84220, Rjg(a) < 2.20409

Proof. We use the same notation with the proof of Theorem 5.1. Moreover put U := U(a),
V:=V(a), and

D; {quD‘fluv>0}
D;:=D,nNnD;NDyN---NDj.
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Note that D) = D} = D) = D{ = Dy = D{, = D}, = D.
(1) Consider the case | = 6. The graph I'7 of f7(u,v) =0 on D is as following.

(1/2,5/4) (0.63894,1.23070)

(0.5,1.15239)

(1/2,1) (1,1)
This curve I is the hyper elliptic curve defined by
(20 — 20% — v® +v?) +u(—1+ 20 +0v? — 20%) + u?v? = 0.
Thus, we put

(V2 =120 = 1)+ /(v = 1)(v® +v2 +3v - 1)
fra(v) = 52
v
We obtain the intersection of I'; and the parabola v = 1 +u — u? on D by solving fr(u,
1+ u —u?) = 0. This root is u ~ 0.6389355101 (rounded up). If a has a 6-segment,
then fz(U, V) = 0. Thus 1/2 < U < 0.6389355101. Since fg(f7,1(v), v) is monotonically
increasing on 1.15239 < v < 1.23070, we have

Re(a) < 1/fs(f7.1(1.23070),1.23070) < 0.42657 < 1/2

(2) Consider the case | = 8. The graph Iy of fo(u,v) =0 on D is as following.

(0.63894,1.23070)

(1/2,5/4)
(0.73254,1.19593)

(0.5,1.03252)

(1/2,1) (0.63894,1) (1,1)
We can calculate the root of fo(u, 1 +u —u?) =0 with 1/2 <u < 1 by

FindRoot [fi[9, u, 1+u-u~2] == 0, {u, 0.7}]
and we have u ~ 0.7325361425 (rounded up). Thus 1/2 < U < 0.7325361425. Execute

Plot3D[1/fil8, u, v], {u, 1/2, 0.7325361425}, {v, 1, 1 + u - u~2}]
Maximize[{1/fi[8, 0.7325361425, v], 1<v <= 5/4}, v] // N

and we conclude that
1 1

Fs(w,0) = fs(0.73254,1.10735)

< 0.65994
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on I'yN D. Thus Rs(a) < 0.65994.

(3) Consider the case | = 10. The graph I'1; of fi1(u,v) = 0 on D is as following.

1/2,5/4
(1/2,5/4) (0.73254, 1.19593)
(0.78332,1.16973)
Jr
(1/2,1)
(0.63894, 1) (0.73254, 1) (1,1)

ThusO 0.6389355100 < U < 0.7833151924. Since 1/f19 < 1/f10(0.78332, 1.09863) <
0.90213 on I'1; N D, we have Rip(a) < 0.90213.

(4) Consider the case [ = 11. The graph of fi2(u,v) =0 on D is a curve connecting (1,
1) and (0.94197, 1.05466) as following.

(1/2,5/4)

(0.94197,1.05466)
fi2=0
(1/2,1) (1,1)

Thus, 0.9419748741 < U < 1.

(5) Consider the case | = 12. The graph I3 of fi3(u,v) =0 on D is as following.

(1/2,5/4)

(0.78332,1.16973)
(0.81295, 1.15207)

(1/2,1)  (0.73256,1)  (0.78332,1)  (1,1)

Thus, 0.7325361424 < U < 0.8129451277. Since 1/f13(u, v) < 1/f13(0.81295, 1.08843)
< 1.20768 on I3 N D, we have Ri3(a) < 1.20768.

(6) Consider the case [ = 13. The graph of fi4(u,v) = 0 on D is as following. But
the curve connecting (1/2, 1.19728) and (0.55413, 1.24707) is included in D — Df on which
ag < 0. Thus, we omit this curve.

14



(0.55413,1.24707)

(1/2,5/4)
(1/2,1.19728)

+ (0.90869, 1.08297)
(0.94197,1.05466)
fia=0
(1/2,1) (0.94197,1) (1,1)

Thus we have 0.9086897811 < U < 1.
(7) Consider the case | = 14. The graph I'5 of fi5(u,v) =0 on D is as following.

(1/2,5/4)
(0.812957 1.15207)
(0.83098, 1.14045)
_l’_
fis5 =0
(1/2,1) (0.78332,1) (0.81295,1) (1,1)

Thus, 0.7833151923 < U < 0.8309779815. Since 1/ f14(u, v) < 1/f14(0.83098, 1.08039)
< 1.61530, we have Ry4(a) < 1.61530.

(8) Consider the case | = 15. The graph I'g of fig(u,v) =0 on D is as following.

(0.55413,1.24707)
(1/2,5/4) (0.63894, 1.23070)

1/2,1.19728
(1/2,1.19728) |

(0.88943,1.09835)

(1/2,1.08015) (0.90869, 1.08297)

(1/2,1) )

1,1
(0.55413,1) (0.90869,1) (0.94197,1)

Thus, 1/2 < U < 0.6389355101 or 0.8894259160 < U < 0.9419748742.
(9) Consider the case | = 16. The graph I'7 of fi7(u,v) =0 on D is as following.

(1/2,5/4)
(0.83098, 1.14045)
4 0.84220, 1.13290)
fir=0
1,1)
(1/2,1) (0.81295,1) (0.83098, 1)
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Thus, 0.8129451276 < U < 0.8421985095. Since 1/ f16(u, v) < 1/ f16(0.84220, 1.07460)
< 2.20409 on I't7 N D, we have Rig(a) < 2.20409. (]

§6. Proof of Theorem 1.1.

Theorem 6.1. Assume that m[i(n Es3(x) = Eas(a) at a € K35. Then the index of a can
XEK23

not be any of the following values.
(1) (6,6,6,1),(6,1,1,1,1,1,1, 1, 1).

(2) (8,6,6), (8, 1,1,1,1,1,1,1).

(3) (10,1, 1,1, 1,1, 1).

(4) (11, 10), (11, 8, 1), (11, 6, 1, 1).

(5) (13, 8), (13, 6, 1).

(6) (15, 6).

(7) (12,1,1,1,1, 1).

(8) (14,1, 1,1, 1).

(9) (16,1, 1, 1).

Proof. We use the same notation with the proof of Theorem 5.1. Let U := U(a), R; := R;(a),
and let m; be the number of /;-segments in a (i = 1,..., ¢), and let 7 := mq +ma +---+my,
be the number of segments in a. Then,

URp - R =1 (6.1.1)

(1) In these cases, U < 1, Rg < 1 by Theorem 5.4 (1). Thus (6.1.1) can not hold.

(2) In these cases, U < 1, Rg < 1, Rg < 1 by Theorem 5.4 (1), (2). Thus (6.1.1) can
not hold.

(3) In this case, U < 1, R1p < 1 by Theorem 5.4 (3). Thus (6.1.1) can not hold.

(4) In these cases, 0.94197 < U < 1 by Theorem 5.4 (4). But if a have a segment of
length 10, 8 or 6, then 0.63893 < U < 0.78332, 1/2 < U < 0.73254, 1/2 < U < 0.63894
respectively. There exists no such U.

(5) is similar to (4).

(6) Consider the case (15, 6). 1/2 < U < 0.63894 and Rg(a) < 1/2 by Theorem 5.4 (1),
(8). Execute

Plot3D[Ri[15, u, v], {u, 1/2, 0.6389355101}, {v, 1, 1 + u - u~2}]
Maximize[{Ri[15, 0.6389355101, V], 1 <=V <= 5/4}, V] // N

Thus we have 1/ f15(u, v) < 1/f15(0.63894, 1.09583) < 0.08952 on the set I N {(u,v) € D
| 1/2 < u <0.63894}. Thus Ry5 < 0.08952 and (6.1.1) can not hold.

(7) In this case, 1 = USR12 < 0.81295° x 1.20768 < 1. A contradiction.

(8) In this case, 1 = U’ Ry4 < 0.83098% x 1.61530 < 1. A contradiction.

(9) In this case, 1 = U*Ry6 < 0.84220* x 2.20409 < 1. A contradiction. O

The left cases are (11) when n = 12, and (22), (20, 1), (18, 1, 1) when n = 23.

Theorem 6.2. (1) Assume that min Ej2(x) = Ej2(a) at a € Kj,. Then the index of a

€Ki2

can not be (11). Thus, Theorem 1.1 (2) holds.
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(2) Assume that m}i{n Es3(x) = Egsz(a) at a € K355. Then the index of a can not be
XEK23
(22).

Proof. We use the same notation with the proof of Theorem 6.1.
(1) We may assume a = (1, ag,..., a1, 0). Note that a;; = Ua; = U. We draw the
graph of fi1(u, v) —u =0 on D. Execute

Plot3D[Ai[11,u,v]-u, {u, 0.5, 1}, {v, 1, 1.25}]
ImplicitPlot[(u~2-u+v-1) (Ai[11,u,v]-uw)==0, {u, 0.5, 1}, {v, 1, 1.25}]

We obtain the following.

(1/2,5/4) (0.68938,1.21414)

(1/2,1)  (0.60824,1) (1,1)
Thus 0.6082388995 < U < 0.6893774937. But 0.94197 < U < 1 by Theorem 5.4 (4). Thus
the index (11) can not occur.
(2) We may assume a = (1, aa,..., a1, 0), here ag; = U. The graph of fo3(u, v) =0
and the graph of fos(u, v) —u =0 on D are as following.
(0.51615,1.24974)

. 1.24242
(1/2,5/4) (0.58706, )

(0.72164, 1.20088)

(0.81969, 1.14780)
(0.83898,1.13510)
(0.85369, 1.12491)
(0.85648,1.12292)

(1/2,1.20417)

(1/2,1.12731)

(1/2,1.02526)
(1/2,

1)
(0.51615,1) (0.68507, 1) (1,1)
(0.75947. 1) / \ (0.85369, 1)

(0.84484,1) (0.84925, 1)

The graph I3 of fag(u, v) = 0 consists of five parts. The first is the curve connecting
(1/2,1.20417) and (0.51615, 1.24974), the second is (1/2, 1.12731) — (0.58706, 1.24242), the
third is (1/2, 1.02526) — (0.51615, 1), the fourth is (0.84925, 1) — (0.85648, 1.12292), and
the fifth is (0.85369, 1) — (0.85369,1.12491). The graph I, of foo(u, v) —u = 0 consists
of three parts. The first is (0.68507, 1) — (0.72164, 1.20088), the second is (0.75947, 1) —
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(0.81969, 1.14780), and the third is (0.84484, 1) — (0.83898, 1.13510). As the above figure,
I3 NIy N D =0. Thus, (U, Va3) can not exists if the index of a is (23). O

Theorem 6.3. Assume that min Fa3(x) = Ea3(a) at a € K55. Then, the index of a can

x€Ka3
not be any of the following values. Thus, Theorem 1.1 (1) holds.
(1) (18, 1, 1).
(2) (20, 1).

Proof. (1) We may assume that a = (1, as,. .., ais, 0, as, 0, asz, 0). Let U := U(a) and
V = ‘/18(3)- Then, 99 = U, a0 = U2, ajg = U3, flg(U, V) = 0 and flg(U, V) = Ug.

The graph of fig(u, v) = 0 and the graph of fig(u, v) —u3 =0 on D are as following.

(0.63606, 1.23149)

(1/2,5/4)
(0.70658, 1.20733)
(0.84220, 1.13290)
(0.84454, 1.13129)
(0.84925, 1.12803)
(1/2,1)

0.55362, 1 0.64255, 1 (0.83098, 1) 11
( ) ) (0.8422071)' (0.84496,1)  (1,1)

The graph I'1g of f19(u, v) = 0 consists of two parts. The first is the curve C; connecting
(0.83098, 1) and (0.84925, 1.12803), and the second is (0.84220, 1) — (0.84220, 1.13290).
The graph I7g of fis(u, v) —u3 = 0 consists of three parts. The first is (0.55362, 1) —
(0.63606, 1.23149), the second is (0.64255, 1) — (0.70658, 1.20733), and the third is the curve
C connecting (0.84496, 1) and (0.84454, 1.13129). As the above figure, Ig N g N D =
Cy N Cy ~ (0.8391429974, 1.0981287467). Thus U ~ 0.8391429974 and V' ~ 1.0981287467.
In this case Fa3(a) > 11.511 > 23/2 = FE»3(1, 1,..., 1). So, Ea3(a) can not be minimum.

(2) We may assume a = (1, ag,..., ag, 0, age, 0). Let U := U(a) and V := Vig(a).
Then a2 = U, a0 = U2, fgl(U, V) =0 and fg()(U, V) = US.

The graph of fo1(u, v) = 0 and the graph of fao(u, v) —u? = 0 on D are as following.
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(0.51615,1.24974)

(1/2,5/4)

0.68507,1.21575
(1/2,1.23198) ( )

(0.75947,1.18268)

(0.84484,1.13108)
(0.84925, 1.12803)
(0.85369, 1.12491)

(1/2,1)
(0.63606,1)  (0.70658,1) (0.84925,1) (1,1)

(0.84220, 1) (0.84454, 1)

The graph I of fa1(u, v) = 0 consists of three parts. The first is (1/2, 1.23198) —
(0.51615, 1.24974), the second is the curve C5 connecting (0.84220, 1) and (0.85369, 1.12491),
and the third is (0.84925, 1) — (0.84925, 1.12803). The graph I, of fao(u, v) —u? =0
consists of three parts. The first is (0.63606, 1) — (0.68507, 1.21575), the second is (0.70658,
1) — (0.75947, 1.18268), and the third is the curve Cy connecting (0.84454, 1) and (0.84484,
1.13108). As the above figure, Iv; NI, N D = C3 N Cy ~ (0.8388196493, 1.0346467269).
Thus U ~ 0.8388196493, and V' ~ 1.0346467269. Then Fs3(a) > 11.512 > 23/2 = Es3(1,.. .,
1). Thus Es3(a) can not be minimum. 0
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