A New Proof of Shapiro Inequality

Tetsuya Ando

Abstract We present a new proof of Shapiro cyclic inequality. Especially, we treat the case $n=23$ precisely.

§1. Introduction.

Let $n \geq 3$ be an integer, $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers, and let

$$
E_{n}\left(x_{1}, \ldots, x_{n}\right):=\sum_{i=1}^{n} \frac{x_{i}}{x_{i+1}+x_{i+2}}
$$

here we regard $x_{i+n}=x_{i}$ for $i \in \mathbb{Z}$. In this article, we present a new proof of the following theorem:

Theorem 1.1. (1) If n is an odd integer with $3 \leq n \leq 23$, then

$$
\begin{equation*}
E_{n}\left(x_{1}, \ldots, x_{n}\right) \geq n / 2 \tag{n}
\end{equation*}
$$

Moreover, $E_{n}\left(x_{1}, \ldots, x_{n}\right)=n / 2$ holds only if $x_{1}=x_{2}=\cdots=x_{n}$.
(2) If n is an even integer with $4 \leq n \leq 12$, then $\left(P_{n}\right)$ holds. Moreover, the equality holds only if $\left(x_{1}, \ldots, x_{n}\right)=(a, b, a, b, \ldots, a, b)(\exists a>0, \exists b>0)$.
(3) If n is an even integer with $n \geq 14$ or an odd integer with $n \geq 25$, then there exists $x_{1}>0, \ldots, x_{n}>0$ such that $E_{n}\left(x_{1}, \ldots, x_{n}\right)<n / 2$.
(3) was proved by [4] in 1979. It is said that (1) was proved by [6] in 1989. (2) was proved by [2] in 2002. Note that [2] treat (1) to be an open problem. The author also thinks we should give a more agreeable proof of (1). In this article, we give more precise proof of (1) than [6].

\S 2. Basic Facts.

Throughout this article, we use the following notations:

$$
\partial_{i} E_{n}(\mathbf{x}):=\frac{\partial}{\partial x_{i}} E_{n}(\mathbf{x})=\frac{1}{x_{i+1}+x_{i+2}}-\frac{x_{i-2}}{\left(x_{i-1}+x_{i}\right)^{2}}-\frac{x_{i-1}}{\left(x_{i}+x_{i+1}\right)^{2}}
$$

T. Ando

Department of Mathematics and Informatics, Chiba University,
Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, JAPAN
e-mail ando@math.s.chiba-u.ac.jp
Phone: +81-43-290-3675, Fax: +81-43-290-2828
Keyword: Cyclic inequality, Shapiro
MSC2010 26D15

$$
\left.\begin{array}{l}
\overline{K_{n}}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1} \geq 0, \ldots, x_{n} \geq 0\right\} \\
K_{n}^{\circ}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}>0, \ldots, x_{n}>0\right\}
\end{array}\right] \begin{array}{ll}
\left.\left(x_{1}, \ldots, x_{n}\right) \in \overline{K_{n}} \left\lvert\, \begin{array}{l}
\left(x_{1}, \ldots, x_{n}\right) \notin K_{n}^{\circ} \\
\left(x_{i}, x_{i+1}\right) \neq(0,0) \text { for any } i \in \mathbb{Z} .
\end{array}\right.\right\} \\
K_{n}^{\circ}:=\left\{\begin{array}{l}
K_{n}=K_{n}^{\circ} \cup K_{n}^{\circ}
\end{array}\right. \\
K_{i},
\end{array}
$$

It is easy to see that there exists $\mathbf{a} \in K_{n}^{\bullet}$ such that

$$
\inf _{\mathbf{x} \in K_{n}^{\circ}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})
$$

Thus, we consider $E_{n}(\mathbf{x})$ to be a continious function on K_{n}^{\bullet}.
Proposition 2.1.([3]) (1) If $\left(P_{n}\right)$ is false, then $\left(P_{n+2}\right)$ is also false .
(2) If $\left(P_{n}\right)$ is false for an odd integer $n \geq 3$, then $\left(P_{n+1}\right)$ is also false.

Proof. Assume that there exists positive real numbers a_{1}, \ldots, a_{n} such that $E_{n}\left(a_{1}, \ldots\right.$, $\left.a_{n}\right)<n / 2$.
(1) Since, $E_{n+2}\left(a_{1}, \ldots, a_{n}, a_{1}, a_{2}\right)=1+E_{n}\left(a_{1}, \ldots, a_{n}\right)<\frac{n+2}{2},\left(P_{n+2}\right)$ is false.
(2) Note that

$$
\begin{aligned}
& E_{n+1}\left(a_{1}, \ldots, a_{r-1}, a_{r}, a_{r}, a_{r+1}, \ldots, a_{n}\right)-E_{n}\left(a_{1}, \ldots, a_{n}\right)-\frac{1}{2} \\
& =\frac{a_{r-1}}{a_{r}+a_{r}}+\frac{a_{r}}{a_{r}+a_{r+1}}-\frac{a_{r-1}}{a_{r}+a_{r+1}}-\frac{1}{2} \\
& =\frac{\left(a_{r}-a_{r-1}\right)\left(a_{r}-a_{r+1}\right)}{2 a_{r}\left(a_{r}+a_{r+1}\right)}
\end{aligned}
$$

for $1 \leq r \leq n$. Thus, it is sufficient to show that there exists r such that $\left(a_{r}-a_{r-1}\right)\left(a_{r}-\right.$ $\left.a_{r+1}\right) \leq 0$.

Assume that $\left(a_{r}-a_{r-1}\right)\left(a_{r}-a_{r+1}\right)>0$ for all $1 \leq r \leq n$. Since n is odd,

$$
\prod_{r=1}^{n}\left(a_{r}-a_{r+1}\right)^{2}=\prod_{r=1}^{n}\left(a_{r-1}-a_{r}\right)\left(a_{r}-a_{r+1}\right)<0
$$

This is a contradiction .

Proposition 2.2.([4]) (1) $E_{14}(42,2,42,4,41,5,39,4,38,2,38,0,40,0)<7$. Thus $\left(P_{14}\right)$ is false.
(2) $E_{25}(34,5,35,13,30,17,24,18,18,17,13,16,9,16,5,16,2,18,0,21,0,25,0$, $29,0)<25 / 2$. Thus $\left(P_{25}\right)$ is false.

Thus, Theorem 1.1 (3) is proved by Proposition 2.1 and 2.2. It is essential to show $\left(P_{12}\right)$ and $\left(P_{23}\right)$ for a proof of Theorem 1.1 (2) and (3).

Definition 2.3. We say that $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in K_{n}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in K_{n}$ belong to the same component if " $x_{i}=0 \Longleftrightarrow y_{i}=0$ " for all $i=1, \ldots, n$.

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in K_{n}^{\cdot}$. If $x_{i-1}=0, x_{i} \neq 0, x_{i+1} \neq 0, \ldots, x_{j} \neq 0$, and $x_{j+1}=0$ for $i<j \in \mathbb{Z}$, then we call $\left(x_{i}, \ldots, x_{j}\right)$ to be a segment of \mathbf{a}, and we define $j-i+1$ to be the length of this segment. A segment of length l is called l-semgent.

For a segment $\mathbf{s}:=\left(x_{i}, \ldots, x_{j}\right)$ of \mathbf{x}, we denote

$$
S(\mathbf{s}):=\sum_{k=i}^{j-1} \frac{x_{k}}{x_{k+1}+x_{k+2}}, \quad \operatorname{Head}(\mathbf{s}):=x_{i}, \quad \operatorname{Tail}(\mathbf{s}):=x_{j}
$$

Here we define $S(\mathbf{s})=0$, if the length of \mathbf{s} is 1 .
Let $\mathbf{s}_{1}, \ldots, \mathbf{s}_{r}$ be all the segments of \mathbf{x} in this order. Let l_{k} be the length of \mathbf{s}_{k}. Then $\left(l_{1}, \ldots, l_{r}\right)$ is called the index of \mathbf{x}. Note that

$$
E_{n}(\mathbf{a})=\sum_{k=1}^{r} S\left(\mathbf{s}_{k}\right)+\sum_{k=1}^{r} \frac{\operatorname{Tail}\left(\mathbf{s}_{k-1}\right)}{\operatorname{Head}\left(\mathbf{s}_{k}\right)}
$$

Here we regard $\mathbf{s}_{k+r}=\mathbf{s}_{k}$ for $k \in \mathbb{Z}$.

Theorem 2.4. Assume that $\min _{\mathbf{x} \in K_{n}^{\bullet}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})$ at $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in K_{n}^{\bullet}$. Let $\mathbf{s}_{1}, \ldots, \mathbf{s}_{r}$ be all the segments of \mathbf{a} in this order, and let l_{k} be the length of \mathbf{s}_{k}. Then the followings hold.
(1) $\frac{\operatorname{Tail}\left(\mathbf{s}_{1}\right)}{\operatorname{Head}\left(\mathbf{s}_{2}\right)}=\frac{\operatorname{Tail}\left(\mathbf{s}_{2}\right)}{\operatorname{Head}\left(\mathbf{s}_{3}\right)}=\cdots=\frac{\operatorname{Tail}\left(\mathbf{s}_{r-1}\right)}{\operatorname{Head}\left(\mathbf{s}_{r}\right)}=\frac{\operatorname{Tail}\left(\mathbf{s}_{r}\right)}{\operatorname{Head}\left(\mathbf{s}_{1}\right)}$.
(2) Assume that $\mathbf{a}=\left(\mathbf{s}_{1}, 0, \mathbf{s}_{2}, 0, \ldots, \mathbf{s}_{r}, 0\right)$, and let σ be a permutation of $\{1,2, \ldots, r\}$.

Then there exist real numbers $t_{1}>0, t_{2}>0, \ldots, t_{r}>0$ such that

$$
\mathbf{b}:=\left(t_{1} \mathbf{s}_{\sigma(\mathbf{1})}, 0, t_{2} \mathbf{s}_{\sigma(\mathbf{2})}, 0, \ldots, t_{r} \mathbf{s}_{\sigma(\mathbf{r})}, 0\right)
$$

satisfies $E_{n}(\mathbf{b})=E_{n}(\mathbf{a})$.
Proof. (1) Since $E_{n}\left(a_{1+k}, a_{2+k}, \ldots, a_{n+k}\right)=E_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, we may assume $\mathbf{a}=\left(\mathbf{s}_{1}, 0\right.$, $\left.\mathbf{s}_{2}, 0, \ldots, \mathbf{s}_{r}, 0\right)$. Let $x_{i}:=\operatorname{Head}\left(\mathbf{s}_{i}\right), y_{i}:=\operatorname{Tail}\left(\mathbf{s}_{i}\right)$. Define t_{1}, \ldots, t_{r} by $t_{1}:=1$ and

$$
t_{j}:=\frac{y_{1} y_{2} \cdots y_{j-1}}{x_{2} x_{3} \cdots x_{j}} \cdot\left(\frac{x_{1} x_{2} \cdots x_{r}}{y_{1} y_{2} \cdots y_{r}}\right)^{\frac{j-1}{r}}
$$

for $j=2,3, \ldots, r$. It is easy to see that

$$
\frac{t_{j-1} y_{j-1}}{t_{j} x_{j}}=\sqrt[r]{\frac{y_{1} \cdots y_{r}}{x_{1} \cdots x_{r}}}=\frac{t_{r} y_{r}}{t_{1} x_{1}}
$$

Take $t_{1}>0, \ldots, t_{r}>0$, and let

$$
\mathbf{c}=\left(t_{1} \mathbf{s}_{1}, 0, t_{2} \mathbf{s}_{2}, 0, \ldots, t_{r} \mathbf{s}_{r}, 0\right)
$$

Note that $S\left(t_{i} \mathbf{s}_{i}\right)=S\left(\mathbf{s}_{i}\right)$. By AM-GM inequality,

$$
\begin{aligned}
E_{n}(\mathbf{a}) & =\sum_{i=1}^{r} S\left(\mathbf{s}_{i}\right)+\sum_{i=1}^{r} \frac{y_{i-1}}{x_{i}} \\
& \geq \sum_{i=1}^{r} S\left(\mathbf{s}_{i}\right)+r \cdot \sqrt[r]{\frac{y_{1} \cdots y_{r}}{x_{1} \cdots x_{r}}}=\sum_{i=1}^{r} S\left(t_{i} \mathbf{s}_{i}\right)+\sum_{i=1}^{r} \frac{t_{i-1} y_{i-1}}{t_{i} x_{i}}=E_{n}(\mathbf{c})
\end{aligned}
$$

Since $E_{n}(\mathbf{a})$ is the minimum, we have $E_{n}(\mathbf{a})=E_{n}(\mathbf{c})$. By the equality condition of AM-GM inequality, we have $t_{1}=t_{2}=\cdots=t_{r}=1$. Thus

$$
\frac{y_{j-1}}{x_{j}}=\sqrt[r]{\frac{y_{1} \cdots y_{r}}{x_{1} \cdots x_{r}}}
$$

and we have (1).
(2) By the same argument as (1), we conclude that there exists positive integers t_{1}^{\prime}, \ldots, t_{r}^{\prime} such that

$$
\mathbf{b}:=\left(t_{1}^{\prime} \mathbf{s}_{\sigma(1)}, 0, t_{2}^{\prime} \mathbf{s}_{\sigma(2)}, 0, \ldots, t_{r}^{\prime} \mathbf{s}_{\sigma(r)}, 0\right)
$$

satisfies

$$
E_{n}(\mathbf{b})=\sum_{i=1}^{r} S\left(\mathbf{s}_{i}\right)+r \cdot \sqrt[r]{\frac{y_{1} \cdots y_{r}}{x_{1} \cdots x_{r}}}
$$

Thus $E_{n}(\mathbf{b})=E_{n}(\mathbf{a})$.

Remark 2.5. By the above theorem, we may assume that the index $\left(l_{1}, \ldots, l_{r}\right)$ of a satisfies $l_{1} \geq l_{2} \geq \cdots \geq l_{r}$, if $\min _{\mathbf{x} \in K_{n}^{\dot{+}}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})$. Thus, we always write the index of such \mathbf{a} in descending order.

Definition 2.6. Assume that $\mathbf{a} \in K_{n}^{\dot{\bullet}}$ satisfies the condition of the above theorem. Then we define $U(\mathbf{a})$ to be

$$
U(\mathbf{a}):=\frac{\operatorname{Tail}\left(\mathbf{s}_{1}\right)}{\operatorname{Head}\left(\mathbf{s}_{2}\right)}=\frac{\operatorname{Tail}\left(\mathbf{s}_{2}\right)}{\operatorname{Head}\left(\mathbf{s}_{3}\right)}=\cdots=\frac{\operatorname{Tail}\left(\mathbf{s}_{r-1}\right)}{\operatorname{Head}\left(\mathbf{s}_{r}\right)}=\frac{\operatorname{Tail}\left(\mathbf{s}_{r}\right)}{\operatorname{Head}\left(\mathbf{s}_{1}\right)} .
$$

Note that $E_{n}(\mathbf{a})=r U(\mathbf{a})+\sum_{k=1}^{r} S\left(\mathbf{s}_{k}\right)$, for $\mathbf{a}=\left(\mathbf{s}_{1}, 0, \mathbf{s}_{2}, 0, \ldots, \mathbf{s}_{r}, 0\right)$.

§3. Bushell Theorem.

We survey and improve the results of [1]. In this section, we denote

$$
\begin{aligned}
A_{i}(\mathbf{x}) & :=\frac{x_{i}}{x_{i+1}+x_{i+2}} \\
B(\mathbf{x}) & :=\left(x_{2}+x_{3}, x_{3}+x_{4}, \ldots, x_{n}+x_{1}, x_{1}+x_{2}\right) \\
R(\mathbf{x}) & :=\left(\frac{1}{x_{n}}, \frac{1}{x_{n-1}}, \frac{1}{x_{n-2}}, \ldots, \frac{1}{x_{1}}\right) \\
T(\mathbf{x}) & =\left(\frac{x_{n}}{\left(x_{1}+x_{2}\right)^{2}}, \ldots, \frac{x_{n+1-i}}{\left(x_{n+2-i}+x_{n+3-i}\right)^{2}}, \ldots, \frac{x_{1}}{\left(x_{2}+x_{3}\right)^{2}}\right)
\end{aligned}
$$

for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. We also denote the i-th element of $B(\mathbf{x})$ by $B(\mathbf{x})_{i}=x_{i+1}+x_{i+2} . R(\mathbf{x})_{i}$ and $T(\mathbf{x})_{i}$ are also defined similarly. The symbol $T(\mathbf{x})$ are used throughout this article.

Lemma 3.1. ([1] Lemma 3.2, 4.2) The above functions satisfy the followings.
(1) $\partial_{i} E_{n}(\mathbf{x})=\left(R(B(\mathbf{x}))_{n+1-i}-(B(T(\mathbf{x})))_{n+1-i}\right.$.
(2) $\left(T^{2}(\mathbf{x})\right)_{i}=\frac{x_{i}}{\left(1-(B(\mathbf{x}))_{i} \partial_{i} E_{n}(\mathbf{x})\right)^{2}}$.
(3) $E_{n}(T(\mathbf{x}))-E_{n}(\mathbf{x})=\sum_{i=1}^{n} \frac{x_{i}\left(\partial_{i} E_{n}(\mathbf{x})\right)^{2}}{(B(T(\mathbf{x})))_{n+1-i}}$.
(4) $E_{n}(\mathbf{x})+E_{n}(\mathbf{y})$

$$
\begin{aligned}
& =E_{n}(\mathbf{x}+\mathbf{y})+E_{n}(T(\mathbf{x})+T(\mathbf{y})) \\
& \quad-\sum_{i=1}^{n} \frac{(T(\mathbf{x})+T(\mathbf{y}))_{n+1-i}\left(\partial_{i} E_{n}(\mathbf{x})+\partial_{i} E_{n}(\mathbf{y})\right)}{(R(B(\mathbf{x}))+R(B(\mathbf{y})))_{n+1-i} \cdot(B(T(\mathbf{x})+T(\mathbf{y})))_{n+1-i}} .
\end{aligned}
$$

Proof. (1) $\partial_{i} E_{n}(\mathbf{x})=\frac{1}{x_{i+1}+x_{i+2}}-\left(\frac{x_{i-2}}{\left(x_{i-1}+x_{i}\right)^{2}}+\frac{x_{i-1}}{\left(x_{i}+x_{i+1}\right)^{2}}\right)=\left(R(B(\mathbf{x}))_{n+1-i}-\right.$ $(B(T(\mathbf{x})))_{n+1-i}$.
(2) $(T(\mathbf{x}))_{i}=\frac{x_{n+1-i}}{(B(\mathbf{x}))_{n+1-i}^{2}}$. Combine this with (1), we obtain

$$
\begin{equation*}
\left(T^{2}(\mathbf{x})\right)_{i}=\frac{(T(\mathbf{x}))_{n+1-i}}{(B(T(\mathbf{x})))_{n+1-i}^{2}}=\frac{x_{i} /(B(\mathbf{x}))_{i}^{2}}{\left((R(B(\mathbf{x})))_{n+1-i}-\partial_{i} E_{n}(\mathbf{x})\right)^{2}} \tag{3.1.1}
\end{equation*}
$$

Since $(B(\mathbf{x}))_{i} \cdot(R(B(\mathbf{x})))_{n+1-i}=1$, we obtain (2).
(3) By the similar calculation as above, we obtain

$$
\begin{aligned}
E_{n}(T(\mathbf{x}))-E_{n}(\mathbf{x}) & =\sum_{i=1}^{n} \frac{(T(\mathbf{x}))_{i}}{\left(B(T(\mathbf{x}))_{i}\right.}-\sum_{i=1}^{n} \frac{x_{i}}{(B(\mathbf{x}))_{i}} \\
& =\sum_{i=1}^{n}\left(\frac{(T(\mathbf{x}))_{n+1-i}}{(B(T(\mathbf{x})))_{n+1-i}}-\frac{x_{i}}{(B(\mathbf{x}))_{i}}\right) \\
& =\sum_{i=1}^{n}\left(\frac{x_{i}}{(B(\mathbf{x}))_{i}\left(1-(B(\mathbf{x}))_{i} \partial_{i} E_{n}(\mathbf{x})\right)}-\frac{x_{i}}{(B(\mathbf{x}))_{i}}\right) \\
& =\sum_{i=1}^{n} \frac{x_{i} \partial_{i} E_{n}(\mathbf{x})}{1-(B(\mathbf{x}))_{i} \partial_{i} E_{n}(\mathbf{x})}
\end{aligned}
$$

Since,

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i} \partial_{i} E_{n}(\mathbf{x})=\sum_{i=1}^{n} \frac{x_{i}}{x_{i+1}+x_{i+2}}-\sum_{i=1}^{n} \frac{x_{i-2} x_{i}}{\left(x_{i-1}+x_{i}\right)^{2}}-\sum_{i=1}^{n} \frac{x_{i-1} x_{i}}{\left(x_{i}+x_{i+1}\right)^{2}} \\
& =\sum_{i=1}^{n} \frac{x_{i-1}\left(x_{i}+x_{i+1}\right)}{\left(x_{i}+x_{i+1}\right)^{2}}-\sum_{i=1}^{n} \frac{x_{i-1} x_{i+1}}{\left(x_{i}+x_{i+1}\right)^{2}}-\sum_{i=1}^{n} \frac{x_{i-1} x_{i}}{\left(x_{i}+x_{i+1}\right)^{2}}=0
\end{aligned}
$$

we obtain

$$
\begin{aligned}
E_{n}(T(\mathbf{x}))-E_{n}(\mathbf{x}) & =\sum_{i=1}^{n} x_{i} \partial_{i} E_{n}(\mathbf{x})\left(\frac{1}{1-(B(\mathbf{x}))_{i} \partial_{i} E_{n}(\mathbf{x})}-1\right) \\
& =\sum_{i=1}^{n} \frac{x_{i}\left(\partial_{i} E_{n}(\mathbf{x})\right)^{2}}{(B(T(\mathbf{x})))_{n+1-i}}
\end{aligned}
$$

(4) Let $a:=x_{i}, b:=x_{i+1}+x_{i+2}=(B(\mathbf{x}))_{i}, c:=y_{i}, d:=(B(\mathbf{y}))_{i}$.

$$
\begin{align*}
& \frac{x_{i}+y_{i}}{(B(\mathbf{x}+\mathbf{y}))_{i}}+\frac{(T(\mathbf{x})+T(\mathbf{y}))_{n+1-i}}{(R(B(\mathbf{x}))+R(B(\mathbf{y})))_{n+1-i}} \tag{3.1.2}\\
& =\frac{a+c}{b+d}+\frac{a / b^{2}+c / d^{2}}{1 / b+1 / d}=\frac{a}{b}+\frac{c}{d}=A_{i}(\mathbf{x})+A_{i}(\mathbf{y})
\end{align*}
$$

By (1), we have

$$
\begin{align*}
& \frac{(T(\mathbf{x})+T(\mathbf{y}))_{n+1-i}}{(B(T(\mathbf{x})+T(\mathbf{y})))_{n+1-i}}-\frac{(T(\mathbf{x})+T(\mathbf{y}))_{n+1-i}}{(R(B(\mathbf{x}))+R(B(\mathbf{y})))_{n+1-i}} \\
& =\frac{(T(\mathbf{x})+T(\mathbf{y}))_{n+1-i}\left(\partial_{i} E_{n}(\mathbf{x})+\partial_{i} E_{n}(\mathbf{y})\right)}{(R(B(\mathbf{x}))+R(B(\mathbf{y})))_{n+1-i} \cdot(B(T(\mathbf{x})+T(\mathbf{y})))_{n+1-i}} . \tag{3.1.3}
\end{align*}
$$

Take $\sum_{i=1}^{n}$ of (3.1.2) and (3.1.3), we obtain (4).

Theorem 3.2.([1] Theorem 3.3) (1) $E_{n}(T(\mathbf{x})) \geq E_{n}(\mathbf{x})$ holds for $\mathbf{x} \in K_{n}$. Moreover, if $E_{n}(T(\mathbf{x}))=E_{n}(\mathbf{x})$, then $T^{2}(\mathbf{x})=\mathbf{x}$ holds.
(2) If $\min _{\mathbf{x} \in K_{n}^{+}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})$ at $\mathbf{a} \in K_{n}$, then the following holds.

$$
T^{2}(\mathbf{a})=\mathbf{a}, \quad E_{n}(T(\mathbf{a}))=E_{n}(\mathbf{a})
$$

Proof. (1) $E_{n}(T(\mathbf{x})) \geq E_{n}(\mathbf{x})$ follows from Lemma 3.1 (3). Assume that $E_{n}(T(\mathbf{x}))=E_{n}(\mathbf{x})$. Then $x_{i}\left(\partial_{i} E_{n}(\mathbf{x})\right)^{2}=0(\forall i=1, \ldots, n)$, by Lemma $3.1(3)$. Thus $x_{i}=0$ or $\partial_{i} E_{n}(\mathbf{x})=0$. By Lemma 3.1 (2), we obtain $\left(T^{2}(\mathbf{x})\right)_{i}=x_{i}$.
(2) If E_{n} is minimum at \mathbf{a}, then $a_{i}=0$ or $\partial_{i} E_{n}(\mathbf{a})=0$. By Lemma 3.1 (2), we have $\left(T^{2}(\mathbf{a})\right)_{i}=a_{i}$. We also have $E_{n}(T(\mathbf{a}))=E_{n}(\mathbf{a})$ by Lemma 3.1 (3).

Lemma 3.3. ([1] Lemma 4.3) Let a, b, c, d, e be positive real numbers, and p, q be real numbers. Assume that

$$
\begin{equation*}
p \frac{1+\lambda a}{(1+\lambda c)^{2}}+q \frac{1+\lambda b}{(1+\lambda d)^{2}}=\frac{1}{1+\lambda e} \tag{3.3.1}
\end{equation*}
$$

for all real numbers $\lambda \geq 0$. Then the followings hold.
(1) If $p=0$, then $q=1$ and $b=d=e$.
(2) If $q=0$, then $p=1$ and $a=c=e$.
(3) If $p \neq 0$ and $q \neq 0$, then $c=d=e$.

Proof. (1) Substitute $\lambda=0, p=0$ for (3.3.1), we have $q=1$. In this case, (3.3.1) is equivalent to

$$
(1+\lambda b)(1+\lambda e)=(1+\lambda d)^{2}
$$

As an equality of a polynomial in λ, we have $b=d=e$.
(2) can be proved similarly as (1).
(3) Let

$$
\begin{align*}
g(\lambda):=p(1 & +\lambda a)(1+\lambda d)^{2}(1+\lambda e) \\
& +q(1+\lambda b)(1+\lambda c)^{2}(1+\lambda e)-(1+\lambda c)^{2}(1+\lambda d)^{2} \tag{3.3.2}
\end{align*}
$$

$g(\lambda)=0$ as a polynomial in λ. Thus

$$
0=g\left(-\frac{1}{e}\right)=-\left(1-\frac{c}{e}\right)^{2}\left(1-\frac{d}{e}\right)^{2}
$$

and we have $c=e$ or $d=e$.
Assume that $d \neq e$. Then $c=e$. From (3.3.2), we obtain

$$
\begin{equation*}
p(1+\lambda a)(1+\lambda d)^{2}+q(1+\lambda b)(1+\lambda e)^{2}-(1+\lambda e)(1+\lambda d)^{2}=0 \tag{3.3.3}
\end{equation*}
$$

Substitute $\lambda=-1 / e$ for (3.3.3), we obtain $p(1-a / e)(1-d / e)^{2}=0$. Thus $a=e$. Then

$$
\begin{equation*}
p(1+\lambda d)^{2}+q(1+\lambda b)(1+\lambda e)-(1+\lambda d)^{2}=0 \tag{3.3.4}
\end{equation*}
$$

Substitute $\lambda=-1 / e$ for (3.3.4), we have $d=e$. A contradiction. Thus $d=e$.
Similarly, we have $c=e$.

Theorem 3.4. (1) Assume that $\min _{\mathbf{x} \in K_{n}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})=E_{n}(\mathbf{b})$ at $\mathbf{a}, \mathbf{b} \in K_{\dot{n}}^{\dot{\prime}}$ and that a and \mathbf{b} belong to the same component. Then, there exists a real number $\mu>0$ such that $\mathbf{a}=\mu \mathbf{b}$.
(2) Assume that $\min _{\mathbf{x} \in K_{n}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})$ at $\mathbf{a} \in K_{n}^{\circ}$. Then $E_{n}(\mathbf{a})=n / 2$. Moreover $\mathbf{a}=(a$, $a, a, \ldots, a)(\exists a>0)$, or $\mathbf{a}=(a, b, a, b, \ldots, a, b)(\exists a>0, b>0)$.
Proof. Assume that $\min _{\mathbf{x} \in K_{n}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})=E_{n}(\mathbf{b})$ for $\mathbf{a}, \mathbf{b} \in K_{n}$, and that \mathbf{a} and \mathbf{b} belong to the same component. Let $\lambda>0$ be any real number.

If $a_{i} \neq 0$, then $\partial_{i} E_{n}(\mathbf{a})=\partial_{i} E_{n}(\lambda \mathbf{b})=0$. If $a_{i}=0$, then $b_{i}=0$ and $(T(\mathbf{a}))_{n+1-i}=0$, $(T(\lambda \mathbf{b}))_{n+1-i}=0$. Thus we have

$$
(T(\mathbf{a})+T(\lambda \mathbf{b}))_{n+1-i} \cdot\left(\partial_{i} E_{n}(\mathbf{a})+\partial_{i} E_{n}(\lambda \mathbf{b})\right)=0
$$

$(\forall i \in \mathbb{Z})$. We use the Lemma 3.1 (4) with $\mathbf{x}=T(\mathbf{a}), \mathbf{y}=\lambda \mathbf{b}$. Since the numerators of the fractions in \sum in Lemma 3.1 (4) are zero, we have

$$
E_{n}(\mathbf{a})+E_{n}(\lambda \mathbf{b})=E_{n}(\mathbf{a}+\lambda \mathbf{b})+E_{n}(T(\mathbf{a})+T(\lambda \mathbf{b})) .
$$

Since $E_{n}(\lambda \mathbf{b})=E_{n}(\mathbf{b})=E_{n}(\mathbf{a})$ is minimum, we have

$$
E_{n}(\mathbf{a}+\lambda \mathbf{b})=E_{n}(T(\mathbf{a})+T(\lambda \mathbf{b}))=E_{n}(\mathbf{a}) .
$$

Since $E_{n}(\mathbf{x})$ is minimum at $\mathbf{x}=\mathbf{a}+\lambda \mathbf{b}$ for any $\lambda>0$, we have

$$
\begin{equation*}
0=\partial_{i} E_{n}(\mathbf{a}+\lambda \mathbf{b})=\frac{1}{(B(\mathbf{a}+\lambda \mathbf{b}))_{i}}-\frac{a_{i-2}+\lambda b_{i-2}}{(B(\mathbf{a}+\lambda \mathbf{b}))_{i-2}^{2}}-\frac{a_{i-1}+\lambda b_{i-1}}{(B(\mathbf{a}+\lambda \mathbf{b}))_{i-1}^{2}} \tag{3.4.1}
\end{equation*}
$$

when $a_{i} \neq 0$. Let

$$
\begin{aligned}
& a:=\frac{b_{i-2}}{a_{i-2}}, \quad b:=\frac{b_{i-1}}{a_{i-1}}, \quad c:=\frac{(B(\mathbf{b}))_{i-2}}{(B(\mathbf{a}))_{i-2}}, \quad d:=\frac{(B(\mathbf{b}))_{i-1}}{(B(\mathbf{a}))_{i-1}}, \\
& e:=\frac{(B(\mathbf{b}))_{i}}{(B(\mathbf{a}))_{i}}, \quad p:=\frac{a_{i-2}(B(\mathbf{a}))_{i}}{(B(\mathbf{a}))_{i-2}^{2}}, \quad q:=\frac{a_{i-1}(B(\mathbf{a}))_{i}}{(B(\mathbf{a}))_{i-1}^{2}} .
\end{aligned}
$$

Then, (3.4.1) become (3.3.1). It is easy to see that the cases (1) and (2) of Lemma 3.3 do not occur. Lemma 3.3 (3) implies

$$
\frac{(B(\mathbf{b}))_{i-2}}{(B(\mathbf{a}))_{i-2}}=\frac{(B(\mathbf{b}))_{i-1}}{(B(\mathbf{a}))_{i-1}}=\frac{(B(\mathbf{b}))_{i}}{(B(\mathbf{a}))_{i}}=: \frac{1}{\mu}>0
$$

Thus

$$
\begin{equation*}
a_{i+1}+a_{i+2}=B(\mathbf{u})=\mu B(\mathbf{v})=\mu\left(b_{i+1}+b_{i+2}\right) \tag{3.4.2}
\end{equation*}
$$

$(\forall i \in \mathbb{Z})$. If n is odd, then $a_{i}=\mu b_{i}(\forall i \in \mathbb{Z})$ from (3.4.2). Thus $\mathbf{a}=\mu \mathbf{b}$.
We treat the case n is even. Let $\mathbf{w}=(1,-1,1,-1, \ldots,-1) \in \mathbb{R}^{n}$. By elementary linear algebra, we conclude that the solutions of the system of equations (3.4.2) is of the form

$$
\mathbf{a}-\mu \mathbf{b}=\nu \mathbf{w} \quad(\exists \nu \in \mathbb{R}) .
$$

If $\mathbf{a} \in K_{n}^{\dot{\bullet}}$, then \mathbf{a} and \mathbf{b} have zeros at the same place. Thus, ν must be zero. Thus we obtain (1).

We shall prove (2). Apply above argument to $\mathbf{b}=\left(a_{2}, a_{3}, \ldots, a_{n}, a_{1}\right)$. If n is odd, then $\mathbf{a}=\mu \mathbf{b}$. Thus $\mu=1$, and $a_{1}=a_{2}=\cdots=a_{n}$. In this case, $E_{n}(\mathbf{a})=n / 2$.

If n is even, $\mathbf{a}-\mu \mathbf{b}=\nu \mathbf{w}$. Thus $\mathbf{a}=\left(a_{1}, a_{2}, a_{1}, a_{2}, \ldots, a_{1}, a_{2}\right)$. Then $E_{n}(\mathbf{a})=n / 2$.
Corollary 3.5. Assume that $\min _{\mathbf{x} \in K_{n}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})$ at $\mathbf{a} \in K_{n}^{\cdot}$. Let \mathbf{s} and \mathbf{t} be segments of a with the same length l. Then, there exists a real number $c>0$ such that $\mathbf{s}=c \mathbf{t}$.

Proof. We construct a vector \mathbf{b} as in the proof of Theorem 2.4 (2), where σ is the transposition of \mathbf{s} and \mathbf{t}. Then $E_{n}(\mathbf{a})=E_{n}(\mathbf{b})$. By Theorem 3.4, $\mathbf{a}=\mu \mathbf{b}(\exists \mu>0)$. Thus $\mathbf{s}=c \mathbf{t}$ $(\exists c>0)$.

Corollary 3.6. Assume that $\min _{\mathbf{x} \in K_{n}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})$ at $\mathbf{a} \in K_{n}^{\mathbf{*}}$. Let $\mathbf{s}=\left(a_{1}, \ldots, a_{l}\right)$ be a l-segment of a with $l \geq 2$. Let $U:=U(\mathbf{a})$. Then there exists a real number $\mu>0$ such that

$$
\begin{align*}
& \left(\frac{U^{2}}{a_{l}}, \frac{a_{l-1}}{a_{l}^{2}}, \frac{a_{l-2}}{\left(a_{l-1}+a_{l}\right)^{2}}, \frac{a_{l-3}}{\left(a_{l-2}+a_{l-1}\right)^{2}}, \cdots, \frac{a_{2}}{\left(a_{3}+a_{4}\right)^{2}}, \frac{a_{1}}{\left(a_{2}+a_{3}\right)^{2}}\right) \\
& =\mu\left(a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{l-1}, a_{l}\right) . \tag{3.6.1}
\end{align*}
$$

Proof. We may assume that $\mathbf{a}=(\mathbf{s}, 0, \ldots)$. Rotate the elements of $T(\mathbf{a})$ so that the segment corresponding to \mathbf{s} comes to be the same place with \mathbf{s}, and we denote this vector by \mathbf{b}. Then the top segment of \mathbf{b} is

$$
\left(\frac{a_{l}}{a_{l+2}^{2}}, \frac{a_{l-1}}{a_{l}^{2}}, \frac{a_{l-2}}{\left(a_{l-1}+a_{l}\right)^{2}}, \frac{a_{l-3}}{\left(a_{l-2}+a_{l-1}\right)^{2}}, \cdots, \frac{a_{2}}{\left(a_{3}+a_{4}\right)^{2}}, \frac{a_{1}}{\left(a_{2}+a_{3}\right)^{2}}\right) .
$$

By Theorem $3.2(2), E_{n}(\mathbf{b})=E_{n}(T(\mathbf{a}))=E_{n}(\mathbf{a})$. By Theorem 3.4, $\mathbf{b}=\mu \mathbf{a}(\exists \mu>0)$. Since $U=a_{l} / a_{l+2}, a_{l} / a_{l+2}^{2}=U^{2} / a_{l}$. Thus, we have (3.6.1).

§4. Bushell-McLead Theorem.

The aim of this section is to explain Theorem 4.3, according to [2]. In This section, we denote

$$
\begin{aligned}
& K_{n}^{\triangle}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in K_{n}^{\bullet} \mid x_{n-1}=1, x_{n}=0\right\} \\
& y_{i}:=\frac{x_{i}}{x_{i+1}+x_{i+2}}=A_{i}(\mathrm{x}) .
\end{aligned}
$$

Note that $y_{n}=0, y_{n-1}=x_{n-1} / x_{1}$, and $y_{n-2}=x_{n-2}$ for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in K_{n}^{\Delta}$. The map $\Phi: K_{n}^{\Delta} \rightarrow \Phi\left(K_{n}^{\Delta}\right)$ defined by $\Phi\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)$ is bijective. The inverse map Φ^{-1} is obtained as the solution of the system of equations $y_{i}\left(x_{i+1}+x_{i+2}\right)-x_{i}=0(i=1, \ldots$, $n-2$). Let

$$
P_{k}\left(z_{1}, z_{2}, \ldots, z_{k}\right):=\left|\begin{array}{cccccccc}
z_{1} & z_{1} & & & & & & \\
-1 & z_{2} & z_{2} & & & & & \\
& -1 & z_{3} & z_{3} & & & & \\
& & \ddots & \ddots & \ddots & & & \\
& & & \ddots & \ddots & \ddots & & \\
& & & & -1 & z_{k-2} & z_{k-2} & \\
& & & & & & z_{k-1} & z_{k-1} \\
& & & & & & -1 & z_{k}
\end{array}\right| .
$$

Inductively, we can prove that $x_{i}=P_{n-i-1}\left(y_{i}, y_{i+1}, \ldots, y_{n-2}\right)$. By the properties of determinant, we can prove the following lemma.

Lemma 4.1.([2] Lemma 3.1) The followings hold. Here we put $P_{0}:=1$ and $P_{-1}=1$.
(1) $P_{k}\left(z_{1}, \ldots, z_{k}\right)=z_{k} P_{k-1}\left(z_{1}, \ldots, z_{k-1}\right)+z_{k-1} P_{k-2}\left(z_{1}, \ldots, z_{k-2}\right)$.
(2) For $1 \leq j<k$,

$$
\begin{aligned}
P_{k}\left(z_{1}, \ldots, z_{k}\right)= & P_{j}\left(z_{1}, \ldots, z_{j}\right) P_{k-j}\left(z_{j+1}, \ldots, z_{k}\right) \\
& +z_{j} P_{j-1}\left(z_{1}, \ldots, z_{j-1}\right) P_{k-j-1}\left(z_{j+2}, \ldots, z_{k}\right)
\end{aligned}
$$

Lemma 4.2. ([2] Lemma 3.2) Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in K_{n}^{\triangle}$, and $\left(y_{1}, \ldots, y_{n}\right)=\Phi\left(x_{1}, \ldots, x_{n}\right)$. Assume that $x_{i} \partial_{i} E_{n}(\mathbf{x})=0$ for all $i=1,2, \ldots, n$. Then the followings hold.
(1) $y_{i}=y_{1}^{2} P_{i-1}\left(y_{1}, \ldots, y_{i-1}\right) P_{n-i-1}\left(y_{i}, \ldots, y_{n-2}\right)$
(2) $y_{1}-y_{i}=y_{1}^{2} y_{i-1} P_{i-2}\left(y_{1}, \ldots, y_{i-2}\right) P_{n-i-2}\left(y_{i+1}, \ldots, y_{n-2}\right)$

Proof. Put $p_{i}:=P_{i}\left(y_{1}, \ldots, y_{i}\right)$. Then (1), (2) can be written as (1) $y_{i}=y_{1}^{2} p_{i-1} x_{i}$, and (2) $y_{1}-y_{i}=y_{1}^{2} y_{i-1} p_{i-2} x_{i+1}$.
(1) As a formal rational function

$$
\begin{aligned}
x_{i} \partial_{i} E_{n}(\mathbf{x}) & =\frac{x_{i}}{x_{i+1}+x_{i+2}}-\frac{x_{i-2} x_{i}}{\left(x_{i-1}+x_{i}\right)^{2}}-\frac{x_{i-1} x_{i}}{\left(x_{i}+x_{i+1}\right)^{2}} \\
& =y_{i}-\frac{y_{i-2}^{2} x_{i}}{x_{i-2}}-\frac{y_{i-1}^{2} x_{i}}{x_{i-1}} .
\end{aligned}
$$

So, the condition $x_{i} \partial_{i} E_{n}(\mathbf{x})=0$ can be represented as

$$
\begin{equation*}
\frac{y_{i}}{x_{i}}=\frac{y_{i-2}^{2}}{x_{i-2}}+\frac{y_{i-1}^{2}}{x_{i-1}} \tag{4.2.1}
\end{equation*}
$$

as an equation in the field $\mathbb{R}\left(x_{1}, \ldots, x_{n-2}\right)$. Here, we regard $x_{0}=x_{n}=0, x_{-1}=x_{n-1}=1$, $y_{0}=y_{n}=0$, and $y_{-1}=y_{n-1}=1 / x_{1}$. It is enough to show

$$
\begin{equation*}
\frac{y_{i}}{x_{i}}=y_{1}^{2} p_{i-1} \tag{4.2.2}
\end{equation*}
$$

in $\mathbb{R}\left(x_{1}, \ldots, x_{n-2}\right)$.
Consider the case $i=1$. Then, $p_{0}=1$. (4.2.1) can be written as $y_{1} / x_{1}=1 / x_{1}^{2}$. Multiply $x_{1}^{2} y_{1}$, then we have (4.2.2).

Consider the case $i=2$. By (4.2.1) and $x_{1} y_{1}=1, y_{1}=P_{1}\left(y_{1}\right)=p_{1}$, we have

$$
\frac{y_{2}}{x_{2}}=\frac{y_{1}^{2}}{x_{1}}=y_{1}^{3}=y_{1}^{2} p_{1}
$$

Thus we obtain (4.2.2).
Consider the case $i \geq 3$. We shall prove (4.2.2) by induction on i. By induction assumption, $y_{j} / x_{j}=y_{1}^{2} p_{j-1}$ for $1 \leq j<i$. By Lemma 4.1 (1), $p_{i-1}=y_{i-1} p_{i-2}+y_{i-2} p_{i-3}$. Thus

$$
\frac{y_{i}}{x_{i}}=\frac{y_{i-2}^{2}}{x_{i-2}}+\frac{y_{i-1}^{2}}{x_{i-1}}=y_{1}^{2}\left(y_{i-2} p_{i-3}+y_{i-1} p_{i-2}\right)=y_{1}^{2} p_{i-1}
$$

(2) Apply Lemma 4.1 (5) with $k=n-2, j=i-1$, then we obtain $x_{1}=p_{i-1} x_{i}+$ $y_{i-1} p_{i-2} x_{i+1}$. Since $x_{1}=1 / y_{1}$, after multiplying y_{1}^{2} to the both hand sides, we obtain $y_{1}=y_{1}^{2} p_{i-1} x_{i}+y_{1}^{2} y_{i-1} p_{i-2} x_{i+1}$. By (1),

$$
y_{1}-y_{i}=y_{1}-y_{1}^{2} p_{i-1} x_{i}=y_{1}^{2} y_{i-1} p_{i-2} x_{i+1}
$$

Thus we obtain (2).

Theorem 4.3.([2] Proposition 3.3) If $\min _{\mathbf{x} \in K_{n}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})$ at $\mathbf{a} \in K_{n}^{\bullet}$, then $U(\mathbf{a}) \geq 1 / 2$.

Proof. We may assume $\mathbf{a}=\left(x_{1}, \ldots, x_{n}\right) \in K_{n}^{\triangle}$. By Lemma 4.2 (1), (2), we have $0 \leq$ $x_{i} /\left(x_{i+1}+x_{i+2}\right)=y_{i} \leq y_{1}=1 / x_{1}=U(\mathbf{a})(i=1, \ldots, n)$. Assume that $U(\mathbf{a})<1 / 2$. Then $x_{1}>2$, and $2 x_{i} \leq x_{i+1}+x_{i+2}$. Take \sum, we obtain

$$
2 \sum_{i=1}^{n} x_{i}<\sum_{i=1}^{n}\left(x_{i+1}+x_{i+2}\right)=2 \sum_{i=1}^{n} x_{i} .
$$

A contradiction.

§5. Short segments.

The following Theorem is an extenstion of [2] Lemma 4.1, [5] §4, §5 and [6] §5.

Theorem 5.1. Assume that $\min _{\mathbf{x} \in K_{n}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})$ at $\mathbf{a} \in K_{n}^{\cdot}$. Then a does not contain segments of length $2,3,4,5,7$, or 9 .

Proof. Let $\mathbf{s}=\left(a_{1}, \ldots, a_{l}\right)$ be a l-segment of $\mathbf{a}(l \geq 2)$. Put $U:=U(\mathbf{a}), V:=\frac{a_{l-1}+a_{l}}{a_{l}}>1$.
Note that $a_{l+1}=0, a_{l+2}=a_{l} / U$ by Theorem 2.4 (1). By Theorem 4.3, $U \geq 1 / 2$.
Since $a_{l+2}+a_{l+3} \geq a_{l+2}=a_{l} / U$, we have

$$
0 \leq \partial_{l+1} E_{n}(\mathbf{a})=\frac{1}{a_{l+2}+a_{l+3}}-\frac{a_{l-1}}{a_{l}^{2}}-\frac{a_{l}}{a_{l+2}^{2}} \leq \frac{1}{a_{l}}\left(U-(V-1)-U^{2}\right)
$$

Thus, we have $V \leq 1+U-U^{2}$. Since $1<V \leq 1+U-U^{2}$, we have $U<1$ and $1<V \leq \frac{5}{4}-\left(U-\frac{1}{2}\right)^{2} \leq \frac{5}{4}$. Thus (U, V) is included in the set

$$
D:=\left\{(u, v) \in \mathbb{R}^{2} \mid 1 / 2 \leq u<1,1<v \leq 1+u-u^{2}\right\}
$$

By (3.6.1), $\frac{a_{1} a_{l}}{U^{2}}=\frac{1}{\mu}=\frac{a_{2} a_{l}^{2}}{a_{l-1}}$. Thus we have

$$
a_{2}=\frac{a_{1} a_{l-1}}{a_{l} U^{2}}=\frac{V-1}{U^{2}} a_{1}
$$

Since $\partial_{i-2} E_{n}(\mathbf{a})=0(i=3,4, \ldots, l+2)$, we have

$$
a_{i}=\frac{1}{\frac{a_{i-4}}{\left(a_{i-3}+a_{i-2}\right)^{2}}+\frac{a_{i-3}}{\left(a_{i-2}+a_{i-1}\right)^{2}}}-a_{i-1}
$$

Here $a_{-1}=a_{n-1}=U a_{1}$ and $a_{0}=a_{n}=0$. Inductively, we obtain

$$
\begin{align*}
& a_{3}=\frac{1}{a_{n-1} a_{1}^{2}}-a_{2}=\frac{U-V+1}{U^{2}} a_{1} \\
& a_{4}=\frac{V-U}{U^{2}} a_{1} \\
& a_{5}=\frac{1+U V-V^{2}}{U^{2} V} a_{1}
\end{align*}
$$

Thus, we define a series of rational functions by

$$
\begin{aligned}
f_{1}(u, v) & :=1, \quad f_{2}(u, v):=\frac{v-1}{u^{2}}, \quad f_{3}(u, v):=\frac{u-v+1}{u^{2}}, \quad f_{4}(u, v):=\frac{v-u}{u^{2}} \\
f_{i}(u, v) & :=\frac{1}{\frac{f_{i-4}(u, v)}{\left(f_{i-3}(u, v)+f_{i-2}(u, v)\right)^{2}}+\frac{f_{i-3}(u, v)}{\left(f_{i-2}(u, v)+f_{i-1}(u, v)\right)^{2}}}-f_{i-1}(u, v)
\end{aligned}
$$

$(i \geq 5)$. Then, $a_{i}=f_{i}(U, V) a_{1}$ for $1 \leq i \leq l+2$. Especially, $f_{l+1}(U, V)=a_{l+1} / a_{1}=0$.
Since $u-v+1>0, v-u>0,1+u v-v^{2}>0$ on D, we obtain $f_{i}(u, v)>0$ on D for $i=3,4,5$. Thus $a_{l+1} \neq 0$ for $l=2,3,4$. Therefore, a does not contain segments of length 2,3 , or 4 .

Similarly, $f_{i}(u, v)>0$ on D for $i=6,8,10$. We need numerical analysis to prove this. If you have 'Mathematica', execute the following.

```
<< Graphics`ImplicitPlot`;
fi[i_, u_, v_] := (a = 1; b = (v-1)/u^2;
    c = (1+u-v)/u^2; d = (v-u)/u^2;
    Do[(e=1/(a/(b+c)^2 + b/(c+d)^2) - d; a=b; b=c; c=d; d = e),
    {k, 5, i, 1}]; e)
G1[i_]:=(Plot3D[fi[i, u, v], {u, 1/2, 1}, {v, 1, 1 + u - u^2}])
G2[i_]:=(ImplicitPlot[(u^2 - u + v - 1) fi[i, u, v] == 0,
    {u, 1/2, 1}, {v, 1, 5/4}])
```

For example, you can observe the graph of $f_{10}(u, v)$ by G1[10]. You can also draw the graph of $f_{10}(u, v)=0$ by G2[10].

$f_{10}\left(u, 1+u-u^{2}\right)$ have a zero of the order 2 at $u=1$. Thus, as the above figure, the graph of $f_{10}(u, v)=0$ tangents to the parabola $v=1+u-u^{2}$ at $(1,1)$, but have no common point with D. Thus we know that $f_{10}(u, v)>0$ on D.

We know also $f_{8}(u, v)>0$ on D similarly.
It is possible to prove $f_{6}(u, v)>0$ on D directly. $f_{6}(u, v)$ can be written as $f_{6}(u, v)=$ $\frac{f_{6,1}(u, v) f_{6,2}(u, v)}{u^{2} v f_{6,3}(u, v)}$, here

$$
\begin{aligned}
f_{6,1}(u, v) & :=1-v+v^{3}-u v^{2} \\
f_{6,2}(u, v) & :=\left(1+v-v^{2}\right)+u v \\
f_{6,3}(u, v) & :=-1+v+v^{3}-v^{3}+u v^{2} .
\end{aligned}
$$

It is easy too see that $f_{6,1}(u, v)>0, f_{6,2}(u, v)>0, f_{6,3}(u, v)>0$ on D. Thus $f_{6}(u, v)>0$ on D. Since $f_{6}(u, v)>0, f_{8}(u, v)>0$ and $f_{10}(u, v)>0$ on D, we conclude that a does not contain segments of length 5,7 , or 9 .

Corollary 5.2. Assume that $\min _{\mathbf{x} \in K_{n}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})$ at $\mathbf{a} \in K_{n}^{\bullet}$.
(1) If $n=12$, then the index of a must be (11).
(2) If $n=23$, then the index of a must be one of the following 17 indexes: $(22),(20,1)$, $(18,1,1),(16,1,1,1),(15,6),(14,1,1,1,1),(13,8),(13,6,1),(12,1,1,1,1,1),(11$, 10), $(11,8,1),(11,6,1,1),(10,1,1,1,1,1,1),(8,6,6),(8,1,1,1,1,1,1,1),(6,6$, $6,1),(6,1,1,1,1,1,1,1,1)$.

Definition 5.3. Assume that $\min _{\mathbf{x} \in K_{n}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})$ at $\mathbf{a} \in K_{n}^{\bullet}$, and that $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{l}\right)$ is a l-segment of \mathbf{a} with $l \geq 2$. Then, we define

$$
\begin{aligned}
V_{l}(\mathbf{a}) & :=1+\frac{s_{l-1}}{s_{l}} \\
R_{l}(\mathbf{a}) & :=\frac{s_{1}}{s_{l}}=\frac{\operatorname{Head}(\mathbf{s})}{\operatorname{Tail}(\mathbf{s})} .
\end{aligned}
$$

If there are no segment of length l in \mathbf{a}, we define $R_{l}(\mathbf{a}):=1$. Moreover we define $R_{1}(\mathbf{a}):=1$. By Corollary 3.5, $V_{l}(\mathbf{a})$ and $R_{l}(\mathbf{a})$ do not depend the choice of \mathbf{s}.

Theorem 5.4. Assume that $\min _{\mathbf{x} \in K_{n}} E_{n}(\mathbf{x})=E_{n}(\mathbf{a})$ at $\mathbf{a} \in K_{n}^{\bullet}$.
(1) If a contains segment of length 6 , then the following holds.

$$
1 / 2 \leq U(\mathbf{a})<0.63894, \quad R_{6}(\mathbf{a})<1 / 2
$$

(2) If a contains a segment of length 8 , then the following holds.

$$
1 / 2 \leq U(\mathbf{a})<0.73254, \quad R_{8}(\mathbf{a})<0.65994
$$

(3) If a contains a segment of length 10 , then the following holds.

$$
0.63893<U(\mathbf{a})<0.78332, \quad R_{10}(\mathbf{a})<0.90213
$$

(4) If a contains a segment of length 11 , then the following holds.

$$
0.94197<U(\mathbf{a})<1
$$

(5) If a contains a segment of length 12 , then the following holds.

$$
0.73253<U(\mathbf{a})<0.81295, \quad R_{12}(\mathbf{a})<1.20768
$$

(6) If a contains a segment of length 13 , then the following holds.

$$
0.90868<U(\mathbf{a})<1
$$

(7) If a contains a segment of length 14 , then the following holds.

$$
0.78331<U(\mathbf{a})<0.83098, \quad R_{14}(\mathbf{a})<1.61530
$$

(8) If a contains a segment of length 15 , then the following holds.

$$
1 / 2 \leq U(\mathbf{a})<0.63894 \quad \text { or } \quad 0.88942<U(\mathbf{a})<0.94198
$$

(9) If a contains a segment of length 16 , then the following holds.

$$
0.81294<U(\mathbf{a})<0.84220, \quad R_{16}(\mathbf{a})<2.20409
$$

Proof. We use the same notation with the proof of Theorem 5.1. Moreover put $U:=U(\mathbf{a})$, $V:=V_{l}(\mathbf{a})$, and

$$
\begin{aligned}
D_{i}^{\prime} & :=\left\{(u, v) \in D \mid f_{i}(u, v)>0\right\} \\
D_{i} & :=D_{2}^{\prime} \cap D_{3}^{\prime} \cap D_{4}^{\prime} \cap \cdots \cap D_{i}^{\prime}
\end{aligned}
$$

Note that $D_{2}^{\prime}=D_{3}^{\prime}=D_{4}^{\prime}=D_{5}^{\prime}=D_{6}^{\prime}=D_{8}^{\prime}=D_{10}^{\prime}=D$.
(1) Consider the case $l=6$. The graph Γ_{7} of $f_{7}(u, v)=0$ on D is as following.

This curve Γ_{7} is the hyper elliptic curve defined by

$$
\left(2 v-2 v^{2}-v^{3}+v^{4}\right)+u\left(-1+2 v+v^{2}-2 v^{3}\right)+u^{2} v^{2}=0 .
$$

Thus, we put

$$
f_{7,1}(v):=\frac{\left(v^{2}-1\right)(2 v-1)+\sqrt{(v-1)\left(v^{3}+v^{2}+3 v-1\right)}}{2 v^{2}} .
$$

We obtain the intersection of Γ_{7} and the parabola $v=1+u-u^{2}$ on D by solving $f_{7}(u$, $\left.1+u-u^{2}\right)=0$. This root is $u \sim 0.6389355101$ (rounded up). If a has a 6 -segment, then $f_{7}(U, V)=0$. Thus $1 / 2 \leq U<0.6389355101$. Since $f_{6}\left(f_{7,1}(v), v\right)$ is monotonically increasing on $1.15239<v<1.23070$, we have

$$
R_{6}(\mathbf{a}) \leq 1 / f_{6}\left(f_{7,1}(1.23070), 1.23070\right)<0.42657<1 / 2
$$

(2) Consider the case $l=8$. The graph Γ_{9} of $f_{9}(u, v)=0$ on D is as following.

We can calculate the root of $f_{9}\left(u, 1+u-u^{2}\right)=0$ with $1 / 2 \leq u<1$ by

```
FindRoot[fi[9, u, 1+u-u^2] == 0, {u, 0.7}]
```

and we have $u \sim 0.7325361425$ (rounded up). Thus $1 / 2 \leq U<0.7325361425$. Execute

```
Plot3D[1/fi[8, u, v], {u, 1/2, 0.7325361425}, {v, 1, 1 + u - u^2}]
Maximize[{1/fi[8, 0.7325361425, v], 1<v <= 5/4}, v] // N
```

and we conclude that

$$
\frac{1}{f_{8}(u, v)}<\frac{1}{f_{8}(0.73254,1.10735)}<0.65994
$$

on $\Gamma_{9} \cap D$. Thus $R_{8}(\mathbf{a})<0.65994$.
(3) Consider the case $l=10$. The graph Γ_{11} of $f_{11}(u, v)=0$ on D is as following.

Thus, $0.6389355100<U<0.7833151924$. Since $1 / f_{10}<1 / f_{10}(0.78332,1.09863)<$ 0.90213 on $\Gamma_{11} \cap D$, we have $R_{10}(\mathbf{a})<0.90213$.
(4) Consider the case $l=11$. The graph of $f_{12}(u, v)=0$ on D is a curve connecting (1 , $1)$ and ($0.94197,1.05466$) as following.

Thus, $0.9419748741<U<1$.
(5) Consider the case $l=12$. The graph Γ_{13} of $f_{13}(u, v)=0$ on D is as following.

Thus, $0.7325361424<U<0.8129451277$. Since $1 / f_{13}(u, v)<1 / f_{13}(0.81295,1.08843)$ <1.20768 on $\Gamma_{13} \cap D$, we have $R_{12}(\mathbf{a})<1.20768$.
(6) Consider the case $l=13$. The graph of $f_{14}(u, v)=0$ on D is as following. But the curve connecting $(1 / 2,1.19728)$ and $(0.55413,1.24707)$ is included in $D-D_{6}^{\prime}$ on which $a_{6}<0$. Thus, we omit this curve.

Thus we have $0.9086897811<U<1$.
(7) Consider the case $l=14$. The graph Γ_{15} of $f_{15}(u, v)=0$ on D is as following.

Thus, $0.7833151923<U<0.8309779815$. Since $1 / f_{14}(u, v)<1 / f_{14}(0.83098,1.08039)$ <1.61530, we have $R_{14}(\mathbf{a})<1.61530$.
(8) Consider the case $l=15$. The graph Γ_{16} of $f_{16}(u, v)=0$ on D is as following.

Thus, $1 / 2 \leq U<0.6389355101$ or $0.8894259160<U<0.9419748742$.
(9) Consider the case $l=16$. The graph Γ_{17} of $f_{17}(u, v)=0$ on D is as following.

Thus, $0.8129451276<U<0.8421985095$. Since $1 / f_{16}(u, v)<1 / f_{16}(0.84220,1.07460)$ <2.20409 on $\Gamma_{17} \cap D$, we have $R_{16}(\mathbf{a})<2.20409$.

§6. Proof of Theorem 1.1.

Theorem 6.1. Assume that $\min _{\mathbf{x} \in K_{23}} E_{23}(\mathbf{x})=E_{23}(\mathbf{a})$ at $\mathbf{a} \in K_{23}^{\boldsymbol{\bullet}}$. Then the index of a can not be any of the following values.
(1) $(6,6,6,1),(6,1,1,1,1,1,1,1,1)$.
(2) $(8,6,6),(8,1,1,1,1,1,1,1)$.
(3) $(10,1,1,1,1,1,1)$.
(4) $(11,10),(11,8,1),(11,6,1,1)$.
(5) $(13,8),(13,6,1)$.
(6) $(15,6)$.
(7) $(12,1,1,1,1,1)$.
(8) $(14,1,1,1,1)$.
(9) $(16,1,1,1)$.

Proof. We use the same notation with the proof of Theorem 5.1. Let $U:=U(\mathbf{a}), R_{l}:=R_{l}(\mathbf{a})$, and let m_{i} be the number of l_{i}-segments in $\mathbf{a}(i=1, \ldots, q)$, and let $r:=m_{1}+m_{2}+\cdots+m_{q}$ be the number of segments in a. Then,

$$
\begin{equation*}
U^{r} R_{l_{1}}^{m_{1}} \cdots R_{l_{q}}^{m_{q}}=1 \tag{6.1.1}
\end{equation*}
$$

(1) In these cases, $U<1, R_{6}<1$ by Theorem 5.4 (1). Thus (6.1.1) can not hold.
(2) In these cases, $U<1, R_{6}<1, R_{8}<1$ by Theorem 5.4 (1), (2). Thus (6.1.1) can not hold.
(3) In this case, $U<1, R_{10}<1$ by Theorem 5.4 (3). Thus (6.1.1) can not hold.
(4) In these cases, $0.94197<U<1$ by Theorem 5.4 (4). But if a have a segment of length 10,8 or 6 , then $0.63893<U<0.78332,1 / 2 \leq U<0.73254,1 / 2 \leq U<0.63894$ respectively. There exists no such U.
(5) is similar to (4).
(6) Consider the case $(15,6) .1 / 2 \leq U<0.63894$ and $R_{6}(\mathbf{a})<1 / 2$ by Theorem 5.4 (1),
(8). Execute

Plot3D[Ri[15, u, v], \{u, 1/2, 0.6389355101\}, \{v, 1, $\left.\left.1+u-u^{\wedge} 2\right\}\right]$ Maximize[\{Ri[15, 0.6389355101, V], $1<=\mathrm{V}<=5 / 4\}, \mathrm{V}] / / \mathrm{N}$

Thus we have $1 / f_{15}(u, v)<1 / f_{15}(0.63894,1.09583)<0.08952$ on the set $\Gamma_{16} \cap\{(u, v) \in D$ $\mid 1 / 2 \leq u \leq 0.63894\}$. Thus $R_{15}<0.08952$ and (6.1.1) can not hold.
(7) In this case, $1=U^{6} R_{12}<0.81295^{6} \times 1.20768<1$. A contradiction.
(8) In this case, $1=U^{5} R_{14}<0.83098^{5} \times 1.61530<1$. A contradiction.
(9) In this case, $1=U^{4} R_{16}<0.84220^{4} \times 2.20409<1$. A contradiction.

The left cases are (11) when $n=12$, and (22), (20, 1$),(18,1,1)$ when $n=23$.
Theorem 6.2. (1) Assume that $\min _{\mathbf{x} \in K_{12}} E_{12}(\mathbf{x})=E_{12}(\mathbf{a})$ at $\mathbf{a} \in K_{12}^{\mathbf{0}}$. Then the index of \mathbf{a} can not be (11). Thus, Theorem 1.1 (2) holds.
(2) Assume that $\min _{\mathbf{x} \in K_{23}} E_{23}(\mathbf{x})=E_{23}(\mathbf{a})$ at $\mathbf{a} \in K_{23}$. Then the index of \mathbf{a} can not be (22).

Proof. We use the same notation with the proof of Theorem 6.1.
(1) We may assume $\mathbf{a}=\left(1, a_{2}, \ldots, a_{11}, 0\right)$. Note that $a_{11}=U a_{1}=U$. We draw the graph of $f_{11}(u, v)-u=0$ on D. Execute

```
Plot3D[Ai[11,u,v]-u, {u, 0.5, 1}, {v, 1, 1.25}]
ImplicitPlot[(u^2-u+v-1) (Ai[11,u,v]-u)==0, {u, 0.5, 1}, {v, 1, 1.25}]
```

We obtain the following.

Thus $0.6082388995<U<0.6893774937$. But $0.94197<U<1$ by Theorem 5.4 (4). Thus the index (11) can not occur.
(2) We may assume $\mathbf{a}=\left(1, a_{2}, \ldots, a_{21}, 0\right)$, here $a_{21}=U$. The graph of $f_{23}(u, v)=0$ and the graph of $f_{22}(u, v)-u=0$ on D are as following.

The graph Γ_{23} of $f_{23}(u, v)=0$ consists of five parts. The first is the curve connecting $(1 / 2,1.20417)$ and $(0.51615,1.24974)$, the second is $(1 / 2,1.12731)-(0.58706,1.24242)$, the third is $(1 / 2,1.02526)-(0.51615,1)$, the fourth is $(0.84925,1)-(0.85648,1.12292)$, and the fifth is $(0.85369,1)-(0.85369,1.12491)$. The graph Γ_{22}^{\prime} of $f_{22}(u, v)-u=0$ consists of three parts. The first is $(0.68507,1)-(0.72164,1.20088)$, the second is $(0.75947,1)-$
($0.81969,1.14780$), and the third is $(0.84484,1)-(0.83898,1.13510)$. As the above figure, $\Gamma_{23} \cap \Gamma_{22}^{\prime} \cap D=\emptyset$. Thus, $\left(U, V_{23}\right)$ can not exists if the index of \mathbf{a} is (23).

Theorem 6.3. Assume that $\min _{\mathbf{x} \in K_{23}} E_{23}(\mathbf{x})=E_{23}(\mathbf{a})$ at $\mathbf{a} \in K_{23}$. Then, the index of \mathbf{a} can not be any of the following values. Thus, Theorem 1.1 (1) holds.
(1) $(18,1,1)$.
(2) $(20,1)$.

Proof. (1) We may assume that $\mathbf{a}=\left(1, a_{2}, \ldots, a_{18}, 0, a_{20}, 0, a_{22}, 0\right)$. Let $U:=U(\mathbf{a})$ and $V:=V_{18}(\mathbf{a})$. Then, $a_{22}=U, a_{20}=U^{2}, a_{18}=U^{3}, f_{19}(U, V)=0$ and $f_{18}(U, V)=U^{3}$.

The graph of $f_{19}(u, v)=0$ and the graph of $f_{18}(u, v)-u^{3}=0$ on D are as following.

The graph Γ_{19} of $f_{19}(u, v)=0$ consists of two parts. The first is the curve C_{1} connecting $(0.83098,1)$ and $(0.84925,1.12803)$, and the second is $(0.84220,1)-(0.84220,1.13290)$. The graph Γ_{18}^{\prime} of $f_{18}(u, v)-u^{3}=0$ consists of three parts. The first is $(0.55362,1)$ $(0.63606,1.23149)$, the second is $(0.64255,1)-(0.70658,1.20733)$, and the third is the curve C_{2} connecting $(0.84496,1)$ and $(0.84454,1.13129)$. As the above figure, $\Gamma_{19} \cap \Gamma_{18}^{\prime} \cap D=$ $C_{1} \cap C_{2} \sim(0.8391429974,1.0981287467)$. Thus $U \sim 0.8391429974$ and $V \sim 1.0981287467$. In this case $E_{23}(\mathbf{a})>11.511>23 / 2=E_{23}(1,1, \ldots, 1)$. So, $E_{23}(\mathbf{a})$ can not be minimum.
(2) We may assume $\mathbf{a}=\left(1, a_{2}, \ldots, a_{20}, 0, a_{22}, 0\right)$. Let $U:=U(\mathbf{a})$ and $V:=V_{18}(\mathbf{a})$. Then $a_{22}=U, a_{20}=U^{2}, f_{21}(U, V)=0$ and $f_{20}(U, V)=U^{3}$.

The graph of $f_{21}(u, v)=0$ and the graph of $f_{20}(u, v)-u^{2}=0$ on D are as following.

The graph Γ_{21} of $f_{21}(u, v)=0$ consists of three parts. The first is $(1 / 2,1.23198)-$ $(0.51615,1.24974)$, the second is the curve C_{3} connecting $(0.84220,1)$ and $(0.85369,1.12491)$, and the third is $(0.84925,1)-(0.84925,1.12803)$. The graph Γ_{20}^{\prime} of $f_{20}(u, v)-u^{2}=0$ consists of three parts. The first is $(0.63606,1)-(0.68507,1.21575)$, the second is $(0.70658$, $1)$ - $(0.75947,1.18268)$, and the third is the curve C_{4} connecting $(0.84454,1)$ and (0.84484 , 1.13108). As the above figure, $\Gamma_{21} \cap \Gamma_{20}^{\prime} \cap D=C_{3} \cap C_{4} \sim(0.8388196493,1.0346467269)$. Thus $U \sim 0.8388196493$, and $V \sim 1.0346467269$. Then $E_{23}(\mathbf{a})>11.512>23 / 2=E_{23}(1, \ldots$, $1)$. Thus $E_{23}(\mathbf{a})$ can not be minimum.

References

[1] P. J. Bushell, Shapiro's cyclic sum, Bull. London Math. Soc., 26, (1994), 564-574
[2] P. J. Bushell \& J. B. McLeod, Shapiro's Cyclic Inequality For Even n, J. of Inequal. Appl. 7 (2002), 331-348.
[3] P. H. Diamada. On a Cyclic Sum, Proc. Glasgow Math. Assoc., 6, (1961), 11-13.
[4] J. L. Searcy, B. A. Troesch, A Cyclic Inequality and a Related Eigenvalue Problem, Pacific J. Math., 81, (1979), 217-226.
[5] B. A. Troesch, On Shapiro's Cyclic Inequalities for $N=13$, Math. Comp., 45 No. 171 (1985), 199-207.
[6] B. A. Troesch, The Validity of Shapiro's Cyclic Inequality, Math. Comp., 53 No. 188 (1989), 657-664.

