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Y. IMO2023

S U —
/&/ Chiba, JAPAN

English (eng), day 1

Saturday, 8. July 2023

Problem 1. Determine all composite integers n > 1 that satisfy the following property: if di, ds, . .., dx
are all the positive divisors of n with 1 = d; < dy < --- < dj, = n, then d; divides d;;1 + d; o for
every 1 <i < k—2.

Problem 2. Let ABC be an acute-angled triangle with AB < AC'. Let Q2 be the circumcircle of
ABC'. Let S be the midpoint of the arc C'B of {2 containing A. The perpendicular from A to BC
meets BS at D and meets ) again at E # A. The line through D parallel to BC' meets line BE
at L. Denote the circumcircle of triangle BDL by w. Let w meet €2 again at P # B.

Prove that the line tangent to w at P meets line B.S on the internal angle bisector of ZBAC.

Problem 3. For each integer k£ > 2, determine all infinite sequences of positive integers a, as, . . .
for which there exists a polynomial P of the form P(z) = 2* + ¢;_12*! + - + c1@ + ¢o, where
Co,C1, - .., Cp_1 are non-negative integers, such that

P(an) = Qp4+1Qp+42 * ° * Aptk

for every integer n > 1.

Language: English Time: 4 hours and 30 minutes.
FEach problem is worth 7 points.



D 1M0O2023
/&/ Chiba, JAPAN

English (eng), day 2

Sunday, 9. July 2023

Problem 4. Let xq1,xo,...,To023 be pairwise different positive real numbers such that
1 1 1
an =@tz +-Fw,) | —+—+ -+ —
T X Tn

is an integer for every n = 1,2,...,2023. Prove that asgs > 3034.

Problem 5. Let n be a positive integer. A Japanese triangle consists of 1 4+ 2 + --- + n circles
arranged in an equilateral triangular shape such that for each i = 1,2,...,n, the i*® row contains
exactly 7 circles, exactly one of which is coloured red. A ninja path in a Japanese triangle is a
sequence of n circles obtained by starting in the top row, then repeatedly going from a circle to one
of the two circles immediately below it and finishing in the bottom row. Here is an example of a
Japanese triangle with n = 6, along with a ninja path in that triangle containing two red circles.

In terms of n, find the greatest k£ such that in each Japanese triangle there is a ninja path containing
at least k red circles.

Problem 6. Let ABC be an equilateral triangle. Let Ay, By, C; be interior points of ABC such
that BAl = AlC, CBl = BlA, ACl = ClB, and

£LBAC+ LCOB1A+ LAC, B = 480°.

Let BC:7 and C'B; meet at A,, let C'A; and ACY meet at B, and let AB; and BA; meet at Cj.
Prove that if triangle A;B;C] is scalene, then the three circumcircles of triangles AA;A;, BBy B>
and C'C1C5 all pass through two common points.

(Note: a scalene triangle is one where no two sides have equal length.)

Language: English Time: 4 hours and 30 minutes.
FEach problem is worth 7 points.



Marking scheme for Problem 1

Problem 1.

Determine all composite integers n > 1 that satisfy the following property: if dy,ds, ..., d; are all
the positive divisors of n with 1 = d; < dy < -+ < dj = n, then d; divides d;; + d;,o for every
1<i<k—-2.

Marking scheme

The solution is subdivided into two parts.
(A) Proving that n = p" (r > 2) satisfies the condition ................ ... ... ... ........ 2 points
(B) Proving that n # p" (r > 2) does not satisfy the condition .......................... 6 points

A total of 2 points for Part (A) can be given only if the mark for Part (B) is 0.

Ezample: 2 points are given to the following if the mark in Part (B) is 0 “The condition is

obviously true when n = p” because the divisors of p” are p*”.

The following general items are rewarding;:

(C1) Giving concrete (counter-)eXamples . .........o.ouoeiiitini i 0 point
(C2) Considering any factorization n = p* P& ... i 0 point
(C3) WIItING didi1—i = 10 oo oottt e e 0 point
(C4) Considering the two smallest prime divisors p < gofn .......................... 0 point
(C5) Just considering j > 1 such that 1 < p < --- < p/ < ¢ are the first j + 2 divisors .0 point
(C6) Just considering the divisor p”||n for the smallest prime divisor pof n ........... 0 point

In the 2-points regime of part A, partial marks, up to 1 point, are given as follows:

(A1) Just claiming p” (r > 2) works (for infinitely many p, e.g. for odd p) ............ 1 point
(A2) Proving that n = p" satisfies the condition for a particular p (e.g. p=2) ........ 1 point
(A3) Proving that n = p? satisfies the condition ................ ... ... .. ..., 0 point
(A4) Proving that n = p®(for a fixed e > 3) satisfies the condition .................... 1 point
(A5) Noticing that the divisors of p" are p’ ....... ..., 1 point

The point in Part (A1) can also be awarded in the 1-point regime for Part (A).

In part B, marks are given as follows:

B1) Getting a relevant expression such as n 2 + .L, ord;|d?>, (forall1 <i<k—1), or
j p],1 i+1
q P
di | dipq (forall 1 <i<k—1),orp|dyy and p | dy1 where d; = i (r =valy(n)) ...... 4 points
p'l’

For the relevant expression p | dy_1 and p | deyq, the first part is 8 points and the second part is
1 point (they are additive).

(B2) Using a relevant expression to prove that there exists only one prime divisor and
CONCIUAINE .« .o 2 points

To get 2 points for (B2), it is necessary to get full score (or —1 point of deduction) for (B1).



In (B1), partial marks, up to 3 points, are given as follows:

(B1-1) (C4) + (C5) + Noticing o/ ™1 | P/ 4@ oo 1 point
(B1-2) Obtaining j =1, ordy =pand d3 = q ....oovririiii i 2 points
(B1-3) Reverting the list of divisors of n, and obtaining D« % < KM 2 points
qg P
(B1-4) Just rewriting the condition d; | ;11 + diy2 <= A T L 0 point
diva  di  dipa

(B1-5) Clearing up denominators to obtain d;d;y1 | diy1dire + didize oo, 1 point
(B1-6) Obtaining d; | dip1diza - vvvneeie e 2 points
(B1-7) Claiming dy | dy because dy =1 ... 0 point
(B1-8) Using the condition in the problem statement to obtain dy_o | dg—1 ... ....... 0 point
(B1-9) Obtaining di_o | dr—1 and d_3 | dg—2 . ovoeoie 2 points
(B1-10) Obtaining da | dg - ..ot e 3 points
(B1-11) Considering the divisor dy = ]% (r = valy(n)) for the smallest prime p

AIVIAING 70 o 1 point
Partial marks in (B1) are not additive.

In (B2), partial marks, up to 1 point, are given as follows:
(B2-1) Proving that ged(ds, ds) > 1 implies p | d; (for all 2 <i < k) for a prime p ..... 1 point
(B2-2) Proving that p | d; and p | d;yo imply p | d;yq for aprime p .................... 1 point

Deductions
(D1) Not verifying the base case of the induction ............... .. ..., —1 point
(D2) Any minor mistake which can be fixed in a single-line sentence ................ —1 point



Solutions

Answer: n = p" is a prime power for some r > 2.
Solution 1. It is easy to see that such an n = p” with r > 2 satisfies the condition as d; = p'~!
with 1 > ¢ >k =r+ 1 and clearly

pz—l |pz _'_pz—&—l.

Now, let us suppose that there is a positive integer n that satisfies the divisibility condition of
the problem and that has two different prime divisors p and g. Without lost of generality, we assume
p < q and that they are the two smallest prime divisors of n. Then there is a positive integer j such
that

di =1, dy :p7~'7dj :pj_ludj—H ij;dj+2 =4,
and it follows that

n n n n
d—j-1 = E,dk—j = di—j+1 = AR g1 = P di = n.
Thus n n n n
dk_‘_1:—|dk_'—|—dk_‘ 1:—.+ - :—(p—f-l) (1)
g Ty Tt

This gives p’/ | ¢(p + 1), which is a contradiction since ged(p,p+ 1) =1 and p # q.

Solution 1’. We present here a more technical way of finishing Solution 1 after obtaining (1). We
let v,(m) denote the p-adic valuation of m. Notice that v,(n/q) = v,(n) as ged(p, ¢) = 1 and that

n :
i (5 1)) =) =
as ged(p,p+ 1) = 1. But (1) implies

() = /) < 0 (50 1)) = ) =

which is a contradiction. Thus n has only one prime divisor as desired.

Solution 2. We start by proving the following claim:
Claim. d; | d7,, for all 1 <i <k — 2.

Proof. Since d;dy.1_; = n, we have the equivalence:

n n n
di—i—1 | dp—i + di—ir1 = —.
it et deo = G g0 T
We multiply both sides by d;d;11d; 2 and cancel the n’s to get
didiy1 | didipo + diy1digs.
Hence,
di | diy1diyo. (2)

Moreover, by the condition of the problem,
di | digp1(disn + dig2) = d7 ) + digrdigo.

Combining this with (2) we get that d; | d?, for all 1 <i <k — 2. O



Let dy = p be the smallest prime divisor of n. By induction on i we prove that p | d; for all
2 <1 <k —1. The base case dy = p is obvious. Let us suppose that p | d; for some 2 < j < k — 2.
Then we have that
P’dj|d?+1 = p|djn

as p is prime, which completes the induction. This implies that n has to be a prime power, as
otherwise there would be another prime ¢ that divides n and we would get that p | ¢ which is
obviously false.

We finally check that the powers of p satisfy the condition in the statement of the problem as in
Solution 1.

Solution 3. We start by proving the following claim:
Claim. d; | d;yq for every 1 <i <k — 1.
Proof. We prove the Claim by induction on ¢; it is trivial for ¢ = 1 because d; = 1. Suppose that

2 <i < k—1 and the Claim is true for i — 1, i.e. d;_y | d;. By the induction hypothesis and the
problem condition, d;_; | d; and d;_1 | d; + diy1, 80 di—1 | diyq.
n

n
Now consider the divisors dy_; = —, dx_j11 = —, dk_j10 = . By the problem condition,
dip1 d; di—q
n n
—+
dk—i+1 + dk—i+2 _ dl di—l _ di+1 X di—i—l
dk—i n dz dz‘—l
dit1
d.
is an integer. We conclude that 1 s an integer, so d; | diy1. U

d;

By the Claim, n cannot have two different prime divisors because the smallest one would divide
the other one. Hence, n must be a power of a prime, and powers of primes satisfy the condition of
the problem as we saw in Solution 1.

Solution 3’. The following Claim is the same as Solution 3; only the order of the induction is
different.

Claim. d; | diyq for every 1 <i <k — 1.

Proof. We prove the Claim by induction on ¢ from the case i = k — 1 to i = 1, Since dy_o | dp_1 + di
and dg_o | dy = n, we have dj_o | dx_1, hence the base case i = k — 1 of the Claim. Suppose that
d; | dis1 holds for some 2 < i < k — 1. Since dy_; | dps1s + disois dios = ——\ djp1_s = —, and

n dit1 d;
dpio_i = ——, we have
di—1
n o n n
— <~ d;_1d; | di_1d; did;iq.
o '3 T i | dicadig + didi
Since dH is an integer, we have d;_; | di_ld—ﬂ + diy1, so di—1 | diy1. Combining this with d;_; |
d; + d;y1, we conclude d;_; | d;, so the Claim is proved by induction. O

The rest of the proof is exactly the same as Solution 3.



Solution 4. The following is another solution for Part (B).
Assume n is not a prime power and satisfies the condition of the problem statement.

Consider the smallest prime p dividing n and the divisor dy = ﬁr (r = val,(n)).

Then d,_; divides dy + dyy1. Notice that p does not divide dy.
But we will prove p divides dy_; and dy,1, and we will get a contradiction.

n
e If p does not divide dy41, then dpy1 = — < dy, which is a contradiction.
pq

e If p does not divide dy,_1, then dy,_1 = i, but then
P'q

n n n
r < r—1 <_'r:de’
pqg p q p

dp—1 =

which is a contradiction.



Marking scheme for Problem 2

Problem 2.

Let ABC' be an acute-angled triangle with AB < AC'. Let Q be the circumcircle of ABC. Let S be
the midpoint of the arc C'B of {2 containing A. The perpendicular from A to BC meets BS at D
and meets () again at £ # A. The line through D parallel to BC meets line BE at L. Denote the
circumcircle of triangle BDL by w. Let w meet 2 again at P # B.

Prove that the line tangent to w at P meets line B.S on the internal angle bisector of ZBAC.

Marking scheme

Applying the Markscheme

In the following sections, unless otherwise stated, the relevant item must have a complete proof
(not just a statement or conjecture) to score the mark.

Marks within a section are not additive. The students mark will be the maximum of:
e Full Solution

e Significant Progress

e General Steps + Towards a Solution

e Other Paths

For example, if a student were to complete (G1), (G2), (T5) and (T3), they would score 1
in General Steps and 2 in Towards a Solution. These can add to each other (point 3 above)
meaning the student scores |3 | overall. If the student also did (S1), they would score .

Additional Clarifications

e For points requiring proofs of parallel lines, these must be explicitly stated or clearly marked
on the diagram. Proving equivalent angle equalities and not stating that this means the relevant
lines are parallel is NOT sufficient to score the points.

e Reducing the problem to proving S (where S is a statement e.g. XA = XP).

— To score these points, the student must explicitly state that, with the results they have
proved so far, § is sufficient to finish the problem AND prove why this is the case.

— Simply having proved results that, combined with S, would be sufficient to solve the
problem but not explicitly stating and proving this is NOT sufficient to score the points.



Full Solution

o Complete SOIUtION ... ... . 7 points
e Complete solution for the incorrect! configuration which translates to the correct one 7 points

e Essentially complete solution with minor error ......... ... ... ... ... ... ... .... 6 points

Significant Progress (not additive to anything)
(S1) Proving at least 2 of {PD || QS,AP || S'Q,ZDPA =90} .........c.coiiiiiiii.. 4 points

(S2) Explicitly stating that ASS'Q ~ ADAP AND mentioning the parallel sides of these triangles
5 points

— Simply marking/proving equal angles in the triangles is NOT sufficient.
(S3) XA = XP where X is defined as either X = BDNAS or X =BDNPQ ...... 5 points
(S4) XA =XP where X := PQ N AS 3 points

(S5) Reducing the problem to proving XA = X P (with any of the three definitions of X given in
(S3) and (S4)) o .ovi 3 points

(S6) Under a +/ac inversion at B, prove that D*P* = D*C where D*, P* are the images of D, P (as
I Solution 12) .o 5 points

General Steps (not additive within the section but additive to Towards
a Solution)

(G1) L, P,S COIINEAT ..ottt et e e 1 point
(G2) P, D, A collinear OR ZDPA =90° ... i 1 point
(G3) AD,PS";w concur (at T) ..ottt e 1 point

Towards a Solution (not additive within the section but additive to Gen-
eral Steps)

(T1) PD || QS OR AP || 5'Q e 2 points
(T2) [Requires (G3)] (P, D;T,B) = —1 oot 2 points
(T3) [Requires (G2)] APTR cyclic (T = AD Nw) where R == AS"NPD ............ 2 points
(T4) v := ©APT (T := AD Nw) is orthogonal to w OR tangesnt to w at P passes through centre

Of Y 2 points
(T5) Reducing the problem to proving BS passes through the midpoint of AR where either R :=

AS'"NPA or R:=AS"NOAPT (T :=ADNW) ot 2 points
(T6) [Requires (G3)] AXTB cyclic ........oiiiiiii 2 points

fThe problem statement is phrased to preclude solutions having to treat multiple configurations, but a contestant
might still e.g. misread the order and work with the wrong configuration. Such solutions are not deducted points.



Other Paths (not additive to anything)
(O1) Reducing the problem to proving one of the following: ........................... 2 points

— (Y,D; P, A") = —1 (where Y = BS'Nn PA").
— ZRBS = ZSBP (where R := PA'N AY').

Not Worth Points (on their own)

(N1) AS" tangent to OABD ... 0 points
(N2) AP, BS’,w concur (at M) ..o 0 points
(N3) BE', AE,w concur (where E’ is the point diametrically opposite E on Q) ......... 0 points
(N4) PS',BE', AE concur (at T') ... o 0 points
(N5) PXBR cyclic (with any definition of X or R) ............ i, 0 points
(N6) PE =50 OR PS || EQ . 0 points
(N7) Equal angles or parallel lines marked on a diagram with no proof ................. 0 points

Remark about computational solutions

In general, computational approaches, unless substantially complete, will not be awarded more than
a few points. A mere translation of geometry into trigonometry, complex numbers, Cartesian or
barycentric coordinates etc. will be awarded 0 points. Any essentially incomplete computational
attempt will get 0 points unless the results are interpreted in geometrical terms, in which case this
constitutes a valid proof of those results, giving points according to the above scheme.
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Solutions

Many of the solutions given below are sketches and do not necessarily present sufficient detail to
score full marks.

Solution 1.

Let S’ be the midpoint of arc BC' of ), diametric-
ally opposite to S so SS’ is a diameter in 2 and AS’ is QS
the angle bisector of ZBAC'. Let the tangent of w at P A
meet 2 again at () # P, then we have Z5Q5" = 90°. p

We will show that triangles APD and S'QS are
similar and their corresponding sides are parallel.
Then it will follow that the lines connecting the cor-
responding vertices, namely line AS’, that is the angle
bisector of ZBAC, line PQ), that is the tangent to w @
at P, and DS are concurrent. Note that the sides AD
and S’S have opposite directions, so the three lines B
cannot be parallel. First we show that AP 1 DP.

Indeed, from cyclic quadrilaterals APBE and DPLB B~
we can see that S’

Q

/LPAD = /PAE =180° — ZEBP = /PBL = /PDL =90° — ZADP.
Then, in triangle APD we have ZDPA = 180° — ZPAD — ZADP = 90°.

Now we can see that:
e Both lines ADE and S5’ are perpendicular to BC, so AD || §'S.

e Line P(Q is tangent to circle w at P so Z/ZDPQ = /DBP = /ZSBP = /ZSQP; it follows
that PD || QS.

e Finally, since AP 1L PD || QS L S’'Q, we have AP || S'Q as well.

Hence the corresponding sides of triangles APD and S'QS are parallel completing the solution.

Solution 2. Again, let S’ be the midpoint of arc BC, diametrically opposite to S, so AES’S is
an isosceles trapezoid, and ZS'BS = £S'PS = 90°. Let lines AE and PS" meet at T and let AP

and S’ B meet at point M. g
We will need that points L, P, S are collinear, and A8 ~
points 7" and M lie on circle w. o /0 g
e From /LPB = /LDB = 90° — /BDE = o \
90° — /BSS' = /SS'B = 180° — /BPS we Phe X
get ZLPB + /BPS = 180°, s0 L, P and S are k= D\
indeed collinear.
M T/\
e Since S5’ is a diameter in €, lines LPS \
and PT'S" are perpendicular. We also have LD || \\ e
BC L AE hence ZLDT = /LPT = 90° and B \
therefore T' € w. \
E
S/

e By /LPM = /SPA = /SEA = /EAS' =
/EBS" = ZLBM, point M is concyclic with
B,P,LsoMew.



Now let X be the intersection of line BDS with
the tangent of w at P and apply Pascal’s theorem
to the degenerate cyclic hexagon PPM BDT. This gives points PPN BD =X, PMNDT = A
and MBNTP = 5" are collinear so X lies on line AS’, that is the bisector of ZBAC.

Solution 3. Let A’ and S’ be the points of 2 diametrically opposite to A and S respectively. It is
well-known that F and A’ are reflections with respect to S5’ so AS’ is the angle bisector of ZFAA'.
Define point T' to be the intersection of AE and PS’. As in the previous two solutions, we have:
/ZDPA =90° so PD passes through A’; points L, P, S are collinear; and T € w.

1
I

0 g
A U
7 1%
P
w = —
<+ —¥x
L
t
T R
B c
E gt
S/

Let lines AS” and PDA’ meet at R. From the angles of triangles PRS’ and PTE we get
LARP = L/AS'P + /S'PA" = ZAEP + /EPS' = ZATP

so points A, P,T, R are concyclic. Denote their circle by . Due to ZRPA = ZDPA = 90°, segment
AR is a diameter in 7.

We claim that circles w and ~ are perpendicular. Let line LPS meet v again at U # P, and
consider triangles PLT and PTU. By ZLPT = ZTPU = 90° and

/PTL=/PBL=180°—- LZEBP = /PAF = /PAT = /PUT,

triangles PLT and PTU are similar. It follows that the spiral similarity that takes PLT to PTU,
maps w to v and the angle of this similarity is 90°, so circles w and ~ are indeed perpendicular.

Finally, let lines BDS and ARS’" meet at X. We claim that X bisects AR, so point X is the
centre of v and, as w and v are perpendicular, PX is tangent to w.

Let t be the tangent of w at D. From Z(DT,t) = LTPD = /£S'"PA" = ZFAS’ it can be seen
that ¢ || AS’. Let I be the common point at infinity of t and AS’. Moreover, let lines LPS and ADTE
meet at V. By projecting line AS’ to circle w through D, then projecting w to line AE through L,
finally projecting AE to ) through P, we find

AX
=5 = A RX.D)=(T,PB,D) = (T,V:E,D) = (8,5 B, A) = -1,

so X is the midpoint of AR.



Solution 4. Let X = DS N AS’. Our goal is to prove that PX is tangent to w. As in other
solutions show ZAPD = 90°.

Claim 1. Line AX is tangent to the circumcircle of triangle ABD.
Proof. Note that line AX intersects {2 again at S” and AFE || S5’ so:

/DAX = /FAS' = /SBA=/DBA

which proves the claim. O

Claim 2. XA =XP.

Proof. Let O be the centre of ), F = AX NDO,G=DXNOAand H=0XNAD.
By Ceva’s Theorem on triangle AOD, we have

AH DF 0G AH FO GA

HD FO GA HD DF OG
Since lines AD and AQO are isogonal we know that AX bisects ZBAC, and therefore, by the angle
bisector theorem,

1=

FO  AO
DF — AD’
On the other hand, lines AD and OS are parallel and thus AAGD ~ AOGS, which gives us
AG AD AD
GO SO A0’

Hence,

AH AO AD

HD ~ AD A0

and thus H is the midpoint of AD.
Therefore, since ZAPD = 90° this gives us HA = HP, and because OA = OP we may conclude
that XA = XP. O

Finally, combining Claims 1 and 2 gives us
XP?=XA*=XD-XB

which finishes the solution by power of X with respect to circle w.

Solution 5. Let X = DS N AS" and T be the second intersection of AD with w. As in other
solutions, ZAPD = 90°, L, P,S are collinear and P,T,S" are collinear. It is enough to prove that
PX is tangent to w.

Now let R := PD N AS’" and let J denote the second intersection of PE with w.

Claim 1. The cyclic quadrilateral PDT B is harmonic.

Proof. Since ZAPD = 90°, line PR passes through A’ and therefore PS’ bisects ZEPR. Thus, we
may conclude that T'D = T'J, and since LT is a diameter of w, we have

as required. ]

Claim 2. Point X is the centre of a circle passing through points A, P, T', R.



Proof. Since PS’ bisects ZEPR we have
/TPR=/JPT = /EPS = /FAS' = /TAR

which implies that APT R is a cyclic quadrilateral.
Furthermore, note that

/TPR=/TAR = /TPD = /TAS’

and thus the tangent to w at D is parallel to line AS’.
Hence, if we let oo denote the point at infinity along line AS’, we obtain:

which implies that X is the midpoint of AR.
Since ZAPR = 90° this gives us that X is the circumcentre of triangle AP R, and we have already
seen that APTR is cyclic. O

Finally, since PDT B is harmonic, XP = XT and X € BD, point X must be the intersection of
the tangents to w at P and T', which finishes the solution.

Solution 6. Let T':= BE'N AFE, R lie on PD such that TR || BC and finally let the tangents to
w at P,T intersect at X.

Claim 1. T € w.
Proof.

/LDT =90° = /EBE' = /EBT = /TBL

O
As in other solutions, we have seen that L, P, S and P, D, A’ and P,T,S" are collinear.
Claim 2. (P,T;D,B) = —1
Proof.
(P,T;D,B) £ (LPNAE,T;D,E) £ (8,8 A, E) = —1
where the last result follows from SS” being the perpendicular bisector of A’'E. O
Claim 3. APTR cyclic on a circle with centre X and diameter AR.
Proof. The cyclic and diameter part follow from:
ZATR =90° = LZA'PA = /ZRPA
To show X is the centre observe X P = XT and:
/ZRTD =90° = /ZPDT =90°+ /PRT — /PXT =2/PDT —180° = 2/PRT
which is enough to show X is the centre of APTR. U

From Claim 3, X lies on the tangent at P and the line DB (which passes through S). Therefore
it’s enough to show that X lies on AS’, the internal bisector of ZBAC'. This follows from:

/PAX 9" Y 90° — /DTP =90° — /SBP = 90° — /SS'P = /PSS = /PAS'

which completes the proof.



Solution 7.

As in other solutions, P, D, A’ are collinear. Define X = AS’'NSB and R = AS' N PA’.
Let W be the second intersection of ®ABC and S’D and Y = BS'N PD. It is enough to show
/ZBPD = /ZDPX. Angle chasing:

/XRP=/ARP =90° — /PAS' = SBP = /XBP

so PXBR is cyclic and hence /ZDPX = ZRPX = ZRBX so it is enough to show ZDBP = ZRBD.
Since /Y BD = 90°, it is enough to show (P, R; D,Y) = —1.

(P,R,D,Y)Z (P,A,W,B) 2 (A, E;8,5) =1

Solution 8. Let X = BSN AS". As AS’A'S is a rectangle and AD || SS’ we have:
XR DX AX AX
SA'~ DS~ AS  SA
As in other solutions, ZDPA = 90° so X is the centre of ©APR. This gives:

— XR=AX

/RPX = /ARP SV ssa'p - /SBP = /DBP

so PX is tangent to ©BPD.

Solution 9. .

A
/
P 1/
L
R

N

SI
Left Figure: Introduce A’, S” as in other solutions and prove that P, D, A" are collinear.

Middle figure: We can now reconstruct the diagram from rectangle ASA’S’ (and no longer
require points L, C', E):

e First, take point D on a line through A parallel to the diagonal SS".
e Then take B=SDNQ and P=ADNA.
Let the tangent to w at P meet the angle bisector AS" at X. Angle-chasing we have:
/RPX = /DBP = /SBP = /SS'P =90° — Z/PAS' = ZXRP
so XR = XP and, as ZRPA = 90°, this means X is the midpoint of AR.

Right figure: Now we can also remove points B, P and it suffices to prove that the intersection
N = DS N AS is also the midpoint of AR. We have two pairs of similar triangles namely NRD ~
SA'D and AND ~ S'NS giving:
NR DN AN
SA" DS AS"

Since SA" = AS’ we get NR = AN.
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Solution 10. Define X := BSNAS’. Angle chasing gives AS’ tangent to ©ABD so XD-XB = X A%
Thus it is sufficient to prove XA = X P.

Let ¢ be the perpendicular bisector of AP. As in other solutions, ZDPA = 90° so the midpoint
of AD lies on ¢. Also, the midpoint of S5 is the centre of €2 so also lies on ¢. As AD || SS’, we can
consider the dilation at X taking AD — S’S which also takes the midpoint of AD to the midpoint
of SS’. Hence X € £ so XA = X P as required.

Solution 11. As in other solutions define T' := PS’ N AFE then we have T' € w. We also have
P, D, A collinear. Define X := AS’ N BS then we have:

/TBX = /TBD = /TPD = /S'PA 4= s pAS = /TAX

so AXTB is cyclic. From this:

o BAlSS'

LTAX = /ZFA LSBA=/XBA=/XTA = XA=XT

and also:
/TPA=/SPA=90°—/FAS =90° — /TAX

Combining these is enough to show that X is the circumcentre of AAPT and so XA = XP. From
here we can finish as in other solutions.



11

Solution 12. As in other solutions, AS’ is tangent to ®©ABD. Let X := AS'N BD.

Perform a y/ac inversion (i.e. invert about B with radius vV BA - BC and then reflect over the
bisector of ZCBA) and denote the image of a point Z by Z*.

From properties of angles under this inversion we have:

LS*BA =/ZCBS =90° — £BAC _ £BAS

— AD*BA=4S*BA=4AAS*B (1)

Angle-chasing using directed angles we then get

AD*CP* = LAD*CFE"

= AD*BE" (A, E, D collinear = D*CBE* cyclic)
=«D*BL*

= LABL" + £AD*BA

= LABL" + £AS"B (Using (1))
= ABD*L* + £AS*B (BC || LD = AB tangent to ®©BL*D*)
= ABD*L* + £P*S*D*

=AS*D*P* + LP*S*D* (BLPD cyclic = D*, P*, L* collinear)

= LCP*D* (Angles in AP*S*D*)



12

so D*C = D*P*.

As X A tangent to ©ABD we get ©BCX* is tangent to line C'D* which, combined with the
above, gives

D*B-D*X* = D*C* = (D*P*)°

which means © BP* X* is tangent to line D* P*. Inverting back we get line X P is tangent to ©BPD =
w as required.

Solution 13. Let X be the intersection of AS’ and the tangent at P to w. As in other solutions,
L, P, S are collinear. Then we have

LXPA=/QPA=/2QPS+ £SPA=/PBL+ /ZSPA=/PAF + ZSPA.

From S5’ || AE we have SAES’ is an isosceles trapezium so ZSPA = ZFEAS’. Combining this with
the above gives
/XPA=/PAE+ /EAS' = /PAS' = /PAX.

Hence XA = XP.
Now, as in other solutions, show that ®ADB is tangent to line AX S’ from which we get:

Pow,(X) = XD -XB = XP? = XA? = Powgapp(X)

Thus X lies on the radical axis of w and ®ABD, but this is exactly line BD.



Marking scheme for Problem 3

Problem 3.
For each integer k > 2, determine all infinite sequences of positive integers ay, as, . .. for which there
exists a polynomial P(x) = oF + 12"+ -+ + ¢, where ¢, ¢, ..., Cp_1 are non-negative

integers, such that
P(a'n) = Qp4+1Qp+42 * ° * Aptk

for every integer n > 1.

Marking scheme

We expect all solutions to follow the same structure in two steps.

1. First, one should prove some properties about the sequence (a,,) (e.g. increasing or unbounded
non-decreasing). This part typically only requires that P is injective (or increasing) and satisfies

P(an> = Ap4+1Qan42 * * * Qp4k-

2. Then, control the differences a,, 11 — an, ..., @, — a, using the fact that P(z) is a polynomial,
and conclude that (a, ) must be an arithmetic progression. This usually involves arguments such
as finding estimates using the second-to-largest term of the polynomial, using some “infinitary”
pigeonhole principle, etc.

The marking scheme is divided into three regimes. The final score is the maximum among the
scores obtained in each regime.

Regime A (<1 point)

The following points are non-additive.

List of observations worth 0 points:

o Proving that P(z) > 2% ... . 0 points
e Proving that P(x) > P(y) for x >y ... i 0 points
o Proving that P(x) # P(y) for x £y ..o 0 points
 Proving that if (a,) is eventually constant, then it is constant ......... 0 points

« Proving that if (a,) is eventually an arithmetic progression, then it is an arithmetic
progression from the start ........ ... .. 0 points

« Proving that the sequence a,, = cn satisfies the condition of the problem 0 points
« Proving that the sequence a,, = n+c satisfies the condition of the problem 0 points
o Proving that the sequence a, = c satisfies the condition of the problem 0 points

 Claiming that non-decreasing arithmetic progressions (a,) satisfy the condition of
the problem without justification ......... ... ... . ... ... ... ... . ... 0 points

« Proving that (a,) is constant when P(z) =2 .......... .. ... ... ... 0 points

Making partial progress with specific values of k (typically in the case k = 2) will be awarded at
most one point:

(A.1) For a specific value of k, the sequence (a,,) is either constant or increasing 1 point



(A.2) For a specific value of k, the sequence (a,) is either constant or unbounded non-
deCTeaSING ..\ 1 point

Identifying all the solutions with proof is also worth a point (if a student forgets about constant
sequences, the mark is awarded anyway). When the student mistakenly identifies a larger class of
sequences (e.g., all arithmetic progressions) as solutions, the point is awarded regardless.

(A.3) Proving that every non-decreasing arithmetic progression (a,,) satisfies the condition
of the problem (to get credit, the polynomial P(z) corresponding to the sequence
must be written out explicitly) ......... ... 1 point

Regime B (< 6 points)

Regime B is divided into two subsections corresponding to the two main steps of the solution. The
items in each subsection are not additive, but the two subsections are additive with each other for a
maximum of 6 points.

Specific values of k. If a statement is proved for a particular value of k where, when replacing
this specific value of k£ by a general parameter, the argument immediately generalizes to a complete
argument for general value of k&, then one point will be deducted from the corresponding item. If the
students also claims that the argument immediately generalizes to a complete argument for general
value of k£, no points will be deducted.

First step (< 3 points)

(B.1) The sequence (a,) is either constant or increasing ..................... 3 points
(B.2) The sequence (a,) is either constant or unbounded non-decreasing ..... 3 points
(B.3) The sequence (a,) is non-decreasing ...............c.o.oeeriiiinanan... 2 points
(B.4) The sequence (a,) is either (eventually) constant or goes to infinity ... 2 points
(B.5) The sequence (a,) is either (eventually) constant or unbounded ....... 1 point
(B.6) The sequence (a,) is either (eventually) constant or contains an increasing sub-
SEQUEIICE ottt ettt e e et e e e e 1 point
(B.7) The sequence (a,) is either bounded or goes to infinity ................ 1 point
(B.8) There exists infinitely many n with a, < min{a,1,...,Gpik} «oonovnn.. 1 point
(B.9) The sequence (a,) has a non-decreasing subsequence .................. 0 points
(B.10) For every n we have a,, < max{a, 1, -+, Qnik} «oeoveremeneienenenen.. 0 points
(B.11) For every n we have a, < (@p41+ -+ ani)/k oo 0 points
(B.12) For every n we have a, < Qi1 - Gk cevreneeenan e, 0 points
(B.13) If the sequence (a,) is eventually constant, then it is constant ......... 0 points
(B.14) If the sequence (a,) is non-decreasing and not (eventually) constant, then it is

strictly increasing ........... . 0 points

Second step (< 4 points)

For this part of the marking scheme, students may assume any combination of the facts mentioned
in the first step, in particular, that (a,) is either constant or increasing, or any weaker statement, for
a maximum of 4 points. To gain full points, students must explicitly state the assumption, given
that they do not provide a proof.



(B.15) The sequence (a,) is an arithmetic progression ........................ 4 points

(B.16) The sequence (a,) is eventually an arithmetic progression ............. 3 points
(B.17) There exists a constant b for which (a,11 — a,) + -+ + (apsx — a,) = b for all
sufficiently large n ... ... 2 points
(B.18) We have a, 4511 — any1 = k(ani1 — ay,) for infinitely many n ........... 2 points
(B.19) There exist integers by, . .., by with P(x) = (x+by) - - - (x+by) such that a,1; = a,+b;
for all 1 < <k for infinitely many n ............... . ... 2 points
(B.20) There exist integers by, ..., by such that a,; = a, +b; for all 1 < i < k for infinitely
TIATLY 70« ottoee et ettt ettt e e e e e e e e e e 1 point
(B.21) There exists a constant b for which (a,.+1 —a,) + -+ (@pir — a,) = b for infinitely
TNATLY 70wt e et e et ettt e e e e e e 1 point
(B.22) The differences a,,+1 — a,, are bounded for infinitely many n ........... 1 point
(B.23) The sums of differences (an+1 — an) + -+ + (an+r — ay,) are bounded for infinitely
TNATLY 70wttt ettt e ettt e e e e e e 1 point
(B.24) If (a,) is unbounded and P(a,) = (an + b1) - - - (an + by) for infinitely many n, then
P@)=(x4+b1) (@ 4bp) o 0 points
(B.25) Other general facts about polynomials ....................... ... .... 0 points

Regime C (> 6 points)

At most one point will be deducted from a full solution for a minor flaw such as

(C.1) Only proving that (a,) is eventually a non-decreasing arithmetic progression —1 point

(C.2) Absence of verification that all non-decreasing arithmetic progressions are indeed
SOIULIONS ..o —1 point

(C.3) Algebraic mistake in verifying that all non-decreasing arithmetic progressions are
indeed solutions, resulting in a wrong answer ....................... —1 point

(C.4) Claiming that only increasing arithmetic progressions are solutions (i.e., forgetting
about constant SeqUENCEs) . ...t —1 point

(C.5) Solving the problem completely for a particular value of k where, when replacing
this specific value of k£ by a general parameter, the argument immediately generalizes
to a complete solution for general valueof & ..................... ... —1 point

(C.6) Solving the problem completely for a particular value of k where, when replacing
this specific value of k£ by a general parameter, the argument immediately generalizes

to a complete solution for general value of k and claimingso ........ —0 points
(C.7) Making a typo (e.g., writing down the polynomial P(z) = z(z+d) - - (x+(k—1)d)),
when it is clear that the student understands the mathematics ...... —0 points

(C.8) Other deductions might be added to this list as imperfections are discovered in
students’ SCripts ... i —1 point



Solutions

Remarks. Solution 1 and its variants first establish that (a,,) is increasing and then finish using
polynomial considerations. Solutions 2 and 3 only use a weaker version of (a,) being increasing.

The following arguments and observations are implicit in the solutions given below.

Suppose the sequence (a,) is an arithmetic progression with common difference d > 0. Then it
satisfies the condition with

P(z)=(z+d)- (z+kd).

This settles one direction. Now suppose (a,) is a sequence satisfying the condition. We will show
that it is a non-decreasing arithmetic progression.

Since P(x) has non-negative integer coefficients, it is strictly increasing on the positive real line.
In particular, it holds that, for any positive integer x, v,

P(z) < Ply) <= x<uy.

Furthermore, if the sequence (a,) is eventually constant, then P(x) = z* and the sequence (a,,)
is actually constant. Indeed, if P(x) were not the polynomial z*, then P(a,) = @,11 -+ Gpyr cannot
be satisfied for n such that a, = -+ = a,4%. By a descending induction, we conclude that (a,) is
constant. Thus we can restrict to the case (a,) is not eventually constant.

Solution 1. We assume that (a,) is not eventually constant.

Step 1. The first goal is to show that the sequence must be increasing, i.e. a, < a,,1 for all n > 1.
First, by comparing the two equalities

P(an) = Ap4-1Qn+2 * - Qnik,

P(an+1) = Qp42 " A4 kAnik41,

we observe that

ap < apy1 <=  Play) < Plany1) <= a1 < Goikis (1)
ap > apy1 <= Plap) > Plant1) <= Gng1 > Goikis (2)
ap = apny1 <= P(a,) = Plapt1) <= Gpi1 = Qnigsr- (3)

Claim 1. a, < a,41 foralln > 1.

Proof. Suppose, to the contrary, that a,)—1 > ay() for some n(0) > 2. We will give an infinite
sequence of positive integers n(0) < n(1) < --- satisfying

An(i)—1 = Gn(d) and An(i) > An(i+1)-

Then ay(0), @n(1), @n(2), - - - is an infinite decreasing sequence of positive integers, which is absurd.
We construct such a sequence inductively. If we have chosen n(i), then we let n(i + 1) be the
smallest index larger than n(i) such that a,u > an@i1). Note that such an index always exists
and satisfies n(i) + 1 < n(i + 1) < n(i) + k because aniy > any4r by (2). We need to check that
An(i+1)—1 > Gn@i+1)- This is immediate if n(z + 1) = n(i) + 1 by construction. If n(i + 1) > n(i) + 2,
then a,(it1)-1 > @y by minimality of n(i 4 1), and S0 an(it1)—1 > Gn) > Gn(it1)- O



We are now ready to prove that the sequence a, is increasing. Suppose a,, = a,;, for some
n > 1. Then we also have a,11 = a,4x+1 by (3), and since the sequence is non-decreasing we have
Qp = Qpi1 = Qpig = -+ = Apagr1. We repeat the argument for a,.r = a,1x11 and get that the
sequence is eventually constant, which contradicts our assumption. Hence

ap < anyq for all m > 1.

Step 2. The next and final goal is to prove that the sequence a, is an arithmetic progression.
Observe that we can make differences of terms appear as follows

P(an) = Un+1Qn42 ° * * Qp4k
= (an + (an—i—l - an)) (an + (an+2 - an)) T (an + (an+k - an))

We will prove that, for n large enough, the sum

(Ant1 = an) + (Gny2 — an) + -+ (Anyr — an)

k—1

is equal to the coefficient ¢;_; of the term 2"~ in P. The argument is based on the following claim.

Claim 2. There exists a bound A with the following properties:
1. If (e1,...,ex) is a k-tuple of positive integers with e; + - - + e, > ¢,_1, then for every z > A
we have P(z) < (x 4+ e1)(x + e2) - - - (x + eg).
S

2. If (eq,...,ex) is a k-tuple of positive integers with e; 4+ -+ + ex < ¢x_1, then for every x > A
we have P(x) > (z+e1)(x +ea) -+ - (x + ep).

Proof. 1t suffices to show parts 1 and 2 separately, because then we can take the maximum of two
bounds.
We first show part 1. For each single (e, ..., e) such a bound A exists since

P(x) — (z+e)(x+ex) - (x+er) = (co1 — (€1 + - +ex))z" ! + (terms of degree < k — 2)

has negative leading coefficient and hence takes negative values for x large enough.

Suppose A is a common bound for all tuples e = (eq,. .., ex) satisfying e; + -+ + e, = 1 + 1
(note that there are only finitely many such tuples). Then, for any tuple ¢/ = (e},...,¢e}) with
€l + -+ e, > cp1, there exists a tuple e = (e1,...,e) with eg +--- + e = cx—1 + 1 and €] > ¢;,

and then the inequality for €’ follows from the inequality for e.
We can show part 2 either in a similar way, or by using that there are only finitely many such
tuples. [l

Take A satisfying the assertion of Claim 2, and take N such that n > N implies a,, > A. Then
for each n > N, we have
(@n1 = ap) + -+ 4 (@nar — an) = 1.

By taking the difference of this equality and the equality for n + 1, we obtain

An4k+1 — Apt1 = k(an—i-l - a'n)

for every n > N.
We conclude using an extremal principle. Let d = min{a,+; — a, | n > N}, and suppose it is

attained at some index n > N. Since

k

kd = k(ant1 — an) = Gkt — Qpy1 = Z(an+i+1 — Qnyi)

i=1
and each summand is at least d, we conclude that d is also attained at n+1, ..., n+k, and inductively
at all n’ > n. We see that the equation P(x) = (z+d)(x+2d) - - - (x + kd) is true for infinitely many
values of = (all a, for n’ > n), hence this is an equality of polynomials. Finally we use (backward)
induction to show that a,,, — a, = d for every n > 1.



Solution 1.a. We provide an alternative proof of Claiml.
Proof (Alternative proof of Claim 1). If apy—1 > ay,, then

anoa’no-i-l e an0+k—1 = P<an0—1) Z P(a’no) = an0+1an0+2 e ano-i—k:'

SO Qpy > Gpo1k- Let ay, be the first term after a,, that is not larger than a,,; so ny < ng + k and
Any—1 = Q-

By the same argument as above, we find ny € (ny,ny + k] such that a,, 1 < a,,. Continue
this way, we see that a,, > a,, > a,, > ---. Thus all a,,’s and P(a,,)’s are bounded. But
moreover, as n; — n,—1 < k; so all a;’s are bounded. (Indeed, for each a;, one can find n; such that
J € [ni+ 1,n; + k] and thus a; < P(a,,).) Let ap be the maximal element in the sequence. So
P(ay) = aps1anrio - apyr < ak;. So we must have P(z) = 2% and apri1 = anrio = -+ = anrpn-
Reverse induction shows that a, is a constant sequence. (Obviously, constant sequence satisfies the
condition of the problem.)

Solution 1.b. Step 2. We also provide an alternative way to finish the solution. Now, we assume
that a,, is strictly increasing.
Suppose that P(r) = 2 +c,_12* 1+ - +cp. Put C = o+ - ~+cp_1+1 so that P(m) < mF+Cm*~!
for any m € Z~y.
Observer that
Upi1nss - Anyr = Play) < af + Cak™t,

So each a,1; < a, + C for every i = 1,..., k because every a,y; > a,.
Now if a, > C* . 2% (and obviously a, > d; for each i), we write a,,; = a, + §; with every

9; € (0,C) and see that

al + ce_1ap "+ + 0o = P(an) = Gng1ngn - Gk
= (an + 51)(an + (52) s ((ln —|—51€)
=al + (6 4+ +0)d T+ 6

From this, we deduce that ¢; is equal to the ith elementary symmetric polynomial in d1,...,d;. (A
easy way to see this is to view both sides of the above equality as N-based numbers.)
It follows that
P(z)=(z+ ) - (z+ )

(In particular, these ;s are independent of n.) So, when a,, > Ck.2F we always have a,,1; = a4+ 0;
for each i =1, ..., k. Considering the same for a,,,1, we deduce that a,,,; = a1 + ;1 + ;. Thus
d; =01, and thus a,, a,.1,... form an arithmetic progression (when n is sufficiently large).

By an easy induction backwards, we see that the entire sequence a,, is an arithmetic progression.

Solution 1.c. Step 2. We provide yet another alternative way to finish the solution. Define
d;(n) := apy; — ay, for i = 1,... k. Because (a,) is increasing, it holds that 0 < d; < --- < dj. We
write

P(ay) = (an +di)(ay, +dg) - (an + di) > (a,)* + di(a,)" .

If dy, were greater than the coefficient ¢;_1 of xx_1 in P, we would get a contradiction for large enough
a,. Thus di(n) is bounded, and so are all other d;.
Thus, some tuple (dy(n),...,dg(n)) occurs infinitely often. Denote it by (Dy, ..., Dy) and hence

P(z)=(z+Cp) - (x+ Cy)

as polynomials. In particular, no other tuple can occur infinitely many times. Hence the difference
An+1 — Gy is eventually constant to some number D; = d, and P(z) = (x +d)--- (x + kd). We
conclude a in the other solutions.



Solution 2. We assume that (a,) is not eventually constant. In this solution, we first prove an
alternative version of Claim 1.

Claim 3. There exist infinitely many n > 1 with

ap < min{an-i-la s aan+k}-

Proof. Suppose not, then for all but finitely many n > 1, it holds that a,, > min{a,;1,...,anix}-
Hence for all large enough n, there always exist some 1 <[ < k such that a, > a,;. This induces
an infinite decreasing sequence a,, > @41, > Qpyp, > -+ - of positive integers, which is absurd. ]
We use Claim 3 to quickly settle the case P(x) = z*. In that case, for every n with a, <
Min{a, 1, .-, Anik}, SINCE Apy1 -+ Apip = ak, it implies a, = @11 = -+ = apyx. This shows that
the sequence is eventually constant, which contradicts our assumption.
From now on, assume

P(x) > 2" for all # > 0.
Claim 4. For every M > 0, there exists some N > 0 such that a,, > M for all n > N.

Proof. Suppose there exists some M > 0, such that a, < M for infinitely many n. For each ¢ with
a; < M, we consider the k-tuple (a;i1,...,a;1;). Then each of the terms in the k-tuple is bounded
from above by P(a;), and hence by P(M) too. Since the number of such k-tuples is bounded
by P(M)*, we deduce by the Pigeonhole Principle that there exist some indices i < j such that
(@it1, -y @irk) = (@41, .., aj45). Since a, is uniquely determined by the k terms before it, we
conclude that a;yr41 = aj41,+1 must hold, and similarly a;y; = a;4; for all [ > 0, so the sequence is
eventually periodic, for some period p = j — 1.
Take K such that a,, = a,, for every n > K. Then, by taking the products of the inequalities

a¥ < Pay) = Gpy1 - Qper

for K <n < K+ p—1, we obtain

K+p-—1 K+p-1

k
H Qy, < H Qp41 " Optk

K+p k

_ 2 k—1 k—1 2

= Ar4+10K 42 Qg g | | An | Qg ypi1" " O 4ptk—2@K+p+k—1
n=K+k

Kip—1 k
= < H an> (by periodicity),
n=K

which is a contradiction. O

Write P(x) = 2% + cp_12% 1 + Q(x), where Q(z) is of degree at most k — 2. Take M such that
x> M implies 271 > Q(x).
Claim 5. There exist non-negative integers by, -« , by such that P(z) = (x + by)--- (x + bg), and
such that, for infinitely many n > 1, we have a,,.; = a,, + b; for every 1 <i < k.

Proof. By Claims 3 and 4, there are infinitely many n such that
ap, > M and a, < min{a, 1, ..., Qpip}-
Call such indices n to be good. We claim that if n is a good index then

max{ a1, -, anik} < Ay + Cp1.



Indeed, if a,4; > a, + cx_1 + 1, then together with a, < min{a,;1,...,ansx} and a*=1 > Q(a,), we
have

1

a¥ + (cpo1 + 1)t > af + 10" + Q(ay) = Play) > (an + ooy + 1)ai™?,

a contradiction.

Hence for each good index n, we may write a,,; = a, + b; for all 1 < ¢ < k for some choices
of (by,...,bx) (which may depend on n) and 0 < b; < ¢x_;. Again by Pigeonhole Principle, some
k-tuple (bq,...,bx) must be chosen for infinitely such good indices n. This means that the equation
P(a,) = (an + b1) -+ (an + by) is satisfied by infinitely many good indices n. By Claim 4, a, is
unbounded among these a,,’s, hence P(z) = (z + by) - - - ( + bg) must hold identically. O

Claim 6. We have b; = ib; for all 1 <i < k.

Proof. Call an index n ezcellent if a,; = a, + b; for every 1 < i < k. From Claim 5 we know there
are infinitely many excellent n.

We first show that for any pair 1 <1 < j < k there is 1 <1 < k such that b; = b; +0;. Indeed, for
such ¢ and j and for excellent n, a,, +b; (which is equal to a,;) divides P(a,4;) = Hle(an +b;+b),
and hence divides Hle(bi + b, — b;). Since a, + b; is unbounded among excellent n, we have
Hle(bi + by — b;) = 0, hence there is [ such that b; = b; + b;.

In particular, b; = b; + b, > b;, i.e. (by, ..., b;) is non-decreasing.

Suppose b; = 0 and n is an excellent number. In particular, it holds that a, = a,1. Moreover,
since

an+k+lp(an) = 0p41 - Opk+1 = an+1P<an+1)7

we have a,, = a,4+1 = Gpyxr1, which divides P(a,1;) = Hle(an +b; + by) for each 1 <i < k. Hence
a, divides Hle(bi + b;). By the same reasoning, we have b; + b, = 0 for some [, but since b;, b, > 0
we obtain b; = 0 for each 1 <1 < k.

Now suppose by > 1. Then, for each 1 < i < j < k, we have b; — b, = by > by > 1, hence

(b, ..., bg) is strictly increasing. Therefore, the k — 1 elements by < b3 < -+ < b, are exactly equal
to by +by < --- < by +bg_1, since they cannot be equal to by + by. This gives b; = ib; forall 1 <i <k
as desired. ]

Claim 6 implies P(z) = (z +d)(x +2d) - - - (x + kd) for some d > 1, and there are infinitely many
indices n with a,; = a, +1d for 1 < i < k. By backwards induction, P(a,_1) = @, -+ - @y4x—1 implies
Gp_1 = a, — d, and so on. Thus a4, ...,a, forms an arithmetic progression with common difference
d. Since n can be arbitrarily large, the whole sequence is an arithmetic progression too, as desired.

Solution 3.

We assume that a, is not eventually constant. We start with some general observations on
sequences of integers.

Claim 7.

(1) If a sequence x1,x, 3, ... consists of integers and satisfies x,, = %(:cn,l + -+ 2, ) for all
n > k, then it is a constant sequence.

(2) If a sequence x1, z9, x3, ... consists of integers and satisfies x,, = %(mn_l + -+ ) +c for
all n > k, where c is a constant, then it is an arithmetic progression.



Proof.

(1) We define the variance of k 4+ 1 variables yy, ..., yr11 to be
V(yly"'ayk’-i-l) = Z (?Jz _yj)2
1<i<j<k+1

We claim that V(z, g_1,...,Zn-1) > V(Zp_k,...,2,) and that equality holds if and only if
Tp = Tp_g_1. Indeed, V' is symmetric and

k
V(t, Zpgey .o Tpe1) = kt? — 2 (Z xn_i> t+c,

i=1

where ¢’ is a constant independent of ¢. The right-hand side attains its minimum at t =
% Ele Tn_i = Tp. If all inequalities in the chain are actually equalities

V(.’En,k,h c ,.CCn,l) > V(l’n,k, c ,Jﬁn) > Z V(I‘n, C ,.ﬁEnJrk),

then x, 11 = Tn,Tp_p = Tpit,---,Tn_1 = Tyyr and all the terms are actually equal. So, if
Tn—k—1,Tn_k,---,Tnir are not all equal, then at least one inequality is strict.
Since the variance of integers is a positive integer, the sequence V(z,, ..., T, k) is eventually

constant, which, by above, implies that the sequence z,, itself is eventually constant. Back-
tracking shows that x,, is constant from the beginning.

(2) Apply part 1 to the sequence x,, — = 1. O

Claim 8. Either the sequence a, is eventually constant, or lim,,_,, a, = oc.

Proof. For every n, we have
maX{an+1, s 7an+k} > (an—i-l o an—i—k)l/k - P(an)l/k > Qp.

Consider the following subsequence. Let n(0) be any index. Inductively, let n(i + 1) be one of the
indices n(i)+1,...,n(i)+k for which a1y = max{ay@)41, - -, @)+ }- We obtain a non-decreasing
subsequence ay (o), an(1), an(2); - - - where all adjacent indices are at most k apart, i.e. n(i+1)—n(i) < k.
Then either a,,;) is eventually constant or lim;_,. a,;) = oo.

First suppose an;) is eventually constant. Take f and 7y such that a,; = f for every i > 4.
By the construction of n(i), we have an(i)41, - -, Gn@p)4e < Ani1y = [ for every i > 4. We have, for
every i > 1,

' = apy < Plangy) = angiye - nisk < angyn) = f5

which implies @y, ;)41 = -+ = apg)4x = f. Therefore a,, is eventually constant.
Next suppose lim;_, ap(;). Pick ¢ such that P(z) < (z + ¢)*. For every n, let i be the number
such that n(i — 1) < n < n(i); notice that n + 1 < n(i) < n+ k. Then

(an + 0)" > P(an) = ang1 - gk = 1"y = ang),

hence a,, > a:l/(f) — ¢. Since a:l/(f) — oo we also have a,, — 00. O

Since we assumed that a,, is not eventually constant, we will thereafter assume that

lim a, = co.
n—o0

Call n to be nice if a, < min{a,41,...,a,1%}. Since lim, . a, = 0o, there are infinitely many
nice integers. Indeed, for large enough M, max{n € N | a,, < M} is nice .
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Claim 9. There exists A > 0 such that a,y1,..., 0,k € (an,a, + A] for all nice n.

Proof. For the sake of contradiction, assume that for all positive integers A there exists nice n such
that max{d,41,..., a0k}t > a, + A, hence P(a,) = api1 - Auir > a* Y a, + A), which means
P(z) > 2" Y(x + A) for some x > 0. This cannot be true for all positive integers A as the coefficient
of z"1in P(x) is finite. O

Therefore for all nice n,
Upy1 — Qpy Qpgo — Ay ooy Qpag — An € [1, Al

By Pigeonhole Principle, there exists (by, ..., by) € [1, A]* such that, for infinitely many n (now called
extra nice), it holds that (api1 — Gpy ..oy Gy — an) = (by, ..., by), i.e.

P(an) = Qp+1 " Atk = (an + bl) tr (an + bk:);
but since there are infinitely many extra nice n and lim,,_,, a,, = 0o, we must have
P(x) = (x+by)- - (x+ bg).

Let ¢;_1 be the coefficient of the term zF~! in P. It holds that ¢x_; = by + - - - + bg.
Claim 10. Define by, b_1,b_5, ... by the (backward) recurrence formula

bng1 + -+ bpyr — Cr1
k Y

b, =
for n < 0. Then, for every integer N < 0, there are infinitely many n > — N satisfying

Proof. We use (descending) induction on N. For N = 0, we take extra nice indices n. Suppose the
claim is true for N + 1. Write a,,, v = a,, + 2, where z is an integer that might depend on n. Then,
comparing the “coefficient of a*~1” in the equality

(an + 2)* + cr_1(an + 2)" ' + (terms of degree < k —2) = P(a,,n)

= ApyN+1 - O Ntk = (an +Ong1) -+ (an + Onag),

we obtain kz 4+ ¢x_1 = byy1 + -+ + byyx (because a, can be large enough). By definition of the
sequence b,, we conclude that z = by. O

By Claim 10, we have by = a,+n — a, for infinitely many n, in particular by is an integer.
Applying part 2 Claim 7 to the sequence by_,, we conclude that the sequence by_, (n > 0) is an
arithmetic progression. In particular, (by = 0, b1, ..., b;) is an arithmetic progression.

Now take an extra nice m, then a,,, ..., a,.x is an arithmetic progression, which, together with
P(a,) = Gpy1 -+ - Gpyg, recursively defines all terms before and after it. Therefore a,, is an arithmetic
progression.



Problem 4 marking scheme

Problem 4.
Let x1, 29, ..., 29023 be pairwise different real positive numbers such that

1 1 1
an = [(x1 + 22+ -+ + ) x——l—x——}—"'—i-x—
1 2 n

is an integer for every n = 1,2,...,2023. Prove that asgs > 3034.

Marking scheme

The marking scheme consists of two parts: Part A, which is worth 1 point, and Part B, which is
worth 6 points. The points for the two parts are additive, hence adds up to a complete mark of 7
points. However, within each part, the items are not additive.

o Part A: if an increasing sequence of positive integers ay, as, ... has the property that (a,+1 —
Ap, Qpro — Gpe1) 7 (1, 1) for all n, then ages > 3034.

o Part B: if a1 —a, = 1 and a,42 — apy1 = 1, then z,,.9 = x,,1 (which contradicts the
assumption that the real numbers z; are pairwise different).

If a student gets 0 points for both parts, then they may obtain at most 1 point as the final score
by making certain observations. This is described in the “Zero or one regime” section.

For a minor algebraic mistake that does not impact the validity of the argument, at most 1 point
is deducted.

Part A (<1 point)

A student will obtain a maximum of 1 point according to the progress the student makes.

(A.1) Observing that if a, 4o > a, + 3 for all n, then a3 >3034 ...................... 1 point
(A.2) Observing that if a,+1 = a, + 1 implies a, 19 > apy1 + 2, then agges > 3034 ....... 1 point
(A.3) Observing that if a,+1 = a, + 1 and a,19 = a,11 + 1 together lead to a contradiction, then
9023 > 3084 1 point
(A.4) Writing down the expression Gnio > G +3 oot 0 points

Part B (< 6 points)

A student will obtain the following points for items in the following list. Partial points are not
additive. For all items, the variable n for the index can always be shifted to give an equivalent item:;
for example, item (B.9) is equivalent to giving an algebraic characterization of a, = a,_1 + 1.

B.1) Proving that a,.0 > a,+3foralln ... ... 6 points

2) Proving that a,.1 = a, + 1 and a, 12 = a,1 + 1 together lead to a contradiction . 6 points

1)
2)
.3) Proving that a,.; = a, + 1 and a,42 = a,41 + 1 together imply =, 40 = Tpy1 ... 6 points
A4)

Proving that a, o = a, + 2 implies 10 = Tpa1 oo 6 points



(B.10)
(B.11)

(B.12)

(B.13)

(B.14)

Obtaining one of the items (B.1)—(B.4) for a specific value of n >2 ...... min(n, 5) points
Obtaining one of the items (B.1)—(B.4) for a specific value of n and a specific value of a,, (e.g.,
proving that (ag,as,as) = (3,4,5) leads to a contradiction) ...................... 0 points
Obtaining both (B.9) and (B.13) ... .. 3 points
Obtaining both (B.10) and (B.13) ... ... 2 points
Giving an algebraic characterization of a,, .1 = a, + 1, such as

1 1
(xl—i-"'—i-xn):J,‘n+1<—+"-+—>,

Tn+1 T In
or
T
ntl = 4T 1
+ i R %’
or an equivalent expression obtained by moving terms around .................... 2 points

e The characterizations

1 1 1 1
($1+"'+«'En)+$n+1(;+"'+_>:2 ($1+"'+$n)(—+"'+—>

Tn+1 1 Tp 1 Tp
or
9 9 1 1
(a, +1)* =a; +1+ (xl+---+xn)+xn+1<—+---+—>
Tn+1 1 Ln
do not count.
Obtaining item (B.9) for a specific value of n. >2 ... .. .. ... ... 1 point
Obtaining item (B.9) for a specific value of n and a specific value of a,, ........... 0 points
Attempting to algebraically analyze the difference a, 1 —a, oo 0 points

o An example of an attempt at an algebraic analysis is showing that

1 1
(xl—f—---—i-xn)+xn+1(x—+---+—)

2 2
an+1—an+1+
1 Tp

Tnt1

Considering the two conditions a,40 — a,+1 = 1 and a,.1 — a, = 1 at the same time, or
combining the two conditions .......... . . .. 1 point

« Obtaining either (A.2) or (A.3) automatically results in obtaining this item.

Attempting to algebraically analyze the two differences a,,.1 — a,, and a, 12 — a,.1 at the same
177000 T 0 points

o An example at such an attempt is proving both

Uy =y + 1+

1 1
(:c1+-~+xn)+:cn+1(—+--~+—>
T e

'rn—l—l
and

2 _ 2
an+2 - an—l—l + 1 +

1 1
($1+"'+$n+1)+$n+2<x—+"'+ )

Tn+1 1 Tnt1



(B.15) Obtaining both items (B.16) and (B.17) ... ... .. i i 2 points
(B.16) Attempting to algebraically analyze the difference a,12 — a, in a meaningful way . 1 point

o An example of an attempt at an algebraic analysis is showing that

! 1
2 — 2 — “ o e —
02y = a2+ (Toir + Tnsa) <:c1 T xn)

) + @+ nsa)(—— + ).

Tn+1 Tn42

+
Tn+41 Tn42

(@)

o Obtaining (A.1) does not automatically result in obtaining this item.

(B.17) Observing that

1 1
(xn+xn+1)<—+ ) >4
Tn Tn+1

(or observing (z, + xml)(% + ﬁ) > 4 with the equality condition x,, = x,1) for a general

index n, or observing an equivalent statement ......... ... ... .. L 1 point
(B.18) Writing down the expression @10 — @n =2 .o 0 points
(B.19) Other random algebraic manipulations ........... ... ... . i, 0 points

Zero or one regime

If a student gets 0 points so far, they may receive a final score of at most 1 point by making certain
observations. Examples and non-examples are listed below.

(0.1) Proving that a; = 1 ... 0 points
(0.2) Proving that a,, >nforallm ... . . 0 points
(0.3) Proving that a,.1 >a,+1forallm ... 0 points
(0.4) Proving that a, >n forsome n >2 ... ... . 1 point
(0.5) Proving that a, >n+1forsomen >2 ... ... .. 1 point



Solutions

Solution 1. We start with some basic observations. First note that the sequence ay, as, ..., asgs is
increasing and thus, since all elements are integers, a,+1 — a, > 1.

Claim 1. 1f apy1 —a, =1 and a,40 — ape1 = 1, then x, 10 = x,41.

Proof 1.1. We start by observing that

) 1 1
an+1:($1+---+xn+1) x—1—|—"‘+x+1

1 1
=(x1 4+ +x,) (_+...+_)+1
T Tn

1 1
+ (w14 F ) F T (| — A+ —
Tn41 Ty L,
) 1 1 1
> a’+1+2 (@14 Tp)  Tpgr [ — - —
Tn+1 1 Ln
=a®+1+2a,
= (an + 1)27
where we used AM-GM to obtain the inequality. In particular, if a,,1 = a, + 1, then
1 1 1
($1+"'+xn):$n+1(—+"'+—)- (1)
Tn+1 x1 Tn

Similarly, from a,, 19 = a,,1 + 1 we obtain

1 1
(m1+"-+xn+1)—xn+2(x——i-"'-i- )

Tn42 1 Ln41

We can rewrite this relation as

+1< ($1++$n)+1): +2($n+1(_++—)—|—1>
Tnt2 \Tn+1 Trt1 1 Ty

From (1), we conclude that z,, 11 = x,2. O

Proof 1.2. Write b; =21+ 20+ -+ 2, ¢; = % + % 4+t xii, and d; = a;+1 — a;. By definition,

V bncn + dn = \/(bn + $n+1)(cn + 1/xn+1)

Squaring both sides,
bpCn + 2dr/bpcy + d = (by + Tpy1)(Cn + 1/2p41),
and then by completing squares, we obtain

(VenTni1 — \V/bn/Tns1)? = (dn — 1)(2V/bpcy +dy, + 1).

If a,,0 =an,y1+1and a1 = a, + 1, then

Tpy1 = -
and

bn+1
xn+2 prn g
cn+1

n
— = Tp+1- O




It follows immediately that a, s > a, + 3. Since a; = 1, we get

023 = (@2023 — a021) + (@2021 — G2019) + -+ + (a3 — a1) + a1 >3- 1011 + 1 = 3034.

Solution 2. The trick is to compare a,.2 and a,, directly.
Claim 2. We have a2 > a, + 2 for all n.

Proof. Observe that

ar,= (v 4+ )(1+ + 1)
n+2 1 n+2 ) Tio

:(x1+--~+a:n)(i+---+i>+(:cn+1+xn+2)( SR >

£y L, Tn41 Tn42

1 1 1 1
+ + (Tng1 + Tps2) | —+- -+ —
Tpt1 Tpt2 1 Tn

> a’ + (x ! !
= Wy n+1 + In+2) +
Tny1 Tpi2

1 1 1 1
+ 2 (l’n+1+$n+2) =+ (1;1—|-_|_In) _ e+ —
Ln41 Tni2 I T
1 1 1 1
= a2 4 (Tnp1 + Tnt2) ( + > + 2an\/(xn+1 + Tpyo) (

)
Tn+1 Tpiy2 Ln41 $n+2>

+(x1+-~~+xn)<

where we used AM-GM to obtain the inequality. Furthermore, we have

1 1
($n+1 + ITH_Q) ( + ) >4
Tn+41 Tn42

because x,.11 # Tni2 by assumption. Therefore, it follows that
az o, > ai +4+4a, = (a, + 2)°.
Because a,, 2 and a,, are both positive integers, we conclude that

Qp42 2 an + 3.

Then we finish as in Solution 1.




Marking scheme for Problem 5

Problem 5.
Let n be a positive integer. A Japanese triangle consists of 1 + 2 + --- + n circles arranged in an
equilateral triangular shape such that for each i = 1,2,...,n, the i*" row contains exactly 4 circles,

exactly one of which is coloured red. A ninja path in a Japanese triangle is a sequence of n circles
obtained by starting in the top row, then repeatedly going from a circle to one of the two circles
immediately below it and finishing in the bottom row. Here is an example of a Japanese triangle
with n = 6, along with a ninja path in that triangle containing two red circles.

In terms of n, find the greatest k such that in each Japanese triangle there is a ninja path containing
at least k red circles.

Marking scheme

Solution is divided into building blocks the marks, and the points in each block is given by the
maximum of the marks they get. The total score is defined by

max(U + max(C + max(A, B), D, E, P),S).

Upper Bound (2 Points)

(Ul) Complete construction and the proof of the upper bound [log, n|+1 (= [log,(n+1)]) 2 points
(U2) Guessing the upper bound |log,n] + 1 without a construction .................... 0 points

(U3) Construction (with some ezplanation of the structure, see Comments) that gives the correct
bound for all n without proof ...... ... . . . . 1 point

(U4) Proof of a weaker upper bound up to additive constant (logon +¢) ............... 1 point

Lower Bound
Common part for solutions 1, 2, 3 (1 Point)

(C1) Explicitly define labels: the maximum number of red circles on ninja-paths starting (or ending)
at that circle ... 1 point

(C2) Other attempts with random labels ......... ... .. . . i 0 points



Solution 1 (4 Points)

(A1) Observing the local relation that the label is determined by the labels of the circles directly
above (or below) and whether the circle isred. .......... .. ... .. ... 0 points

(A2-1) Observing that if the labels of i-th row circles are vy, vy, -+ ,v; and v, is the maximum, then

the labels of (i + 1)-th row are at least v1, Vo, Upy Upy U1y ** 5 Vi vvevenennns 1 point

(A2-2) PTOVE 0i11 = 0 4 U oot e e et e 1 point
(A3) Prove 011 = 0; U 4 1 oo 2 points
(A4) Prove 09 > 727 4 1 oo 3 points
(AD) Complete Proof ... .. 4 points

Solution 2, 3 (4 Points)

(B1) Observation : no ninja-path between two red circles with same label .............. 0 points

(B2) Claim 2 (for Sol 2): e; <[, where [ is top row of i label

Claim 4 (for Sol 3): f; <1, where [ is top row of 1,2,--- ;i label .................. 2 points
(B3) Claim 3 (for Sol 2): ¢; < 2

Claim 5 (for Sol 3): fi+---+ f;<n— ] ... 3 points
(B4) Complete proof ... ... 4 points

Solution 4 (5 Points)

(D1) Defining partial order between red circles ........... .. ... . i, 0 points
(D2) Relating Mirsky’s theorem to the problem ........... ... ... ... ... ... ... .. .... 1 point

(D3) Proving Clailm 6 ... ...ttt e et 2 points
(D4) Relating Mirsky’s theorem to the problem and proving Claim 6 ................... 3 points
(D5) Complete Proof ... ... 5 points

Solution 5 (5 Points)

(E1) Claim that the lower bound can be proved probabilistic method (without any detail). 0 points
(E2) Reduce the problem to the lemma 1. ....... . ... . i i 2 points

(E3) Complete proof . ... i 5 points

Partial Credits for Lower Bound

Not additive to A, B, C, D schemes.

(P1) Prove weaker lower bound clogyn ... ..o 1 point



Minor flaws

(M1) Extending the definition of ninja path without mentioning (so that ninja path can start and
end in the middle TOW) ... . —0 points

(M2) Off-by-one error or minor computational mistakes .............................. —0 points

Small Cases

(S1) Fully solving (proving both upper and lower bound) the problem for the cases n < 6. 0 points

(S2) Fully solving the cases n =7 (orany n=2F —1>3) .......................o.... 1 point

Comments

(U3) There could be several constructions, for example, top-down or bottom-up (Figure 1). Top-
down construction consists of blocks of 2 rows with a possible part of final block. Bottom-
up construction’s bottom block consists of [5] rows, and other blocks will be inductively
constructed. To get point with (U3), there should be an evidence of considering what would
like to be for general n by writing down or drawing the blocks with indicating heights.

Figure 1: Examples of "explanation”. Left: "top-down” construction, right: ”bottom-up”.

(U4) Example of a construction that gives weaker upper bound up to additive constant (log, n + c¢)
is shown in Figure 2.

Figure 2: "wrong” zigzag (a weaker bound). Figure 3: "correct” zigzag.



(U4)

(A)

(A3)

(D2)

Example of a construction that gives weaker upper bound up to additive constant (log, n + c¢)
is shown in Figure 2.

Same as solution 3, We can label each circle with the maximum number of red circles on a
ninja-path starting at that circle. Similar argument to solution 1 holds true for this labelling,
and corresponding marks in section (A) will be awarded to the (partial) solution.

To get credits in A3, students must evaluate the sum of each row. In other words, if they give
observation in (A2-1) and they claim that the label increases by 1 when coloured red, but they
do not give any evaluation on the total sum of each row, they will not be awarded.

Relating Mirsky’s theorem to the problem is equivalent to claim that, to show k > 1+ |log,(n)],
it is sufficient to show that the red circles cannot be partitioned into < log,(n) antichains. In
particular, it’s not the name of Mirsky’s theorem that counts.

The student can get points from (D3) by proving equivalent statement without defining partial
order between red circles.

The student gets the credit if they show the upper bound for n = 7 and the lower bound for
n = 4. Here are some tricky examples of the construction for n = 7 (Fig 4).

Figure 4: n =1T7.



Solutions

Answer: The maximum value is k = 1 + |log, n].

Solution 1. Write N = |log, 1| so that we have 2V <n < 2N+1 — 1.
We first provide a construction where every ninja-path passes through at most N + 1 red circles.
For the row i = 2%+ b for 0 < a < N and 0 < b < 2% we colour the (2b+ 1)-th circle.

Then every ninja-path passes through at most one red circle in each of the rows 2¢,2¢+1, ..., 20+ —
1 for each 0 < a < N. It follows that every ninja-path passes through at most N + 1 red circles.

We now prove that for every Japanese triangle, there exists a ninja-path going through at least
N +1 red circles. In the following section, we extend the definition of ninja-path so that a consecutive
subsequence of ninja-path (which may start and end in the middle rows) is also called ninja-path.
Note that a subsequence of ninja-path contains less or equal red circles than the original, hence it
suffices to prove in this extended setting.

For each circle C', we assign the maximum number of red circles in a ninja-path that starts at
the top of the triangle and ends at C.

Note that

e if C is not red, then the number assigned to C' is the maximum of the number assigned to the
one or two circles above C', and

e if (' is red, then the number assigned to C' is one plus the above maximum.

Write vy, ...,v; for the numbers in row 4, and let v,, be the maximum among these numbers.
Then the numbers in row ¢z + 1 will be at least

Viy- -5 Um—15Um, Ums Um+1y - -+, Ujy

not taking into account the fact that one of the circles in row ¢ + 1 is red. On the other hand, for
the red circle in row i + 1, the lower bound on the assigned number can be increased by 1. Therefore
the sum of the numbers in row ¢ 4+ 1 is at least

(V1 + -+ v) + vy + 1

Using this observation, we prove the following claim.



Claim 1. Let o} be the sum of the numbers assigned to circles in row k. Then for 0 < j < N, we
have 95 > j - 27 + 1.

Proof. We use induction on j. This is clear for j = 0, since the number in the first row is always 1.
For the induction step, suppose that oy > j -2/ + 1. Then the maximum value assigned to a circle

in row 27 is at least j + 1. As a consequence, for every k > 27, there is a circle on row k with number
at least j + 1. Then by our observation above, we have

Okt1 20k +(+ 1) +1=0k+(+2)
Then we get
Ogit1 > 09 +2(j+2) > 2 +1+2(+2)=(G+j+2)27 +1=(+1)2T 4+ 1.

This completes the inductive step. [l

For j = N, this immediately implies that some circle in row 2V has number at least N + 1. This
shows that there is a ninja-path passing through at least N 4 1 red circles.

Solution 2. As in solution 1, a consecutive subsequence of ninja-path is also called ninja-path.

We give an alternative proof that there exists a ninja-path passing through at least N + 1 red
circles. Assign numbers to circles as in the previous solution, but we only focus on the numbers
assigned to red circles. For each positive integer ¢, denote by e; the number of red circles with
number 1.

Claim 2. If the red circle on row [ has number ¢, then e; <.
Proof. Note that if two circles C' and C" are both assigned the same number 7, then there cannot be

a ninja-path joining the two circles. We partition the triangle into a smaller triangle with the red
circle in row [ at its top along with [ — 1 lines that together cover all other circles.

Y
N\ /\ /\ /\ /\ /\
Y Y \V4 \V4 \V4 \V4 Y
/\ /\ /\ /\ /\ /\ /\
(XXX

In each set, there can be at most one red circle with number i, and therefore e; < [. O]

We observe that if there exists a red circle C' with number ¢ > 2, then there also exists a red
circle with number ¢ — 1 in some row that is above the row containing C'. This is because the second
last red circle in the ninja-path ending at C' has number i — 1.

Claim 3. We have e; < 2i=! for every positive integer i.

Proof. We prove by induction on i. The base case 7 = 1 is clear, since the only red circle with number
1 is the one at the top of the triangle . We now assume that the statement is true for 1 <i<j—1
and prove the statement for ¢« = j. If e; = 0, there is nothing to prove. Otherwise, let [ be minimal

such that the red circle on row [ has number j. Then all the red circles on row 1,...,/ — 1 must have
number less than j. This shows that

l_1§61+€2—|—---—|—ej_1§1+2+...+2j—2:2j—1_1'

This proves that [ < 277! and by Claim 2, we also have e; < [. Therefore e¢; < 2771, O



We now see that
e1dtegt o tey <1428V =2V 1<,

Therefore there exists a red circle with number at least N 4+ 1, which means that there exists a
ninja-path passing through at least N 4 1 red circles.

Solution 3. We provide yet another proof that there exists a ninja-path passing through at least
N + 1 red circles. As in solution 1 and 2, a consecutive subsequence of ninja-path is also called

ninja-path. We assign to a circle C' the maximum number of red circles on a ninja-path starting at
C (including C itself).

Denote by f; the number of red circles with number ¢. Note that if a red circle C' has number 7,
and there is a ninja-path from C' to another red circle C’, then the number assigned to C’ must be
less than 7.

Claim 4. 1If the red circle on row [ has number less than or equal to 4, then f; <.

Proof. This proof is same as the proof of Claim 2. The additional input is that if the red circle on
row [ has number strictly less than ¢, then the smaller triangle cannot have a red circle with number
i. O
Claim 5. We have
n
fit ottt fi<n— {iJ

forall 0 <¢ < N.

Proof. We use induction on ¢. The base case ¢ = 0 is clear as the left hand side is the empty sum and
the right hand side is zero. For the induction step, we assume that ¢ > 1 and that the statement is
true for ¢ — 1. Let [ be minimal such that the red circle on row [ has number less than or equal to 7.
Then all the red circles with number less than or equal to ¢ lie on rows [,1+ 1,...,n, and therefore

fitfot+-+fi<n—-I1+1.

On the other hand, the induction hypothesis together with the fact that f; <1 shows that

i+ +fia+fi<n— \‘QZIJ—FZ‘

Averaging the two inequalities gives

1| n 1
< — = Z
fi+ +fi<n 2{21.1J +2

Since the left hand side is an integer, we conclude that

oo Pl 2]

This completes the induction step. U




Taking + = N, we obtain

f1+f2+-~-+fN§n—{2%J <n.

This implies that there exists a ninja-path passing through at least N + 1 red circles.

Comment. Using essentially the same argument, one may inductively prove

n
g+ €ay1 + -+ eari1 SN — \‘TJ

instead. Taking a =1 and ¢ = N gives the desired statement.

Solution 4 (Mirsky’s theorem.). Given a Japanese triangle, we define a relation on its red
circles: We say one precedes another if it is in a higher row and there is a ninja path passing through
both. Since ninja paths can be concatenated, this is clearly a partial order on the set of red circles,
and the question asks us to find a lower bound on the length of the longest chain in this poset.
Mirsky’s theorem states that this length is equal to the smallest number of antichains the poset can
be partitioned into. Thus, to show k& > 14 |log,(n)], it is enough to show that the red circles cannot
be partitioned into < log,(n) antichains. This will follow from the following claim:

Claim 6. 1If the topmost circle of an antichain of red circles is on row [, then the length of the
antichain is at most [.

Proof. 1f the red circle on row [ is the i-th from the left, then the i — 1 down-left diagonals to its
left and the [ — ¢ down-right diagonals to its right cover all red circles in lower rows which are not
preceded by our top circle. Since such diagonals form chains, our antichain can contain at most 1
red circle from each of these [ — 1 diagonals, which gives at most [ red circles together with the top
circle, as claimed. [l

We now prove that any partition into any k antichains must have k > log,(n): Suppose Ay, ..., Ay
is such a partition, where the top circle in part A; is in row /;, and they are sorted so that the [; are in
increasing order. Then by the claim, for each i, |A;| < ;. It follows that [A;U---UA;| <l +---+1;.
Thus, the first {; +---41; + 1 rows are not fully covered by A ... A;, and since the A; contain all red
circles, the first row not covered by them must be [;,q, i.e. [;11 <Ili+---4+1;+ 1. Clearly [y = 1 and
an immediate induction now shows [; < 2¢=%. It follows that n = [A; U--- U AL <1y + -+ + 1 < 2F,
i.e. k > logy(n), as claimed.

Remark. This solution is very similar to solution 2; in fact claims 2 and 3 from solution 2 are just special
cases of the claims in this proof: the sets of red circles assigned i are level sets of the poset, which are special
antichains that form an optimal partitioning. In other words, solution 2 can be viewed as packaging this
solution together with an explicit proof of Mirsky’s theorem for this poset instead of using it as a black
box. Which solution would be more accessible and natural for a student depends on their familiarity with
Mirsky’s theorem; the main advantage of considering the theorem is that it immediately sets you on the
path of investigating properties of antichains, which are also important for the construction of the example
(or vice versa, realizing the construction uses very long antichains could point to using Mirsky’s theorem
for the bound).

Comment (weaker lower bound). We give a proof for weaker lower bound based on probabilistic
method. Select a real number = € (0,1). Consider the path P, in which the [iz]-th circle in the i-th row is
selected. This is a ninja path, since [iz| < [(i + 1)z] < [iz] 4+ 1. Observing this, on the i -th row, the red
circle is selected if z lies on a certain interval of length 1/i. Therefore, The average number of red circles
on a ninja path of this kind is 1 + % + % 4+ 4 % > Inn. Thus there exists a ninja path P, containing at
least Inn red circles.



Solution 5 (a probabilistic proof of the lower bound). This solution was found by by Jeck
Lim, inspired by the above probabilistic proof for weaker lower bound (the script was written by
Yuya Matsumoto).

The idea was to choose a ninja path randomly from a certain distribution, which consists of
well-chosen 2V ninja paths with equal probability. (The choice of paths depends on the configuration
of red circles, unlike in “Comment (weaker lower bound)” of the present marking scheme.) However,
for the purpose of decreasing the use of fractions, we avoid the use of the notion of randomness and
just consider collections of 2V ninja paths.

To show the lower bound, it suffices to show that if n = 2 then there exists a ninja path
containing N + 1 red circles. The case N = 0 is obvious. Hereafter we let n = 2V with N > 1.

It suffices to give a collection of 2V ninja paths such that the average number of red circles
contained in the paths is > N, since then at least one path contains more than N red circles. (Here,
a collection may contain the same path more than once. Mathematically, it is a multiset.)

To obtain such a collection, it suffices to prove the following lemma.

Lemma 1. There exists a collection of 2 ninja paths, from row 2¥ to row 2V, satisfying the
following properties.

e Bach circle in row 2V is contained in exactly 1 path.

2N71

e Each circle in row is contained in exactly 2 paths.

e Each red circle in row j, where 2V~ < j < 2V is contained in exactly 2 paths.

(The meaning of such (backward, and stopping at the middle) ninja paths would be clear.)

We first show that this lemma indeed implies the lower bound. Combining the collection from
row 2V to row 2! and the collection from row 2V~! to 2V=2, with each path in the latter collection
counted twice, gives a collection of 2V ninja paths from row 2V to row 2¥~2. Continuing this, we
obtain a collection of 2V ninja paths from row 2V to row 1 with the property that the red circle in
row j, with 2V="71 < j < 2¥=™ is contained in exactly 2™*! paths. Then the average number of
red circles contained in the paths is

-1 2N-m_ N-1
o <1+Z > 2m+1) = %<1+22N‘m—1-2mﬂ)
m=0 j=2N-m-1 m=0
1 N-1
:_N+ 1=—+N>N

m=0

as desired, where “1+” comes from the red circle in row 2V.

It remains to prove Lemma 1. (The proof can be visualized by writing the numbers n;, in the
circle C}, in the pyramid; from the circle in the lower row with number 1 or 2 we draw 1 or 2 arrows
to circle(s) in the upper row.)

We give an inductive construction. We consider, for each 0 < i < 2¥71  a collection of 2%V ninja
paths from row 2V to row 2V — i satisfying the following properties.

e Fach circle in row j, where 2V — 7 < j < 2V is contained in exactly 1 or 2 paths.

e BEach red circle in row j, where 2V — i < j < 2V is contained in exactly 2 paths.
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For i = 0, the collection of all 2% circles, considered as “trivial” ninja paths, satisfies the properties.
Suppose we have a collection for ¢ with 0 <7 < 2¥~! and we will construct a collection for i + 1.

Let Cy,...,Cyov_; be the circles in row 2¥ — i (numbered from left to right), and let C,, C,y 1 be
the two circles immediately below the red circle in row 2V — i — 1. Let n;, (1<h< N i) be the
number of ninja paths in the collection (for i) containing Cj. The first condition is equivalent to
every ny being equal to 1 or 2.

Case 1. There exist by < a and by > a+ 1 with ny, =1 and np, = 1.

Take by to be the largest among such indices and take by to be the smallest among such indices.
We extend each path in the collection (for i) according to the following rule.

e We extend the paths containing C}, with A < by to the circle on the upper right.
e We extend the paths containing C with A > by to the circle on the upper left.

e For each fixed h with b; < h < by, there are exactly two paths containing C}, (because of the
definitions of b; and by), and we extend one of them to the circle on the upper right and one
to the upper left.

This construction preserves the first condition. Indeed, the numbers

N1y eeoyMpy—15,1,2, 00,2, 1, Npyg1y vy NN
——
bo—b1—1
become
N1y ooy My =152y ey 2, Myt 1y - - -, NN 4.
——
ba—b1
Moreover, the red circle belongs to the 2, ..., 2 zone at the middle, hence the second condition is also
satisfied.

Case 2. n, = 2 for every h < a, and there exists h > a + 1 with nj, = 1.

Since the sum of ny, is even (because the sum is 2%V), there exist at least two h for which nj, = 1.
Let by < by < ... be the indices with n, = 1. Using these b; and by, apply the same construction
as in Case 1. Then, again the first condition is preserved, and since the red circle belongs to the
ni,...,Np, 1 zone at the left (which are all equal to 2), the second condition is also satisfied.

Case 3. np, = 2 for every h > a+ 1, and there exists h < a with ny = 1.

Parallel to Case 2.

Case 4. n, = 2 for every 1 < h < 2N —j.

Since the sum of ny is equal to 2V, this implies that 2V — i = 2V~ which contradicts our
assumption that 7 < 2V-1,

By the inductive construction, we obtain a collection of 2%V ninja paths from row 2V to row
Comparing the number of paths and the number of circles in row 2¥~1, we conclude that each circle
in row 27! is contained in exactly 2 paths, and hence this collection satisfies the properties stated
in Lemma 1.

N1,



Marking scheme for Problem 6

Problem 6.
Let ABC' be an equilateral triangle. Let Ay, By, C be interior points of ABC such that BA; = A,C,
CBl = BlA, ACl = 0137 and

£LBAC+ LOB1A+ LAC, B = 480°.

Let BC: and C'B; meet at As, let CA; and ACT meet at By, and let AB; and BA; meet at Cs.
Prove that if triangle A;B;C] is scalene, then the three circumcircles of triangles AA;As, BBy B>
and C'C1C5 all pass through two common points.

(Note: a scalene triangle is one where no two sides have equal length.)

Marking scheme — general comments

e Partial points from Solution 1 are not additive with partial points from Solution 2.
e Partial points from the same solution are additive within that solution.

e The student’s final score will be the sum of all partial points rounded to the nearest
integer. For example:

2-04=2, 4-08=3, 5-12=4, 7-16=5 andsoon.

e In general, computational approaches, unless substantially complete, will not be awarded
more than a few points. A mere translation of geometry into trigonometry, complex numbers,
Cartesian or barycentric coordinates etc. will be awarded 0 points. Any essentially incomplete
computational attempt will get 0 points unless the results are interpreted in geometrical terms,
in which case this constitutes a valid proof of those results, giving points according to the
marking schemes below.

Zero points

The following items will give no partial points.

(Z1) Characterising the 480° condition in terms of A, etc., being a circumcentre ...... 0 points
(Z2) Proving that A; lies inside AOBC where O is the centre of AABC .............. 0 points
(Z3) Proving that A1 BoC1AsB1C2 1S CONVEX ittt 0 points
(Z4) Proving concurrencies amongst lines defined by points from the following list: A, B, C, Ay, By, CY,
Ag, By, Cs, As, B3, C3, XY, O o 0 points
(Z5) Constructing point X or Y (e.g., as an isogonal conjugate) ....................... 0 points
(Z6) Constructing points As, B3, C3 .ottt 0 points
(Z7) Claiming that a quadrilateral is cyclic without proof ............................. 0 points

(Z8) General characterisation of coaxial systems (e.g., via the coaxial lemma, orthogonal circles,
G 0 points

For brevity, we use S(ABCD) to denote the statement “ABCD is cyclic”.



Marking scheme — Solution 1

Solution 1 is divided into three parts.

P) Proving that point X has equal powers ........... o 2 points
(P) g p qual p p

(Q) Proving that point Y has equal powers ............. .o 4 points
R) Completing the problem . ... 1 point
(R) p g p 9]

We detail the partial points and their dependencies (if any) below.

Part (P)
(P1) Proving S(A1B1A3B,y) or S(B1C1B2Cy) or S(C1A1CAs) oo 1 point
(P2) Proving that (S(A;B1A3Bs) and S(B1C1ByCs) and S(C1A1C5A,)) implies that X has equal
POWELS 111 04, 0B, 00 v e e ettt e e e e e e e e e e e 1 point
(P2x) [Requires (P2)] Not proving that Ay ByC1A3B1Cy is not cyclic .............. —0.4 points
Part (Q)
(Q1) Proving S(ABA3Bs) or S(BCB3C3) or S(CAC5A3) . oooiiii i 2 points
(Q2) Proving that (S(ABAsB3) and S(BCB;C3) and S(C AC5A3)) implies that Y has equal powers
I 0 A, OB, 00 oot 1 point
(Q2x) [Requires (Q2)] Not proving that AC3BA3C B3 is not cyclic ................. —0.4 points
(Q3) Completing both (Q1) and (Q2) .. .oviiriiii 1 point
Part (R)
(R1) [Requires (P2) and (Q2)] Prove that ((P2) and (Q2)) implies that the three circles have
tWO COMIMON POINES ...t e e e e e 1 point
(R1x) [Requires (R1)] Not proving that the circles intersect at least twice ......... —0.4 points
(R1ly) [Requires (R1)] Not proving X # Y ... —0.4 points
Marking scheme — Solution 2

Partial points

(K1) Proving S(A1B1A3Bs) or S(B1C1ByCy) or S(C1A1CAy) oo 1 point
(K2) Proving that d,4 is the locus of Pow,,(Z) =4 Pow, (Z) ..., 1 point
(K3) Proving the claim I'4l'gl'c =1 oo 3 points
(K3x) [Requires (K2) and (K3)| Not proving that ws,wp,we are distinet  .......... —1 points
(K4) Proving the claim implies (if Y lies on two circles, then it lies on all three) ....... 1 point
(K5) [Requires (K1), (K2), (K3) and (K4)] Completing the solution .............. 1 point

(K5x) [Requires (K5)| Not proving that the circles intersect at least twice ........... —1 points



Solutions

Solution 1. Let d4,0p5,dc be the circumcircles of AAA; Ay, ABB1By, ACC;Cy. The general
strategy of the solution is to find two different points having equal power with respect to d4,dp, dc.

Claim. Ay is the circumcentre of A3 BC' and cyclic variations.

Proof. Since A; lies on the perpendicular bisector of BC' and inside ABA,C, it suffices to prove
/BA,C =2/BA5C. This follows from

LBAC = ZAyBA+ Z/BAC + LZAC A,
1

= 5 (180° = ZAC\B) + (180° — ZOB1 A)) + 60°
1
= 240° — 5 (480° — ZBA,C)

1

The circumcentres above give
ZBlBgcl = ZBlBQA = ZBQABl - ZClACQ == ZACQCl - 4310201

and so B1C1By(Cy is cyclic. Likewise C71A1C5A; and A1 By1A;By are cyclic. Note that hexagon
A1 ByC1 A3 B Cy is not cyclic since

ZCQAlBQ —I— éBQClAQ + ZAQBlcQ - 4800 7é 3600.

Thus we can apply radical axis theorem to the three circles to show that A; A, BBy, Cy, Cy concur
at a point X and this point has equal power with respect to d4,dp, dc.

Let the circumcircle of AA; BC meet 64 at A3 # As. Define Bs and Cj5 similarly.
Claim. BC B3(C}3 cyclic.



Proof. Using directed angles

LBC3C = LBC3Cy + £CyCsC
— ABAC, + £C5C,C
= 90° + £(C1C, ACy) + £LCHC1C (CC,LAB)
= 90° + LC1CL By

Similarly £CBsB = 90° 4+ £ B ByC';. Hence, using B;CByC5 cyclic
KBBgC == 900 + KclBgBl == 900 + 4010231 - KBC:;C

as required. O]

Similarly CAC3A3 and ABA3Bs are cyclic. AC3BAsC Bs is not cyclic because then AB>C Bs
cyclic would mean Bj lies on ® ABC' which is impossible since By lies inside AABC. Thus we can
apply radical axis theorem to the three circles to get AAs, BB3, CC5 concur at a point Y which has
equal power with respect to d4,dg, dc.

We now make some technical observations before finishing.

e Let O be the centre of AABC. We have that
/BA,C =480° — ZOCB;A — ZAC|B > 480° — 180° — 180° = 120°.

so A;p lies inside ABOC. We have similar results for B;,C; and thus ABA;C, ACB;A,
A AC] B have disjoint interiors. It follows that A; BoC1AsB1C5 is a convex hexagon thus X lies
on segment A; As and therefore is inside 0 4.

e Since A; is the centre of AyBC' we have that A;A; = A;As so, from cyclic quadrilateral
AAyA1 Az we get that lines AA; and AA3 = AY are reflections in line AA;. As X lies on
segment A;A,, the only way X = Y is if A; and As both lie on the perpendicular bisector
of BC. But this forces B; and C to also be reflections in this line meaning A;B; = A;C4
contradicting the scalene condition.



Summarising, we have distinct points X, Y with equal power with respect to d4,dp, dc thus these
circles have a common radical axis. As X lies inside d4 (and similarly 0p,d¢), this radical axis
intersects the circles at two points and so d4, 05, d¢ have two points in common.

Comment. An alternative construction for Y comes by observing that

sin /BAA; G sinZA3BA AyB sin/CiBA  sin/B,CB sin /CyBA

sinZAAC ACsin /ACA;,  AsC sinZACB, sinZCBC; sinZACB;

and hence
sin ZBAAQ sin ZCBBQ sin ZACCQ —1

sin /Ay AC  sin /ByBA sin ZC,CB
so by Ceva’s theorem, AAs, BBo, CCs concur and thus we can construct the isogonal conjugate of this point
of concurrency which turns out to be Y.

Solution 2. As in Solution 1, we establish the three distinct circles wy = ©B1B2C1Cs, wp =
@C’ngAlAQ and wWe = @AlAQBlBQ. Define

Pow,, , (C)

_ Pow,,(A) _ Pow,.(B) _
Pow,,(C)

N'fj=—>==~"72 —_— wohv~/
47 Pow,.(A) " Pow,,(B)’

I'c

By the coaxial lemma, j4 = ©®AA; A, is the locus of all points Z such that Pow,,,(Z) = I'4 Pow,,.(Z).
Clazm FAFBFC =1.

Proof. Denote o« = ZABC, g = ZBCA, v = ZC1AB. The condition of the problem implies
a+ f+~v =30 Let Ag = AA; Nwe and A¢c = AA; Nwg. Then LA;AB; = 30° — 8 and
ZAlABBl = éAlAgBl = ZBchl = 30° + . Then AAB:[AB =7 + ﬁ = 30° — a.

Applying the sine rule, ig’f = :Eggoljg An analogous expression can be obtained for f‘éi. Thus

AA.-AA,  ACysin(30° + )

FA B AAB . AAl N AB1 sin(30° + ﬁ) ’

Writing similar expressions for I'g, I'c and using BA; = C' Ay, etc., the claim follows.

Now, for any point Y that lies on both d4 and i3,

POWwB (Y) yE:(SA ['4 POWwC (Y) y6:53 I'al'g POWWA (Y)
—  Pow,,(Y)=T¢Pow,,(Y) = Y €ic.

Therefore Y also lies on d¢. Finally, the solution can be completed by arguing that the circles 64 and
0p must intersect at two distinct points. This follows from the fact that A; BiCyA; BoC is convex.



Problem Selection Committee of IMO2023

Tetsuya Ando (ZZf% #hk) Chair

Algebra Team Geometry Team

Arnaud Maret (SUI) Captain g:éaliﬁi;g%% plain
Hiroki Kodama (2% K#8f) (JPN) Ivan Guo (AUS)
Yuya Matsumoto (fAA /) (JPN) Takuma Kitamura (At #E) (JPN)

o o
Combinatorics Team Ryu Minegishi (& f#HE) (JPN)

Paul Vaderlind (SWE) Captain
Dong Ryul Kim (KOR)

Genki Shimizu (J§/K JCE) (JPN)
Yuya Takaya (=17 %K) (JPN)

Number Theory Team
Elisa Lorenzo Garcia (SPE) Captain

Tetsushi Ito (FF i #75) (JPN)
Atsuo Yamauchi (IUN 7E4) (JPN)

Back:Yuya Matsumoto, Atsuo Yamauchi, Tetsushi Ito, Hiroki Kodama,
Ryu Minegishi, Genki Shimizu, Takuma Kitamura, Yuta Takaya, Dongryul Kim
Front: Elisa Lorenzo Garcia, Arnaud Maret, Paul Vaderlind, Tetsuya Ando, Ivan Guo, Géza Kdss, Sam Bealing



Coordinators of IM0O2023

Tetsuya Ando (& ##k)  Chair

Problem 1

Tetsushi Ito (7 #752)JPN)  Captain
Elisa Lorenzo Garcia (SPE) Advisor
Nouzha El Yacoubi (MAR) Advisor
Taisuke Hoshino (287 Z&{f5) (JPN)
Donghyun Kim (715 &) (KOR)

Ryotaro Kosuge VNE 5 KHH) (JPN)
Yuliya Kryvitskaya (BLR)

Dae Jun Lee (°] <) (KOR)

Shanta Laishram (IND)

Zhao Yu Ma (SIN)

Masaki Nishimoto (P4 Ffé)) (JPN)
Ryosuke Odoi (K1L-F 5E#f) (JPN)
Heizo Sakamoto (JRA “-JeK)

Takashi Seki (B H#L58) (JPN)

Jaka Vrhovnik (SLO)

Problem 2

Atsuo Yamauchi ([N {£42)(JPN)  Captain
Géza Kos (HUN, IMOB) Advisor
Sam Bealing (UNK) Advisor
Timea Csahdk (HUN)

Horace Chaix (SUI)

Lovro Drofenik (SLO)

Shuho Kanda (ffH F514) (JPN)

Koichiro Kobayashi (/’#k %&— E.) (JPN)
Taiyo Kodama (52 £ K) (JPN)

Anna Luchnikov (FRA)

Ryu Minegishi (I& /+=#E) (JPN)

Minkyu Choi (3 ¥171) (KOR)

Kensuke Yoshida (5 H fd¢fi) (JPN)

Yuka Watanabe (JE5 Hi{3) (JPN)

Akos Zahorsky (SVK)



Problem 3
Yuya Matsumoto (124X HEHL)(JPN)  Captain

Dong Ryul Kim (KOR) Advisor
Advisor: Geoff Smith (UNK, IMOB) Advisor
Stijn Cambie (BEL)

Ildar Maratovich Gaisin (AUS)
Ahmed Ittihad Hasib (BGD)
Seongbin Jeon (A2 (KOR)
Satoshi Hayakawa (F-)1] F175)
Dylan Toh Shan Hong (SIN)

Yui Hosaka (PR i) (JPN)
Naoki Kimura (AFf [EEC) (JPN)
Soh Kumabe (PR H:)(JPN)
James Lin (USA)

Yoshiki Oshima (K& 754 (JPN)
Michael Ren (USA)

Problem 4

Hiroki Kodama (& % K#f) (JPN) Captain
Arnaud Maret (SUI) Advisor
Advisor: Shingo Saito (77 #71&)(JPN)  Advisor
Youngjun Cho (% ) (KOR)

Fuma Hirayama (*F-1L Hif5)(JPN)

Omar El Housni (MAR)

Yuhi Kamio (2 {&5)(JPN)

Soji Kubota (Z£H H1:J)(JPN)

Larry Lau (HKG)

Yuji Odaka (B 1&&)(JPN)

Elena Madalina Persu (ROM)

Yuya Nakamura (41 Bi%)(JPN)

Alec Sun (USA)

Stephan Wagner (SWE)

Tomoki Yoshida (7 H £)(JPN)



Problem 5

Genki Shimizu (7K Jt&E) (JPN) Captain
Paul Vaderlind (SWE) Advisor
Sung Jin Park (KOR) Advisor
Anubhab Ghosal (IND)

Zack Chroman (USA)

Takuya Inoue (3£ & E#k)(JPN)
Jimin Kim (A1 +-¢F) (KOR)
Ander Lemaison (ESP)

Jeck Lim (SIN)

Shogo Murai (Ff 3 FE)(JPN)
Joseph Myers (UNK)

Yuwan Seo (A4 (KOR)
Mihir Singhal (USA)

Kota Tokoro (JR = Jt:K)(JPN)
Yuan Yao (USA)

Problem 6

Yuta Takaya (im14y & K)(JPN)  Captain
Ivan Guo (AUS) Advisor
Charles Leytem (LUX) Advisor
Jeonghyun Ahn (¢+7d &) (KOR)

Joseph Daniel Altamirano Pacheco (UNK)
Kei Irie (AL BEF)(JPN)

Milan Haiman (USA & HUN)

Junghun Ju (74 ¥) (KOR)

Vesna Kadelburg (SRB)

Dain Kim (KOR)

Takuma Kitamura (LA #HE)(JPN)
Hiromasa Kondo GIT/E #:45F)(JPN)
Rikimaru Kurata (ji& 77 3L)(JPN)
Naoki Kuroda (5 [ELf)(JPN)

Ayato Shukuta (6 H #-=F)(JPN)

Yuki Yoshida (75 H #E#)(JPN)



64" International Mathematical Olympiad 2023

Country Code

Question

Contestant Mark
1
2
3
IMO2023| .
6
Signature(Country)

Signature(Coordinator)




Coordination Schedule Day 1 10 July
01 02 03 04 05 06

Table A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F

9:00|AUS |swE |RUS [NIC |LIE (KGZ |THA |FRA |[TKM |BGD [MAR |LTU |GER [NLD | CHN |KEN [MRT | TJK

9:30|JPN |[KOR |IRN |PER [ITA |MKD [USA |ALG |SVN [ESP | IRL | SUI [CUB |ALB |MNG [NZR | BRA | UKR
10:15|SRB |LUX |SVK |RWA [KSV |MNE [BGR |CAN |VEN [MAS |MDA | ISL [TWN | POL |CRI |LKA |OMN |[HND
10:45|UzB |sGp |CHN |ARM |PHI [EST |VNM | SAF | POR |KAZ [BOL |COL |[USA |TUR |MMR [GEO |ARG [HRV [AUS | SWE [RUS |NIC |LIE |[KGZ |AUT [ROU |GHA | SYR | PRI |CYP [UNK | ISR |MAC |[SLV |TUN |URY
11:30 [GER |NLD |PAN |KEN |[MRT |TJK |[CHI |HUN |ECU |PAK |FIN |PAR |[UAE |FRA |[TKM [BGD |MAR [LTU | JPN |KOR [IRN |RWA |KSV [MNE |BEL |SAU |[HKG |CZE [NOR |BWA |UGA [BLR |AZE |DEN [BIH |LVA
14:00 (CUB |ALB |MNG |NZL |BRA [UKR | IDN |NPL | IND |HEL |[TUN |MEX |THA |ALG |SVN [ESP |IRL |SUI [SRB |LUX [ SVK |PER |ITA [MKD |BFA |TZA |DOM |GTIM [IRQ |CMR |[AUT |[ROU |GHA [SYR |PRI |CYP
14:30 | TWN |POL |CRI |LKA |[OMN |HND [UNK |ISR |MAC [SLV |BIH |URY [BGR |CAN [VEN [MAS |MDA [ISL |UZB |SGP [PAN |ARM | PHI [EST |AUS | SWE |[RUS |NIC [LIE |KGZ |BEL [SAU |HKG |CZE |[NOR |BWA
15:00 [USA |TUR |MMR |GEO ARG |HRV |[UGA |BLR |AZE |[DEN |PRI |LVA [VNM |SAF |[POR |[KAZ |BOL [COL |GER |NLD [CHN |KEN |MRT | TJK | JPN |KOR | IRN |RWA [KSV |MNE |BFA [TzA |DOM |GTM |[IRQ |CMR
15:45 |UAE |FRA |TKM |BGD |MAR [LTU |AUT |ROU |GHA |SYR [NOR |CYP |[CHI |HUN |ECU [PAK |FIN |PAR |CUB |ALB [MNG |NZL |BRA |UKR | SRB [LUX | SVK | PER | ITA |MKD [AUS | SWE |[RUS |[NIC |LIE [KGZ
16:15|THA |ALG |SVN |ESP |IRL |SUI |[BEL |SAU |HKG |[CZE |LIE |BWA |[IDN |NPL |IND |[HEL |TUN |[MEX |TWN |POL [CRI |LKA |OMN |[HND |UZB |SGP |PAN |ARM |PHI |[EST |JPN [KOR | IRN |RWA [KSV | MNE
17:00 |BGR |[CAN |VEN |MAS |MDA |ISL [AUS |SWE |RUS |NIC |IRQ [KGz |UNK |ISR |MAC |SLV [BIH |[URY |USA |FRA |TKM |BGD [ARG |[LTU |GER |NLD |[CHN [KEN [MRT | TJK | SRB |LUX |SVK |[PER |ITA |MKD
17:30 |CHI |SAF |POR |KAZ |BOL [COL |BFA |TZA |DOM |GTM |[ITA |CMR |UGA |BLR |AZE [DEN |PRI |LVA |UAE |TUR [MMR |GEO |MAR |[HRV |CUB [ALB |MNG |NzZL [BRA |UKR [UZB |SGP |PAN |[ARM |PHI |[EST

Day 2 11 July
01 02 03 04 05 06

Table A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F

9:00|VNM |HUN [ECU |PAK |FIN |PAR |SRB |[LUX |SVK |PER |KSV |MKD [AUT |[ROU |GHA |SYR |LIE |CYP |THA |ALG |SVN |ESP |IRL [(SUI |[TWN |POL |CRI |LKA |(OMN |[HND |GER |NLD |CHN |KEN [MRT |[TJK

9:30| IDN |NPL |IND |HEL |TUN |MEX |JPN |KOR |IRN |RWA |PHI |MNE |BEL |SAU |HKG |CZE |IRQ |BWA |BGR |CAN |VEN |MAS |MDA |ISL |USA |FRA |TKM |BGD |ARG |LTU [CUB |ALB |MNG [NZL [BRA | UKR
10:15|UNK [ISR |MAC |SLV |BIH |URY |(UZB |SGP |PAN |ARM |MRT [(EST |BFA |TZA |DOM |GTM [NOR |CMR |CHI |SAF |POR |KAZ |[BOL |COL |UAE |TUR [MMR |[GEO [MAR |HRV |TWN |POL |[CRI |[LKA |OMN |HND
10:45|UGA |BLR |AZE |[DEN |[PRI |LVA |(GER [NLD [CHN |KEN [BRA |[TJK |[JPN |[SWE [RUS [NIC |[ITA |KGZ |[VHM |[HUN |ECU |PAK |[FIN |PAR |THA |ALG |SVN |ESP |IRL |SUI |USA |FRA |TKM |BGD |ARG |LTU
11:30 [AUT |ROU |GHA |SYR |NOR [CYP |CUB [ALB |MNG |NZL [OMN |UKR [SRB |LUX |SVK [PER |KSV |MKD |IDN |NPL [IND |HEL |TUN |MEX |BGR [CAN |VEN |MAS |MDA |ISL |[UAE |TUR |MMR |GEO |MAR [HRV
12:00 |BEL |[SAU |HKG |CZE |IRQ |BWA |[TWN |POL |CRI |LKA |ARG [HND |UZB |SGP |PAN |RWA [PHI |MNE |UNK |ISR |MAC |[SLV |[BIH |URY |CHI |SAF |POR [KAZ |BOL |COL |THA |ALG [SVN |ESP |IRL |SUI
14:00 [BFA |TZA |DOM |[GTM CMR |UAE |TUR [MMR |GEO HRV |AUS |KOR |[IRN [ARM EST [UGA |[BLR |[AZE |[DEN |[PRI |[LVA |VNM |HUN |ECU |PAK |FIN |PAR |BGR |CAN |VEN |MAS |MDA |ISL
14:30 AUT |ROU |GHA |SYR |[NOR |CYP |[IDN |NPL |IND |[HEL |TUN [MEX |CHI |SAF |[POR |KAZ |BOL |COL
15:15 BEL |SAU |HKG |CZE |IRQ |BWA |UNK |ISR |MAC |SLV |BIH |URY |VNM |HUN |ECU |PAK |FIN |PAR
15:45 BFA |TZA |DOM |GTM CMR |UGA |BLR |AZE |DEN LVA | IDN |NPL |IND |HEL MEX
17:00
17:30
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