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Abstract. Let H C H, 4 = Rlz1,..., x,]qa be a vector space, and A be a compact
semialgebraic subset of Pﬁ_l. We shall study some PSD cones P = P(A, H) := { feH ‘
f(a) >0 (Va € A)}. Our interests are (1) to determine the extremal elements of P, (2) to
determine discriminants of P, (3) to describe P as a union of basic semialgebraic subsets,
and (4) to find a nice test set when dim 3 is low. In this article, we present (1), (2), (3)
and (4) for P(R*, H5Y) and P(RY, H35)), where f}Cde ={f €Hpna ‘ f is symmetric and
f(1,...,1) = 0}. We also provide (1)—(4) for P(R}, H5%), where H, = {feHnal f
is cyclic and f(1,...,1) = 0}.

§1. Introduction.

Let H,, q := Rlzq,. .., z,]q (the part of degree d), and H C H,, 4 be a vector subspace.
For a semialgebraic subset A of R™,
PAH) :={feH| fla)>0forallac A}

is called the PSD cone on A in H. Our interests are:

(I1) To determine all the extremal elements of P := P(A, H).

(I2) To determine all the discriminants of P (see Definition 2.6).

(I3) To describe P as a union of basic semialgebraic subsets using some inequalities.

(I4) Find a nice test set for (A, ) when dim H is low (see Definition 2.9).

In this article, we present (I1), (12), (I3) and (I4) for PSD cones P3’,, TPZ?I and SPZ?;.

We also treat some SOS problems relating these PSD cones. We shall explain these symbols.
Let

nd = {f ceH,a ‘ flxa, ... xn,x1) = f(z1,.. .,xn)},
nd = {f €eH,q ‘ f(@oys o Tomy) = f(x1,...,2,) forall o € Gn},
}C%’d = {f €eH,q ‘ f(a,a,...;a)=0for all a € R},
E(P):={f €P| [ is a extremal element of P},
R+::{x€R‘x20},
and f]'Cffd =3 4N 9{27(1, f]'Cffd =3, 4N U'Cg,d. We denote P, 4 := P(R", H,, q), fP;d =
PRY, Hua), P g = PR, I, ), Pty o= PRY, I, ), Pidy o= PR, ICY), Py =
PRY, }sz?d)v Pra = PR", g-cqcm,d)v :Pfjd = P(RY, j—(%’d)’ quczo,d = P(R", g{fz?d)v and
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fPfBji' = P(RY, f}Cde). The rule of indexing will be clear. “c” means cyclic, “s” means
symmetric, “0” means an equality condition f(a,..., a) =0, and “4+” means A = R}.

We have already completed (I1), (I2) and (I3) for the PSD cones Tgfg, f]’g?g’ , Py, f]’g?j ,
P34 and Tg?gr . See [3], [2Jand [1]. For P§°, see also [13]and [19]. (I4) for P55 is provided
in Example 2.11. (I1) for f]’?t3 is given in [4].

In §3, we study P35’ and ?Z?j. (I1)—(14) for P5% are given in Theorem 3.4, and these
for f]’i?j are given in Theorem 3.8. Here, we present (I3) for P5% and P35 slightly different
style from Theorem 3.4 and 3.8.

Theorem 1.1. Let 01 := ag+aj +as+as, o9 := E a;a;, o3 = E a;ajay,
0<i<j<3 0<i<j<k<3
and o4 := agayasas. Consider a family of quartic symmetric polynomials

flag, a1, az,a3) = 0} + p1o2og + paos + p3oio3 — (256 + 96p1 + 36p2 + 16ps3)oy € 3{2?4

(p1, p2, p3 € R). Then
(1) f(ao,a1,a2,a3) > 0 for all ag,..., az € R if and only if 16 + 6p; + 2py + p3 > 0 and
9p? < 128 + 24p; + 36p2 + 12ps.
(2) f(ag,a1,az,a3) > 0 for all ag > 0,..., a3 > 0 if and only if “(i) or (ii)” and “(iii) or
(iv)” hold:
(i
(ii
(i
(iv

—8 and p? < 4ps.

—8 and 4p; + p2 + 16 > 0.

—14/3 and 9p? < 128 + 24p; + 36p2 + 12ps.
—14/3 and 27 4+ 9p; + 3p2 + p3 > 0.

VAN IV IA

) p1
) P1
) p1
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Next, we present (I1).

Theorem 1.2. All the extremal elements of fPf& are positive multiples of the following
polynomials:

1
3 (301 —2(t + T)otos + (t + 3)°05 — 2(t* — 9)o103 — 4(t + 3)%04),
9oo(a0, a1, a2, a3) 1= 03 — 20103 — 4oy,

gt(ao,al,azaas) =

p(ao, a1, az,a3) := 0’% — 30103 + 120y4.

Here, t € R. Conversely, these are extremal elements of fPf&.

g: (t # 1, —3) is characterized by the equality conditions g.(t, 1, 1, 1) = g;(—1, —1, 1,
1) = 0. g is characterized by the equality conditions g1(x, z, 1, 1) = 0 for all x € P}. g_3
is characterized by the equality conditions g_s(a, b, ¢, —a —b —c¢) =0 for all a, b, ¢ € R.
000 Is characterized by the equality conditions go(0, 0, 0, 1) = goo(—1, —1, 1, 1) = 0.

p is characterized by the equality conditions p(0, 0, 0, 1) = 1 and p(s, 1, 1, 1) = 0 for
all s € R.

We say f is characterized by the equality conditions f(xx) =0 (A € A) if

R+-f::{gef]"g(x,\):Oforall)\EA}.

Note that if f € P is characterized by certain equality conditions, then f is extremal. About
the converse, please read [4].



An elements f € P,, o4 is called SOS, if there exists » € N and g1,..., g € Py, q such
that f = g7 + -+ + g2. The set of all the SOS elements in P,, o4 are written by the symbol
Y24, and is called a SOS cone. In this case, g¢, goo, P € X4 4, since

3gi(a,b,c,d) = (a® +0* — & — &>+ (t+1)(cd — ab))2
+ (a2 =0+ —d® + (t+1)(bd — ac))?
+ (a2 =0 — @ +d® + (t+1)(be — ad))

1
~ 16 > (ar) - ar) " (2ar(o) + ary) = (¢ + D(arz) + ar))’
TES,

goo(a, b, c,d) = (ab — cd)? + (ac — bd)? + (ad — be)?,
p(a,b,c,d) = (1/2)((a — b)*(c — d)* + (a — ¢)*(b— d)* + (a — d)*(b — ¢)?).
Here (ag, a1, az, ag) = (a, b, ¢, d). Moreover, g;, p ¢ S(Ti?j). Thus we obtain:
Corollary 1.3. P50 C Xy 4, and E(P5%) NE(Pyy) = 0.

Remember that E(P5%) NE(P34) = 0, for f € E(PS) is not a square of a quadric
polynomial (see [13]). The following theorem provides extremal elements which do not
appear in [25].

Theorem 1.4. All the extremal elements of Tj?j are positive multiples of the following
polynomials:

f2(ag, a1, as,as) := (1/3) (3011 —2(t+ 7)oy + 8(t + 1)02
F (12 = 6t + 21)or0 — 16(1% + 3)04) (0<t<5),
f(ap, a1, az,asz) := (1/9) (9011 —6(t+ 7)oy + (t +7)%03
F12(t — oros — 12(t — 1)(3t + 13)04) (t>5),

2
p(a07alya27a3) (o _30'10'3+120'4,

2

01

o9 — 402 + 30103 = g a;a;(a; — a] ,
1<J

q1 (a0>a17a27a3)

1 2
q2(ao, a1, az,a3) := 0103 — 1604 = 1 Z ar(0)ar(1)(ar2) — ar3)) "
TEG,

Conversely, these are extremal elements of ?Z?j .
b (0<t<1orl<t<5)is characterized by the equality conditions

bt 1,1,1) = £2°(0,0,1,1) = 0.
f¢ (t > 5) is characterized by the equality conditions

fg(tv L1, 1) = ﬁ(O? 0, u, 1) =0,
where u € R is any root of 3u? — (t + )u + 3 = 0. f¢° is characterized by the equality
conditions f¢*(t,t,1,1) = 0 for all t > 0 and —f ®(1,1,1,1) = 0. q; is characterized by the
equality conditions

q1(1,1,1,0) = q1(1,1,0,0) = q1(1,0,0,0) = 0.
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qo Is characterized by the equality conditions qz(s,1,0,0) = 0 for all s > 0.

By the above representation, we have p(a?, b?, ¢?, d?), g,(a?, b2, ¢, d*) € Xy (i =1,
2). But for f = 2 and f¢, we obtain:

Proposition 1.5. If0 <t <5 and t # 1, then (a2, V2, c2, d?) ¢ Y45. Ift > 5, then
fe(a®, b, 2, d°) ¢ Yy

It is clear that p, g1, g2 ¢ E(P},). But we have:
Proposition 1.6. Ift > 5, then {§ € S(fpj?j) N 8(?14).

Remember that if f € 8(?3?4), f can be written as f = ¢gg, where g is an imaginal
quadric polynomial.

Proposition 1.7. (1) Ift # —3, then g is irreducible in C[a, b, ¢, d].
(2) If0 < t < 5, then §¢° is irreducible in Cla, b, ¢, d].
(3) Ift > 5, then f§ is irreducible in Cla, b, ¢, d).

An irreducible quartic surface in P2 has at most 16 isolated singularities. This fact is
well known in theory of K3 surfaces. The zero locus Vi (ge) C P2 (¢ # —3) is an irreducible
quartic surface which has 8 real isolated singularities which appear as the real zero points
Vik(g:) C P3. Remember that a real Kummer surface has 4 or 12 real isolated singularities.
Number of isolated singularities of irreducible elements of P, 4 is discusses in Proposition 7
and Lemma 10 of [5]. If f € E(P44) is exposed and Vi (f) is irreducible, then Vi (f) contain
just 10 points.

A quartic surface Ve (h®) C P2 and Ve(h¢) are irreducible surface which has 5 real
isolated singularities, for ¢ as in the above proposition. All singularities are A; type rational
ordinary double points.

We should explain about the discriminants of P = P(A, H). Let sg, s1,..., sy be a
basis of the vector space 3, and let ®g¢: A — - - - PY be the rational map defined by ®g¢(a) =
(so(@):---:sn(a)). X := Pgc(A) is called the characteristic variety. Let A(X) = {Dy,...,
D, } be the critical decomposition of X (see Definition 2.3). Each D € A(X) is a smooth
semialgebraic variety, and D has its dual variety DV. Let disc(D) be the defining equation
of the Zariski closure of DY in H, and let V¢ (disc(D)) be the zero locus of disc(D) in 3. If
dim (Va¢(disc(D)) N 0P) = dimP — 1, we say disc(D) is a discriminant of P. Assume that
a subset B C A satisfies ®9¢(B) = D. Then, for each f € Vyc(disc(D)) N 0P, there exists
a point a € B such that f(a) = 0. In this case, we shall say that disc(D) is a discriminant
corresponding to B.

Theorem 1.8. Let’s denote the elements of H5% as

flao, a1, a2, a3) = pooy + p1070a + p20s + p3oro3 — (256pg + 96p1 + 36p2 + 16p3)oa,

and use (po,. .., p3) as a coordinate system of H5',.
(1) P5° has the following two discriminants:

dy = 128p2 + 24pop1 + 36popa + 12pops — 9p?,  dy := 16pg + 6p1 + 2pa + p3.
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dy corresponds to {(t, 1,1,1) € R* ‘ teR, t# -3, 1}, and dy corresponds to a point
(1,1, =1, —1).
(2) ?Z?j has the following five discriminants:

dy := 128p3 + 24pop1 + 36popa + 12pops — 9p?,  ds := dpops — p?,
dy = 2Tpo + 9p1 + 3p2 + p3, ds:=16pg +4p1 + p2, dg := po.
dsz corresponds to {(0,0,t, 1) e R? ‘ 0<t< 1}. dy, ds, dg corresponds to points (1, 1,
1,0), (1, 1, 0, 0), (1, 0, 0, 0) respectively.
We explain about (I4). For general f € 3, 4> Riener, Timofte and Harris proved that
f e, if f(x) >0 for all x € {(z1,...,2,) € R" ‘ #{x1,..., zn} < ro}. Moreover,
fe fPZJ’“d if f(z) >0 forall z € {(z1,...,2,) € R" | #({z1,..., 2} — {0}) < 7ro}. (See
Corollary 1.3 of [22], Corollary 2.1 of [23]. See also [24], [25].)
In the case Pj 4, the above test conditions are f(¢, ¢, 1, 1) > 0 and f(t, 1,1, 1) >0
(Vt € R). In the case ?Zz, the above test conditions are f(¢, ¢, 1, 1) >0, f(¢, 1, 1, 1) > 0,
f(0,¢,1,1) > 0and f(0,0,t,1) >0 (Vt € Ry). We prove that the number of test conditions
can be decreased as the following theorem in the cases of P3% and fPZ?;F .
Theorem 1.9. (1) If f € S, satisfies f(—1, —1,1,1) > 0 and f(t, 1,1, 1) > 0 for
allt € R, then f(a, b, ¢, d) >0 for all a, b, ¢, d € R.
(2) If f € MY satisfies f(t, 1,1, 1) >0 and f(0, 0, ¢, 1) > 0 for all t > 0, then f(a, b,
¢,d) >0 foralla,b,c,deR,.

In §4, we study the PSD cone of cyclic cubic polynomials ?i?; . (I2) and (I3) for IPZ?Q'
are given in Theorem 4.1. (I1) is presented in Theorem 4.15. TZ?;F has 4 discriminants.
Since one of them is very complicated polynomial, the structure of f}’fl?; is not simple. We
also need somewhat strange algebraic numbers to state (I3). Extremal elements of fPZ?;
are not also simple. This is completely different from cases of f]’g?; and Tg‘; Please read

Theorem 4.1 and Theorem 4.15.
We provided (14) for TZE in §4.2. It is simple theorem as the following:

Theorem 1.10. If f € Hg 5 satisfies f(1, 1, 1, 1) > 0 and f(0, s, t, 1) > 0 for all s,
t € Ry, then f(a, b, ¢, d) >0 for alla, b, ¢, d € R,..

In [4], we have proved that &(P557) C E(P55) C E(PT3). But E(PLY) ¢ E(PL3). An
extremal element el € S(fl’g?gr ) is somewhat complicated to present here. The definition
of el is given at Proposition 4.2, and D is described in Theorem 4.13. Relating SOS
problem, eZ,U,w satisfies:

Proposition 1.11. Assume that (u:v:w) € D", u >0, v >0, w > 0 and v # u + w.
Then, eﬁ,v7w(a2, b2, %, d?) & Yae.

In §5, we will give an exact definition of semialgebraic varieties, and prove some basic
general theorems. In this article, we use P3/G4 and P, /G4. These are not real algebraic
variety. P3/&, does not agree with a real weighted projective space. But we need to

treat these with certain variety structure, i.e. semialgebraic varieties. So, the author think
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it will be better to give an exact definition of semialgebraic variety. For example, there
exists continuous rational map which is not holomorphic (regular). Such maps do not exist
in complex algebraic geometry. Some results will be useful for studies of real algebraic
varieties. Especially, Theorem 5.11 and Theorem 5.15 show that semialgebraic geometry is
very different from complex algebraic geometry. In our theory of algebraic inequalities in
this article, a phenomenon of Theorem 5.15 occurs. For example, ®9¢: A--- — X include
some exceptional set even if A =P3.

We shall explain a short history of study of PSD cones. Originally, P,, o4 is called a
PSD cone. Hilbert proved, P, o4 = ¥, 24 if and only if n < 2 or 2d = 2 or (n, 2d) = (3, 4)
([17]). History of studies till 1991 are written in §6.6 of [8]. So we don’t explain them again.
Choi and Lam found some extremal forms of P, o4 which don’t belong to ¥, 24 in [9]. In
[21], Reznick studied the condition that f € P,, 54 is included in ¥, 24. He also studied the
condition that f € P, o4 is extremal. See also [10]. They implies that if f € E(Py, 24), then
Vr(f) is larger set. This fact is formalized in Theorem 2.7 and Proposition 2.9 of [4].

An element [ € H, 04 is called even, if f € Rlz%,..., 2]. Choi, Lam and Reznick

n

studied P;%,; : an 2a NR[z7,..., z7] in [11]. They studied the condition for P55, C Xy 24

n
Note that P75, = ner, as is stated in [12]. About a relation of &(P3 ) and (P37 ,), please
see [4]. Harris proved P§ §% C Y3g in [15]. The relations P; ,, and X3 ,; are studied by
Goel, Kuhlmann and Reznick in [14]. A related study can be found in [7]. Our study of
8(?90+) and S(TC(H) will give a small contribution for it.

About discriminants of P(A, H), Nie shown some interesting results in [20]. He treated
the case that A is an affine real algebraic variety. In this article, we only treat the cases that
A is a compact semialgebraic variety. But they have very close relation. [6] provides many
nice ideas to treat algebraic inequalities using complex algebraic geometry.

About P3¢, X34, Py and X4 4, very important results are obtained in [5]. It provides
relation with theory of K3 surfaces.

dimHs 3 = 20 and dimH, 4 = 35 are somewhat large to proceed precise numerical
analysis. It will not be insignificant to study some lower dimensional subspaces H C H,, 4.

To check many calculations in this article, we will need Mathematica or a similar tool.
The author provides a file for Mathematica in the authors WEB and in arXiv’s anc folder.
It will be useful for experimentation of inequalities.

§2. General theories
2.1. Known results.

By studies in [3], we have better to use Pﬁ_l and IP”}:1 instead of R™ and R’} where
P .= {(xo:---:wn) e Pg ‘ 29 >0,..., T, > O}.

The merits are that Pﬁfl is compact and dimP{(l < dimR". But f € H, 4 is not a
function on Pﬁ_l. So, we must treat J(,, 4 as a signed linear system on ]P’H%_l. We need
some more generalizations. About the exact definition of a semialgebraic variety, please see
§5. We may understand here that a semialgebraic variety (A, R4) is a locally ringed space
with semialgebraic set A and a sheaf of rings R4 which represent real holomorphic functions
on open subsets of A. We only use R4 to define singularities of A, regular maps between
semialgebraic varieties, and signed linear systems. The author apologizes that Definition 1.7
of [3] must be corrected as the following:



Definition 2.1. Let (A, R4) be a semialgebraic variety, and €Y be the sheaf of germs
of real continuous functions on A.
(1) Let I be an invertible R 4-sheaf. J is called a signed invertible sheaf on A if
(i) there exists €%-invertible sheaf J such that I @x, €% =7 ®ey J, and
(ii) there exists e € J(A) such that e? € J(A) and J(A) = Ra(A) - €2
Then, for f € HY(A, J), there exists g € H°(A, R4) such that f = ge?. We define
sign(f(P)) € {0, £1} by sign(f(P)) = sign(g(P)) for P € A.
(2) Let J be a signed invertible R 4-sheaf. A finite dimensional vector subspace H C HY(A,
J) is called a signed linear system on A. For f € H, we say f is PSDon A if f(P) >0
for all P € A.
(3) P=P(A, H):={f €H| f(P) >0 for all P€ X} is called the PSD cone on A in H.
Note that P, 4 = T(Pﬁfl, 3, q) and T;d = T(]P’iﬁl, 3, 4) and so on.
(4) BsH :={P € A| f(P)=0for all f €3} is called the base locus of H. When P is
non-degenerate in H, we define Bs P := Bs H.
If dimBsP < dim A, we can define a rational map ®g¢: A--- — Pr(HY), using a base
of H. X = X(A, H) := Cls(Pgc(A4)) (Euclidian closure) is called the characteristic variety
of A.

For example,
Hov1,4:= {f(xg, ce sy Ty) ‘ f is a homogeneous polynomial of degree d} u {0}

is a signed linear system on P”. For f € 3,114 and P € P"/, we cannot define the value
f(P) but can define sign(f(P)). If d is even, H,4+1 4 is also a signed linear system on Pg.

Proposition 2.2. Let X := X (A, H), and let Y be the convex closure of X in P(HV).
Then
P(A, H) = P(X, Hnt11) = P(Y, K1),
where H 411 is the set of linear polynomials on P(HY).

Proof. P(A, H) = P(X, Hn1,1) is proved at Proposition 1.13 in [3]. P(X, Hyy1,1) =
P(Y, Hny1,1) is clear since every element of H 41,1 is linear. O

Assume that a semialgebraic set B is a subset of a complete real algebraic variety V.
The minimal closed algebraic subset which contains B is called the Zariski closure of B and is
denoted by Zary (B). We denote the Euclidian closure of B in V' by Clsy (B) or B. Assume
that Zary (B) = V. The interior of B is defined by Int(B) := V—Clsy (V —B). The boundary
of B is defined by 0B := B — Int(B). Do not confuse with dy B := Clsy (B) — Int(B). Note
that Int(B) and 0B do not depend on the choice of V. But Clsy (B) and dy B depend on
V.

Definition 2.3.(Critical decomposition. See Definition 1.5 of [3]) Let A be a reduced
semialgebraic variety with dim A = n. We shall define A’(A) (i = 0,..., n) by induction
onn. If dmA = 0, then A = {Py,..., P,,} where P; are points. In this case we put
A%(A) ={P,..., Py}, and put A‘(A) = () for i # 0.

Assume that n = dim A > 1. Let Zy,..., Z, be all the irreducible components of A
with dim Z; = n. Put 4; := Int(Z; — Sing(A)), and A"(A4) := {A;,..., A, }. Note that
ZiNZ;jN Int(A) C Sing(A) for i # j.



Let Yi,..., Y} be all the irreducible components of A with dimY; < n — 1, and let
Bj :YYJ —(A1UUAT) Put

B :=Sing(A) UOAU B U---U By.

Then, we can regard B to be a semialgebraic subvariety of A with the reduced structure.
Note that dim B < dim A. Thus we put A‘(A) := AY(B) for i # n.

We denote A(A) := AY(A)UA(A)U---UA™(A), and is called a critical decomposition
of A. Each element D € A(A) is called a critical set of A. Note that D is a non-singular
semialgebraic variety with 0D = ().

Example 2.4. Consider the case A = Pi. This is homeomorphic to a triangle. Let
P, :=(1:0:0), P, := (0:1:0), and P, := (0:0:1). For two points P, Q € P%, we denote the
open line segment connecting P and @ as (PQ). Then, the critical decomposition of ]P’i is
AYB2) = {P,, P,, .}, AYB2) = {(P,P,), (P,P.), (P.P,)}, A2(F2) = { Tnt(F2)}.

On the other hand, if A =P}, then A"(Pg) = {Pg)}, and A"(Pg) = 0 for r # n.

Definition 2.5. (1) Let X be a subset of R” or PR. e € X is said to be extremal in
X,ifa>0,b>0and z, y € X satisfy e = ax + by then x = y = e. For a closed convex
cone P, 0 # f € P is called extremal in P, if g, h € X satisfy f = g+ h then g and h are
multiples of f. For both cases Y = X and Y = P, we denote that

E(Y):={yeY|yis extremal in Y}.

(2) For a semialgebraic variety A and a € A — BsH and a signed linear system 3 on
A, we put
H, = {f eH | f(a) :0}, Po:=PNH,=P(A H,).
P, is called the local cone of P at a.
Even if a € BsH, we can define P, as Definition 2.6 of [4]. But we don’t use it in this
article.

Definition 2.6. (See Definition 1.15 and 1.17 of [3]) (1) Let P = P{ and PV be the
set of all the hyperplanes in P. Assume that D C P is a non-singular semialgebraic variety
with 0D = (i.e. A(D) = {D}). For x € D, let Tp , := Tza(p),» C P be the tangent space
of Zar(D) at x. Then,

DY = {H c PV ’ H > Tp, for a certain x € D}

is called the dual variety of D. Since D is irreducible and non-singular, DV is irreducible.
Thus DV is a semialgebraic variety.

(2) Under the same notation with Definition 2.1, let 7 : (H — {0}) — P(I) be the
natural surjection. For D € A(X), we denote

F(D) := Clsge(n (DY) N OP).

If dimF(D) = dim(9P), then F(D) is called a face component of P or of 9P, and an
irreducible defining equation of the Zariski closure Zar(F(D)) is called a discriminant of P,
and denoted by discp or disc(D).

Especially, if D € AYmX(X) and F(D) is a face component, then F(D) is called a
main component of P, and disc(D) is called a main discriminant of P.

For example, if X =2 P} = A, then P has unique discriminant which is a main discrim-
inant.



In the case D € AY(X), disc(D) is linear. That is, if ®4¢ is defined by basis {so,. .., sy}
of H, and if we represent f € H as f = poso+ -+ +pnsSn, and D = (bg:---:by) € P(HY),
then disc(D) = bopo + - -+ + bnpN-

Theorem 2.7.(Theorem 1.18 of [3]) We use the same notation as Definition 2.1 and
the above.
(1) Let

D :={D € A(X) | F(D) is a face component of P}.
Then 0P = | | F(D).
DeD

(2) For D € A(X), take a subset B C A such that ®3¢(B) C D and Clsp (®5¢(B)) = D.

Put By := B — Bs®4¢. Then,

F(D) = Clsgc ( U :Pa) :
a€ By

(3) Assume that P := P(X, Hy1,1) is non-degenerate in Hyy1,1. Take x € D € AT (X).
Then dimP, < N —r.

The author should apologize for that Proposition 1.27 of [3] is not correct. It should be
corrected as (3) of the above theorem. We present a corrected proof of (3).

Proof. (3) For f € 3, let Hy be the hyperplane in P(3H") defined by f = 0. Since P
is non-degenerate, dim(U N P) = N + 1 for any Euclidean open neighborhood U of x. Let
L:={feH|Tp, C Hy}. Note that dimTp, = dimD =r < N + 1, since D is non-
singular. The condition Tp , C Hy means that f passes through independent 7 + 1 points.
Thus, dimL = dimH — (r+1) = N —r. Since P, =P N L, we have dimP, < N —r. [

Even if we determine all the discriminants of P, the signature of disc(D) may not be
constant in Int(P). To describe P as a union of basic semialgebraic sets of H using some
inequalities, we need some more inequalities to cut off extra parts or to avoid the interior zero
locus Int(P) N Vac(disc(D)). Such inequalities are called separators. Note that discriminants
are unique up to multiplication by non-zero constant, but there may be many possibilities
of the choice of separators.

About extremality of f € P, the following theorem is useful. About the definition of
infinitesimal local cone, please see Definition 2.9 and 2.12 of [4].

Theorem 2.8. Let P = P(A, H). Assume that dim P > 2.

(1) If f € E(P), then there exists local cones or infinitesimal local cones P4,..., P, C P
with respect to f which satisfy P10 ---NP,. =R, - f.

(2) Let f € P. If there exists local cones or infinitesimal local cones P1,..., P, C P such
that Py N---NP,. =Ry - f. Then, f € E(P).

In the above theorem, infinitesimal local cones appear for special f € E(P). In ordinary
case, there exists points ai,. .., a, € A such that

Ry -f={g9eP|g(a) =---=g(a) =0}
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We can choose each a; so that ®g¢(a;) € E(X). Infinitesimal local cones appears when not
less than two zero points of f become infinitely near points.

Definition 2.9. Let HH be a signed linear system on a semialgebraic variety A. A

subset Q2 C A is called a test set for (A, H), if f(a) > 0 for all a € €2, then f(a) > 0 for all
ac A

The following theorem will be trivial.

Theorem 2.10. Let H be a signed linear system on a compact semialgebraic variety
A with dimH > 3, and let X := Cls(®3¢(A)) be the characteristic variety. Take a subset
QC A IfEX) C Cls(Pgc(Q)), then Q is a test set for H.

Example 2.11. Consider the case A =P%, H = Hg 3. Then
Q:={(1::1)}u{(0:t:1) ePi |t >0}
is a test set for 3§ 3 (see Theorem 3.1 of [3]). Thus, if f € HE 3 satisfies f(1, 1, 1) > 0 and
f(0,¢,1) >0 for all t > 0, then f(a, b, ¢) >0 for all a, b, c € R;..
2.2. Some more general theorems.

Let V and W be non-singular semialgebraic varieties with dim V' = n, dim W = m, and
©: V. — W be a regular map. Take a point a € V and put b := ¢(a). We can take open
neighborhoods a € Uy C V and b € Uy C W such that p(Uy) C Uy and that Uy, Uy

have local coordinate systems (x1,..., ) and (y1,. .., ym) Whose origins are a, b. ¢ can be
s

represented by functions y; = ¢;(x1,..., z,) (j = 1,..., m). Let J, := 995
axi (Z1,.zn)=0a

be the Jacobian matrix of ¢ at a. Note that rank J, does not depend on the choice of (z1,. ..,
xy) and (y1,. .., Ym). We denote

Sing(¢) := {a € V | rank J, < dim (V) }.

Proposition 2.12. IfV is a non-singular complete real algebraic variety, then 8(@(1/))
C ¢(Sing(e)).
Proof. Put r := dim ¢(V'), and assume that rank J, = r. We may assume that

det (8‘%) £0
0 ) 1<i<y 1<5<r

at a. Let U’ = {(:Ul,..., xn) € Uy ’ Tpy1 = o+ = Ty = O}. If Uy is sufficiently small
gt U — ¢(U’) is an isomorphism. Thus b ¢ A(e(V)). O

Fuclidean open set, ¢

When V has singularities, we put Sing(y) := Sing (@‘ch(v)).

Corollary 2.13. Assume that A is a compact semialgebraic variety, then,

d(p(A)) C ¢(Sing(p) U Sing(A) UDA).

Proposition 2.14. Let X;% := X (P, 3 ;). If d > 4, then X!, ~ P} /Gs.
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Proof. We denote the coordinate system of P2 by (a:b:c), and put Sy := a + b+ c.

v
D34 1= Py, - P32 — X;fd is decomposed as @3 4: P2 -7 P? /&3 24 X;:d. By Proposition

2.13, 2.14 and §4.5 in [3], U3 4:P% /S5 — X3, is an isomorphism. Since Bs S1 NP3 = (),

the multiplication map xS1:H; ; — 3 ;. induces an isomorphism X§:;+1 — X:;fjl. O

In the cyclic case Yn'fd = X(]P’ff__l, H;, 4), we know that Ynfd = Pi_l/(’:n if d > n,
here €,, = Z/nZ (see Proposition 1.36 in [3]). When n = 3, A'(Y34) has a unique element
C:d = {@g’d(O: s:1) | s > 0}. We call disc(C:{’d) to be the edge discriminant of ngti (see
Definition 2.7 in [3]). The following Theorem is a replacement of Proposition 2.10, Theorem
5,9 and Theorem 6.8 in [3].

We denote the discriminant of c,z™ + ¢,_12" "' + - -+ + c1x + ¢ by

Discy(¢n,y cn_1,...,€1,¢0).

Theorem 2.15. Let’s denote the coordinate system ofIPf_ by (a:b:¢), and put Sy, », =
Smon(a,b,c) :=a™b" +b"c" +c™a", Sy = Sp(a,b,c) =a" + 0" + ", and U :=U(a,b,c) =

abc. Take the base ofﬂ-fgyd so that so = Sq, 51 = Sa—1,1, 52 = Sa—2,2,- -+, Sd—1 = S1,d=1,- - --
Here, if i > d, then s; is a multiple of abc. We represent f € H3 ; as f = > " pisi. Then, the
edge discriminant of ng:z agrees with Discq(po,p1, .- -, Pd—1,P0)-

Proof. Let Lgﬁ be the local cone of Tgt at (0:¢:1) € P2. Take f € Lgﬁ c FCr,)
(po > 0 and ¢t > 0). Then f(0,¢,1) = 0. Since f(0,z,1) > 0 for all # > 0, the equation
f(0,z,1) = 0 has a multiple root at x = t. Thus, the discriminant of f is equal to 0.
Since S; 4-1(0,z,1) = 2* (1 <i<d—1), S4(0,2,1) = 2% + 1 and U(0,,1) = 0, we have
f(0,2,1) = poz? 4+ p1a®™t + - + pa_12 + po.

Since Discyq and dischr are irreducible, we have the conclusion. (]

Theorem 2.16. Consider the cases A = Pﬁ_l or Pﬁ_l, and H = H; , or 9{;2%. Let
P.=PA H), X = X(A, H,4), and ® := Ogc: A--- — X. Let o:Pp ' — PR 71/6,, C
Pr(1,2,...,n) be the natural surjection, and ¥: Pﬁ_l/Gn .-+ — X be the rational map such
that ¥ om = V. Assume that ¥ is a birational map. Let D € A"(X) with r > max{2,
|d/2]}. Then F(D) is not a face component of P.

Proof. Let ro := max{2, |d/2]}, and take D € A"(X) with ro <7 <n —1. Assume
that F(D) is a face component of P. Then dimF(D) =n — 1.

(1) Consider the case A = P!

Let Q = {(x1$n) € Pﬂ’é*l ‘ #{z1,..., v} < 1"0}. Q is included in a union of
some (rg — 1)-dimensional linear subspace of Pp~'. Take general f € F(D). There exists
a semialgebraic subset £ C A such that ®(E) = D, and a € E such that f(a) = 0. Since
F(D) is a face component, we may assume that the hyperplane Hy C P(3HY) corresponding
to f, tangents to X only at the unique point ®(a). This means that if b € A —Bs I satisfies
f(b) =0, then ®(b) = ®(a). We can choose such f and a.

By Corollary 1.3 of [22] or Corollary 2.1 of [23], there exists b € 2 such that f(b) = 0.
We denote this b by b(a). a can move a certain r-dimensional subset of E. But dim{) =
ro — 1 < r. Thus, there exists a € E such that ®(b(a)) # ®(a). A contradiction. Thus
F(D) is not a face component of P.

11



(2) Consider the case A =P} 1.

Let Q' := {(z1:--:2,) € P! | #({z1,..., #2} — {0}) <ro}. @ is also included in a
union of some (rg — 1)-dimensional linear subspace of Pﬁ_l.

The left part is same as (1). 0

If F(D) is not a face component, then, for each f € F(D), there exist Dy,..., D, €
A(X) —{D} such that f € F(D1)N---NF(D,), and that all F(D;) are face components.

Section 3. Quartic Inequalities of Four Variables

In this section, we shall study ij?4 and f]’fl?j . We write the homogeneous coordinate
system of A = P2 or A = Pi by (a:b:c:d) or (ap:ai:as:az). We regard aypny; = a; for
n € Z. We denote

3 3

- d o P9 q q . PP

Sq = E ai, Tpg:= E a; (@i taio+aiis), Sppi= E : a; a,,
i=0 i=0 0<i<j<3

3
O p q q q q q q e
Tp.q,q = E :ai (ai+1a’i+2 +ta; a3+ ai+2ai+3)7 U = apaiazas.
=0

A polynomial f € 3 ; or H7 , is called monic, if the coefficient of Sq = ad+---+al_,is
equal to 1. For a subset V' C HT ,, we denote

V= {fEV‘fismonic}.

We denote as Pg : (ap:---:a,) when we treat P§ with a homogeneous coordinate system
(ag:+--:ay,). Similarly we denote as R™ : (x1,...,z,) when we study R™ with a coordinate
system (z1,..., x,).

3.1. Structure of P2 /G,

Let (ao:---:ay,) be the homogeneous coordinate system of Pg, and o, = oy (ao,. . ., a,)
be the k-th symmetric function of ag,..., a, (0 < k < n+ 1). The sequence of functions
(01, .., 0nt1) defines the regular map o:Pp — Pr(1,2,...,n+1), where Pr(1,2,...,n+1)
is the real weighted projective space which is defined as the real part of the complex weighted
projective space Pc(1,2,..., n+1). The image o(P}) is isomorphic to PE/&,,41 as semialge-
braic varieties. Note that P /&, 11 = Pc(1,2,...,n+1), but PR/S,41 2 Pr(1,2,...,n+1).
In general, for two points P, @@ € PR, (PQ) represents an open line segment, [PQ)] :=
(PQ)U{P, Q} represents a closed line segment, and P(Q represents a line.

Definition 3.1. Assume that a finite group G acts on a semialgebraic variety A. Let
0: A — A/G be the natural surjection. A closed semialgebraic subset Ay C A is called a
fundamental domain of A/G, if 0(A4y) = A/G and o : Int(Ap) — o(Int(4p)) C A/G is an

isomorphism.

Example 3.2. (1) Let A = P and G = Z/(n + 1)Z. Then (PR)¢ = {1}, and
Sing(PR/G) = o((PR)¢) = {o(1)}, here 1 = (1:1:---:1) € A. The following A, is a
fundamental domain.

n|a +a+-+a,-1+1=>0,
A, = {(ao:n-:anltl)EPR ap < 1, a1<1’”i a1 <1 }
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(2) Let A=P7 and G =Z/(n+ 1)Z. Then (P)“ = {1}, and
Al = {(aoz---:an,l:l)e]}”ﬁ|0§a0§1,...,0§an,1 §1}

is a fundamental domain.
(3) Let A=Pg and G = G,,41. Then

AS = {(agz---:an_lzl)eAc‘aggal S---San_l}

is a fundamental domain.
(4) Let A=P7 and G = &,,4;. Then

AT = {(ag:--':an,l:l)epﬁ‘OgaogalS-"gan,lgl}

is a fundamental domain.

Note that P2 2/64 = P@(l, ,3,4) has cyclic quotients singularities at Py := (0:1:0:0),
= (0:0:1:0) and B/ := (0:0:0: 1).

Proposition 3.3. About the structures of P} /&, and P3 /S, we have the following:
(1) Let o:P} — P}/6,4 <5 Pg(1,2,3,4) be the natural map. Then o= 1(P}) = 0,
o ' (Py) =0, and 0(-1,0,0,1) = PO~ ) o
(2) 42(1%??&/64) = {D:}, Al(IP’I??R/64) = {C1, Co}, and A°(P}/64) = { Py, P, P>}, where
D1, C; and P; are as follows:
Dy = {o(s:t:1:1) € Pp(1,2,3,4) | s+t +2>0, s < t},
Cy = {o(s:1:1:1) € Pg(1,2,3,4) | s # -3, 1},
Co = {o(s:s:1:1) € Pr(1,2,3,4) | -1 < s < 1},
Py i=0(1:1:1:1) = (4:6:4: 1) € Pg(1,2,3,4),
Py :=o(—1:=1:1:1) = (0: —2:0: 1) € Pr(1,2,3,4).
(3) A*(PL/64) = {Df, Do} Al(PL/64) = {Cf, CF, Cs, Cu}, and A°(P3 /&,) = { P,
Pg, P4, P5}, where D1 , DO, Cl, C; and P; are as follows:
Df = {o(s:t:1:1) € Pr(1,2,3,4) |0< s <t,s#1, t#1},
Dy = {J(O:S:t: 1) € Pr(1,2,3,4) ‘ D<s<t< 1},
Cf = {o(s:1:1:1) € Pr(1,2,3,4) |0 <s < 1lors>1},
Cf = {o(s:5:1:1) € Pr(1,2,3,4) | 0<s<1},
Cs = {o(0:s:1:1) € Pp(1,2,3,4) [0 <s<lorl<s},
Cyi={0(0:0:5:1) € Pp(1,2,3,4) | 0 < s < 1},
Py :=0(0:1:1:1) = (3:3:1:0) € Pg(1,2,3,4),
Py :=0(0:0:1:1) = (2:1:0:0) € Pg(1,2,3,4),
Ps :=0(0:0:0:1) = (1:0:0:0) € Pg(1,2,3,4).
(4) disc(D;) = Discy, and C; U Cy C Sing(V (Discy)), here V(f) is the zero locus of f in
Px(1,2,3,4).

(5) Cls Cy is isomorphic to a cubic curve on PZ with a cusp at P,.
(6) Co = (P, Py) is isomorphic to an open Ime segment with ends P, and P;.
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(7) P2 /&, is the semialgebraic subset of Pr(1, 2, 3,4) defined by Disc4(1, 01, 02, 03, 04) > 0,
80y < 30%, and 6404 — 160% + 160%02 — 160103 — 30’1l < 0. Here, o; is the elementary
symmetric polynomials of ag, a1, as, az of degree i.

Proof. (1) is clear.

(2) and (3) follows from the critical decompositions of fundamental domains A, and
AT in the above example.

(4) This follows from conditions that a quartic equation has a double root, a triple root
or two double roots.

(5) Eliminate t from x = oo(t,1,1,1)/01(t,1,1,1)2, y = 03(¢,1,1,1) /o1 (t,1,1,1)3, 2 =
o4(t,1,1,1)/01(t,1,1,1)%, then we obtain 32(x — 3/8)% + 27(z — 3/8)? — 108(z — 3/8)(y —
1/16) 4+ 108(y — 1/16)*> = 0 and 2 = 3y — 12z. This cuve is isomorphic to a cubic curve on
PZ, and have a cusp at (z, y, 2) = (3/8, 1/16, 1/256) = P.

(6) Eliminate t from x = o9(t,t,1,1)/01(t,t,1,1)2, y = o3(t,t,1,1) /o1 (t,t,1,1)3, 2z =
o4(t,t,1,1)/o1(t,t,1,1)*, then we obtain 4z — 8y = 1 and y? = 2. This is a non-singular
rational curve.

(7) This follow from theory of quartic equations. g(a,b,c,d) := 6404 — 1603 + 160205 —
160103 — 30’1L is a separator. Note that

gla,a,c,d) = —(c — d)*(8a® — 8ac + 3c* — 8ad + 2cd + 3d?),
g(a,a,a,d) = —3(a — d)*.
Thus, V(g) pass through Cbs. O

3.2 The PSD cone 3’
In this subsection, we shall study P35 := P(Pg, H5%).

We choose sg := Sy —4U, s1 := T3 1 — 12U, sy := Sa 92 — 6U, s3 := 1511 — 12U as a
base of H3’;, and define ®5°; : P - -+ — P§ by ®5%(a) = (so(a) : s1(a) : s2(s) : s3(a)). Let
XZS; = ‘bi?4(PI?é) = X (P§, %3?4) C P((}Ci?4)v)),
and let U: P2 /&, -+ — X3 be the rational map such that 3% = ¥oo. Put Dy := ¥(Dy),
Cy = CIs(¥(Ch)), Cz := U(Ca), and P; := U(P;) for i = 0, 2, 3. Note that BsH5% =

{(1:1:1: 1)}, and ¥ is undefinite at P;.
The aim of this subsection is to prove the following theorem.

Theorem 3.4. (1) For a monic f = sg+ps1+qsa+71s3 € f}vff&, f(a) >0 for alla € R?
if and only if
p+r>0 and —9p*+12p+12¢+ 12r +8>0.

(2) All the extremal elements of P35’ are positive multiples of g; (t € Py = RU{oo}) or p.
(3) All the discriminants of P59 are discc, = 9p* 4+ 12p+12¢ +12r +8 and discp, = p+7.
(4) {t:1:1:1) e P} |t >0} U{(—1:—1:1:1)} is a test set for P,

This theorem will be proved after Lemma 3.7.
For f € Clzy,..., p]qa and K = R or C, we denote

Vi(f) = {a € Pk | f(a) =0}, Vi(f):=Va(f)NPL.
In some articles, Vi (f) are also denoted by Z(f). The symbol Vi (f) is rather popular in
algebraic geometry.
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Lemma 3.5. ¥ : (P3/&, — {Pl}) % is a birational morph1sm and A°(X39) =
{Po}, ANX5Y) = {C1, Co}, A%(X59) = {D1}, A3(Xj(21) = {Int(X3%)}. Moreover, (9?44 =
F(C1) UF(Py), and E(XY) C CLU{ P}

Proof. Let

fj%(:co,atl, To,T3) = —Sxo:cl + 4x1 + Gwalxg 24(130{5:1))1'2 + 14:6‘11372 3:cox2

+ 20222125 — 48xox?xl 4 162522 + 3daded + 16xoz 25 + Sxixd + 44x02)

— 48wy xh — T2x5 + 12232325 + 12202503 — 362713 — 12050003 + 20232 2023

+ 120I0x11‘2$3 — 56x1x2x3 — 7696895%3:3 — 32$0$1x3x3 — 64$%I§ﬂ§3

— 32m0x§’x3 + 112x1$3x3 + 144333:63 12x0x3 40:50301:63 — 112m1x29}3

+ 144x523 — 120322 — 40222123 — 18x0x2s + 1042323 + 14032003

— 104zgx 203 + 84230002 + 64x0rias + 16212502 — 1520522 4 282223

+ 12z0z1 23 — 1362225 + Sxorors — 5621 T0x5 + 322205 — 3woxs + 84275

+ 14zyx3 — 2023,
Note that the greatest common divisor of determinants of 3 x 3 minors of the Jacobian
matrix Jp of <I>f& is equal to

H(az‘ —a;)? | S3(S2 — S1,1)(Ss —4U).
1<J

Since

ffgl(SO,Sl,Sz,Sg) = 16(&0 + a1 + a9 +(13)4 H(aZ —a]’)Q Z(al —aj)2 ,
i<j 1<j
we have 0X;% C Ve(f§%) C P by Corollary 2.13. Since f; is irreducible, we have
Zar(0X3%) = Ve(f;%). This implies that the rational map ®5% : A, --- — X3 is generically
one to one, here A, is the fundamental domain in Example 3.2. So, ¥ : (P /&, — {P,}) —
X jgl is a birational morphism.
Thus, every D € A(X}%) is obtained as D = ¥(D D) byr a certain D € A(IP)%/GAL)

Since (1:1:1:1) € BsH3’;, there are no element in A(X39) corresponding to P,. We
put
Pyi=(2:3:1:1) = lim 30 (¢,1,1,1).

Note that thrri 50 (t,t,1,1) # Py, and {P} ¢ A(X59). We denote the coordinate system
of P((H3,4)Y) = P by (z0:21: x2: 23), here 5% is defined by z; = s;(a). Let
go(xo, 21, T2, x3) 1= (11 — 23)? + 223 — 3w210.
Then C; is the conic defined by z2 = 3 and ga(zo, 71, 72, z3) = 0. Note that Qo =
(2: =2:1:0) € C1, P € Cy, and O} is non-singular. Thus, {¥(Fy)} ¢ A(XS9,).
Next, Cp = {®3%(t:t:1:1) | =1 < ¢t < 1} = W(Cy) is an open line segment (P P,)
defined by z¢ = 2x9, 1 — 229 — 23 = 0 and x1 /29 < 3/2. Note that
Py =(0:1:0:1) = (0: —1:0: —1) = . lim (a:t:c:t) = @50 (—1: —1:1:1) = U(P).
——00 ’
In general, if D € A(X) has ruling structure, then F(D) cannot be a face component. Thus,
F(Cy) is not a face component of P5’. By Theorem 2.16, F(D;) and F(Int(X59)) are
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not face components of P3%. Thus dP5% = F(C1) UF(P;). This also implies E(XSY) C
C1 U{Py}. 0

Proof of Theorem 1.9(1). Put Q := {(—=1:—=1:1: 1)} U {(t:1: 1: 1) eP}|te R} By
Theorem 2.10, it is enough to show that ®3%(Q) D C1 U {P,} D E(X3Y). But this is clear.
O

7

3
We regard H3% = R*, by identifying f = pis; € H% and (po, p1, p2, ps) € R*. We
i=0
also use (po, p1, p2, p3) as a coordinate system of %2?3 = R*. We denote the local cone of
P50 at (t:1:1:1) € P by £;°. Note that if f € F(C}), there exists ¢ € R such that f(¢, 1, 1,
1) =0. Thus f € £§°. For t = oo € Py, we denote the local cone of P5% at (1:0:0:0) € P}
by £0.

We shall observe g;, g and p € ?3?4. Note that
3g¢(a,b,c,d) = 3sg — 2(t + 1) (51 — 83) + (12 + 2t — 1)s9
= (a®+b* - —d* + (t 1)(ed — ab))2

+(a® =+ —d*+ (t+1)(bd — ac))2
+(a® =1 —c +d2 + (t+ 1) (be — ad))?,
goo(a,b,c,d) = sy = (ab — cd)* + (ac — bd)* + (ad — bc)?,

p=s5y—53=(a—b)*(c— d)2 +(a—c)*(b—d)* + (a—d)*(b—c)*.

ESpaCiaHY7 9ty Boo) p € 24,4'

2
For f(a,b,c,d) € Rla, b, c,d], we dnote ;f by fa, ;2]“ by faa, and so on.
a a

Lemma 3.6. g, € E(PYY,) for all t € Py, and p € E(P5’). These are characterized as
the following:

(1) Lett € R—{1, =3}. If f € P, satisfies f(t,1,1,1) =0 and f(—1, —1,1, 1) =0, then
there exists a > 0 such that f = ag;.
(2) If f € P, satisfies f(x, x, 1, 1) = 0 for all z € R, then there exists o > 0 such that

[ =ag.

(3) If f € P, satisfies f(x, y, z, —x —y —z) = 0 for all z, y, z € R, then there exists

« > 0 such that f = ag_s.

(4) If f € P5° satisfies f(0, 0,0, 1) = 0 and f(—1, —1, 1, 1) = 0, then there exists a > 0
such that f = ageo.

(5) If f € P5% satisfies f(0, 0,0, 1) = 0 and f(z, 1, 1, 1) = 0 for all z € R, then there
exists « € Ry such that f = ap.

Proof. Note that of f € Tf& satisfies f(a,b,c,d) = 0, then f,(a,b,c,d) = 0. Similarly,
if foa(a,b,c,d) =0, then fouq(a,b,c,d) = 0. Otherwise, f will be negative at a certain point
near (a, b, ¢, d). f € Hj 4 can be written as f = poso + plsi + p2s2 + p3s3) by po, p1, p2,
pg) eR.

(1) Take t € R — {1, —3}. Let’s consider a system of equations
Ft,1,1,1) =0, fu(t,1,1,1)=0, f(—1,-1,1,1)=0. (+)

16



Put ap; = s;(t,1,1,1), a1; = (s5)alt,1,1,1), as; = s;(1,1,—1,-1), and A = (a;;) €
Ms 4(R). Then, (x) is equivalent to Ap = 0. That is

(t—1)2(2+2t+3) 3(t—1)2(t+2) 3(t—12 3(t—12\ [P 0
A3 — 1) 9(t2 — 1) 6t—1) 6t—1) | [P ]=1|o0
0 —16 0 —16 zi 0

Using Mathmatica, we can soon check that Ker A = R-g;. If f € P50, satisfies f(t,1,1,1) =
0, then f,(¢,1,1,1) = 0 always holds. Thus, if f € Tf& satisfies f(t,1,1,1) = 0 and
f(=1,-1,1,1) = 0, then f = ag; by a certain a > 0.

(2) Consider a system of equations f(0,0,1,1) = 0, f(2,2,1,1) = 0 instead of (x).
Then dim Ker A = 2, and f¢® and g := s; — 25y — s3 is a base of Ker A. g is not PSD. Since
@ (x,1,1,1) + cg(z,1,1,1) = (x — 1)3>(x — 1 — ¢), §$* + cg is PSD only if ¢ = 0.

(3) Consider f(1,2,3,—6) =0, f,(1,2,3,—6) =0, f(1,2,4,—7) = 0.
(4) Consider (0001)—0,fa(0001)—0 f(=1,-1,1,1) = 0.
(5) Consider £(2,1,1,1) =0, £(0,0,0,1) = 0, f(0,0,0,1) = 0.
Each A of the cases (2)—(5) are as the following:
18 26 9 8 1538 —962 769 576
2) A=[24 34 12 10|, (3) A= 148 248 314 516,
24 18 0 O 2898 —2002 1449
1 0 0 O 11 12 3 3
4 A={0 1 0 o0 |, ) A=[1 0 0 0
0 16 0 -16 0 1 0 0

g: (t € Pg) degenerates when ¢ = 1, —3. Since g1(z, @, 1, 1) = 0 for all z € P4, we have
F(Cy) =Ry - g1. This also implies that F(Cs) is not a face component of P5%, and we can
omit {(z:2:1:1) € P} | z € Ry} from the test set.

Lemma 3.7. £° =R, - g; + R, - p, and the discriminant of F(C,) and F(P,) are

disce, (po, 1, P2, p3) = 8pg — 9T + 12pop1 + 12pop2 + 12pops,
discp, (po, p1,Pp2,p3) = p1 + ps.

Proof. Since P, = (0:1:0:1), discp, (po, p1, P2, P3) = p1 + p3, by Remark 1.28 of [4].

Since g, p € L0 (t € PL), we have dim £5° > 2. On the other hand, since dim £:° <
dim P35 = 3, we have dim £;° = dim L5 = 2 (t # 1). Since g, p € E(PSY), we have
L;O RJr g: + RJr -p for all t € IP)%R

Using PC, we can check that g; (V¢ € P}) and p exists on the hypersurface in f}Cf&
defined by 8p2 — 9p? + 12pop1 + 12pop2 + 12peps. This equation is also the defining equation
of the dual variety of C;. So, this is disc¢, . O

Proof of Theorem 3.4. By the above lemma, we have

3
?(PQ {Zp18z€}c44

=0

p1+p3 =0, po >0, —9p3 + 12pops + 8p§ > 0}
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3
o |P1+p3=>0,po >0,
:‘F(Cl) = Zpisi S 9’(:4?4 9 9 .
= —9p1 + 12pop1 + 12pop2 + 12pop3 + 8pg = 0
Thus, all the extremal elements of fPf& are g; (t € PL) and p.
Thus, for f = so+ps1 +qs2+7s3 € HZy, f(a) > 0 for all a € P§ if and only if p+7 >0
and —9p? + 12p + 12¢ + 12r + 8 > 0.

(4) follow from P35 = F(C1) U F(P,). O

Proof of Theorem 1.1(1), 1.2 and 1.8(1). Let ty := o} — 25604, t1 := oi0s — 9604,
tz = 0'% — 360’4, t3 = 0103 — 160’4. Then So = to — 4t1 + 2t2 + 4t3, S1 = tl — 2t2 — tg,
S9 = tg — 2t3 and s3 = t3. Using these substitution for g, goo and p, we obtain Theorem
1.2.

Take f = poso + p1s1 + P2s2 + psss = qoto + qut1 + qota + gsts € HEY,. Since ty =
So + 4s1 + 659 + 1283, t1 = s1 + 283 + 5s3, t2 = so + 283 and t3 = s3, we have pyg = qq,
p1 = 4q0 + q1, p2 = 6o + 2q1 + g2, and p3 = 12q¢ + 5q1 + 292 + q3. Substitute these for p;
in disce, and discp, of Lemma 3.7, we obtain d; and dy of Theorem 1.8(1). Theorem 1.1(1)
follows from these. (]

Proof of Proposition 1.7(1). Let f(x,y) := gi(z,y,1,—x —y — 1)/(t +3)3 for t €
PL — {—3}. If g; is reducible, then f is also reducible. By

0
551 (@) =22z +y+1)@® +ay+y*+2+3y+1)

and so on, we have

Sing(Ve(f)) = {(—1: =1:1), (=1:0:1), (0:1:1) }.
Moreover, these are acnodes. Assume thar f = gh. If degg = 1, then # Sing(Ve(f)) = 4
or # Sing(Ve(f)) € Ve(g). This cannot occur. Thus, g and h are irreducible quadric curves

which intersect transversally. Then, # Sing(Vc(f)) = 4. Therefore, Vi (f) must be an
irreducible rational quartic curve. (]

Proof of Corollary 1.3. E(P5Y;) C X4 is already proved. Since, any element of P5
can be written as a sum of some elements in E(P5%), we have P35 C Ly 4.

Assume that 3f € E(P5%) N E(Pyy) # 0. f is SOS, since E(PFY) C Xy4. Since,
f € &E(Py4), we have f € E(X44). Thus, there exists g € Hy o such that f = g2. Then
Vr(g) = Wr(f). Since #Vr(g:) > 2 and #Vg(p) > 2, we have #Vg(g) > 2. Such conic g
satisfies dimg Vk(g) > 1. But, Vg(f) is a finite set. 0

3.3. The PSD cone f]’fl?j

In this subsection, we shall study ?Z?I = P(P3, 9{2?4). The aim of this subsection is
to prove the following theorem.

Theorem 3.8. (I) For a monic

f=s0+ps1i+qsa+rss e ffj?4,

f(a) >0 for all a € R} if and only if the following “(1) or (2)” and “(3) or (4)” hold:
(1) p< —4 and p? < 4q — 8.
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(2) p>—4 and 2p+q+2 > 0.
(3) p < —2/3 and 9p? < 12p + 12q + 12r + 8.
(4) p> —2/3 and 3¢+ 3r > 1.
(IT) AlIl the extremal elements of Tso+ are positive multiples of f#* (0 < t < 5), §¢
(b<t<o0),p=s2, q1 =51 — 28 orq2—33
(III) The following set is a test set for (P3., }Cjoj ).

{(t:1:1:1) € P3|t >0} U{(0:0:¢:1) € P} | t > 0}

This theorem will be proved after Lemma 3.16.

Essentially, we use the same symbols as the previous subsection, but there are some
changes. Let A :=P3 : (ag:a1:az:as), X5 = 3% (P3) = X (P, H3%) C P((H5)Y). As
§3.2, put Do := ¥(Dyg), Dy := ¥(DY) C Dy, Py == (2:3:1:1), Cf == ¥(C{)U{P} C Cy,
CS =V (CY) C Cy, C; :=W(C;) for i =3, 4 and P := V(P;) for j = 3, 4, 5. Note that

Py =(1:2:1:1) = ©5%(0,1,1,1),

Py =(2:2:1:0) = ©5%(0,0,1,1),

P; = (1:0:0:0) = ©3%(0,0,0,1).
We divide Oy into three parts 0<t<1,1<t<5,5<tand denote these by Cf, C?, Cf.
Put O¢* .= C¢ U {P}UCY.

Every D € A(Xj?j) is obtained as D = W(D) for a certain D € A(P3/G,). But,
P ¢ A(XSO+) since (1:1:1:1) € Bs H5Y,. Thus, we have the following:

Lemma 3.9. A°(X;%) = {Ps, Py, P5}, AY(X;%) ={Cf, CF, Cs, Cu}, AX(X55F) =
{Do, Df}, A¥(X5F) = {Int(X571)).

Int(XjBfr), F(Do) and F(DT) are not face components of fPSO+ by Theorem 2.16.

F(C5) is not also a face component of f]’fl?j , because C is an open line segment (Pp, Py).
Thus, we have

Lemma 3.10. (1) 9P = F(C) UF(C3) UF(Cy) UF(P3) UF(Py) UF(Ps).
(2) Take f € H5%. If f(x,1,1,1) > 0, f(0,2,1,1) > 0, f(0,0,2,1) > 0 for all 2 > 0,
then f € S}Cj?4
Proof. (2) Let
Af ={(t:1:1:1) e P} | t > 0},
A;‘ = {(t:t:l:l) € Pi ‘ 0<t< 1},
Az = {(0:t:1:1) € P} | ¢t > 0},
Ay ={(0:0:t:1) e P} | t > 0}.
Note that ®5°% (A7) D C;" (i =1, 2), and ®5%(A;) D C; (j = 3, 4). By Corollary 1.3 of [22]
or Corollary 2.1 of 23], we can choose A UAJ U A3U Ay as a test set for (P3, H5%). Since
F(C5) is not a face component of fPSO+ and P, € O, Py € Cls(C3) N Cls(Cy), we can omit
AJ from the test set. Thus, if f € 35Y, satisfies f(z, 1,1, 1) >0, f(0, #, 1, 1) > 0 and f(0,
0,z,1)>0forall z >0, thenfef]’so+. O
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In fact, F(C3) is not a face component, and we can omit Az from the test set. But it
will be proved later. We summarize here what C;", C3 and Cy are.

Lemma 3.11.

(1) Zar(Cy") is a conic defined by z3 — 2x129 — 3w9T9 + 323 = 0, 3 — x3 = 0. Especially,
Zar(CY") is nonsingular. The ends of C{" are Py and Ps.

(2) Zar(Cs) has a cusp at P3. The ends of C3 are Py and Ps.

(3) Zar(Cy) is a conic defined by x?2 — 2x3 — xgxy = 0 on the plane Vg(x3). The ends of Cy
are Py and Ps.

Next, we shall study §2° (0 <t < 5), §¢ (5 <t < 00), p = 52 — 83, q1 = 51 — 282, and
g2 = s3. Note that

ab __
ab —
fi
and g% = f¢. Put S := sy + 2s3. Since f°, = p + 3q2, f<, is not extremal. For u > 0, let
he = 3u?sp — 6u(u® + 1)sy + 3(u* + 4u® + 1)s9 + 2(3u* + 3u® + 2u® + 3u + 3)s3.
If t = (3u? — u+3)/u, then b = 3u*f¢. So, h¢ is not a new polynomial, but it is convenient
to study F(Cy) for the property b (0, 0, u, 1) = 0.
We shall denote the local cone of f]’fl?j at the point (¢:1:1:1) € P3 by L and the
local cone at the point (0:0:¢:1) by £&4.

(350 — 2(t + 1)s1 +2(2t — 1)s2 + (£2 + 3)s3),

Ol = W=

(950 — 6(t + 1)s1 + (t* + 2t + 19)s2 + 2(t* + 5t — 8)s3),

Lemma 3.12. §%° (0 <t <5), ¢ (5 <t < 00), p, q1, and qo are extremal elements of

Ti?j . These are characterized as the following:

(1) Let 0 <t <lorl<t<5. If f e Py satisfies f(t, 1,1, 1) =0 and f(0,0, 1, 1) =0,
then there exists a € R, such that f = afé®.

(2) If f € P satisfies foq(1, 1,1, 1) = 0 and f(z, x, 1, 1) = 0 for all > 0, then there
exists o € Ry such that f = af$b.

(3) Assume that t, u € Ry satisfy 3u® — (t + 1)u+ 3 = 0. If f € P5° satisfies f(t, 1, 1,
1) =0 and f(0, 0, u, 1) = 0, then there exists « € Ry such that f = aff.

(4) If f € P5Y, satisfies f(0, 0,0, 1) =0, foa(0,0,0,1) =0 and f(x, 1,1, 1) = 0 for all
x > 0, then there exists a € Ry such that f = ap.

(5) If f € fPf& satisfies f(0, 1,1, 1) =0, f(0,0, 1, 1) =0 and f(0, 0, 0, 1) = 0, then there
exists a € Ry such that f = aq;.

(6) If f € P3° satisfies f(0, 0, x, y) = 0 for all x, y € R, then there exists & € Ry such
that f = (2.

Proof. We shall show that §¢° (0 < 1 < 5), ¢ (¢t > 5), p, g1 and g belong to f]’j?j.

Since
. 1 20z —1)2\* | 2(16 —2)(x — 1)?
tb(o,x,1,1)_§x(:ﬂ+2) <<t (z+2) ) + (v +2)2 )

we have §¢°(0, z, 1, 1) > 0 if z < 16. On the other hand

a0, z,1,1) = %;(18(25 — )% + (t* + 120(5 — t) + 1575) (z — 16)
+ (4(5 — t) + 120) (z — 16)2 + 3(x — 16)3),
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we have f¢°(0, z, 1, 1) > 0 for x > 16. Similarly,

W(r,1,1,1) = (x —t)}(z — 1)2 >0,

(x —1)? (3 <x— t_32)2+ ;(5—t)(1+t)> >0,

(0,0,2,1) = L
fg(xalvlvl) (33 t) (x_l) 20
(@

W =

1)2(62 + 5))2 2z (z — 1)2(z + 2)(3z + 2)) -

1
9 (22 +1)? (22 + 1)
1
E(0,0,CC, 1) §(3l‘ — (t + 1)1; + 3) >0,
hi(oaovxa 1) = 3<$ — U)2(’U,$ — 1)2 > 0,
ql(‘T? 1) ]-7 ]-) = 3$(513 — ].)2 > 07
ql(O,IE, 17 1) = 2$($ _ 1)2 Z 0,
ql(0,0,ZE, 1) = 33(117 — 1)2 >0,
q2(x7 17 17 1) = 3(1' - 1)2 > O,
q2(0,z,1,1) = z(z +2) > 0,
qQ(O,O,z,l) =0

Thus £, §£, 41, 42 € P35
The left part can be proved similarly as the proof of Lemmma 3.6.

(1) Consider a system of equations f(¢,1,1,1) = 0, f.(¢,1,1,1) = 0, f(0,0,1,1) =0
instead of (*) in Lemmma 3.6. Then Ap = 0 become

(t—1)2(#2+2t+3) 3(t—1)2(t+2) 3¢t—1)2 3¢t—1)2\ [P 0
43 — 1) 9(t2 — 1) 6t—1) 6¢—1) | [P |=10
2 2 1 0 Zz 0

Using Mathematica, we can check Ker A = R - ¥ if ¢ # 1. f,(t,1,1,1) = 0 follows from
f(t.1,1,1) =0if f € PP

(2) Consider fuuq(1,1,1,1) =0, £(0,0,1,1) =0, f,(0,0,1,1) = 0.

(3) This case is slightly complicated. Let t = (3u® — u + 3)/u and consider the system

of equations f((3u? —u+3)/u,1,1,1) =0, fo((3u? —u+3)/u,1,1,1) =0, £(0,0,u,1) = 0.
Then Ap = 0 become

(t—1)2(#2+2t+3) 3(t—1)2(t+2) 3(t—1)2 3¢t—1)2\ [P 0
43 — 1) 9(t2 — 1) 6t—1) 6¢t—1) | [P =10
ut 41 w(u? +1) u? 0 Zz 0

Using Mathematica, we can check Ker A =R - §¢.
(4) Same with (5) of Lemmma 3.6.
(5) Consider f(0,1,1,1) =0, f(0,0,1,1) =0, f(0,0,0,1) = 0.
(6) Consider f(0,0,0,1) =0, f(0,0,1,1) =0, f(0,0,1,2) = 0.
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Each A of the cases (2), (5), (6) are as the following:

24 18 0 0 36 3 3 1 0 00
2 A=[2 2 1 0], G) A=[2 2 1 0], ®AaA=[2 2 1 0].
0 2 0 2 100 0 17 10 4 0

O

Lemma 3.13.

(1) 12 e F(CH)NF(Py) and L =Ry -f% + Ry -pfor0<t<lorl<t<5.

(2) f¢ € F(CYNF(Cy) and LE* =R, -f¢4+R-p fort > 5. Moreover, LS+ = R, -h¢+R -qs
for u > 0 with t = (3u? — u + 3) /u.

(3) fab e F( 01) NF(P3) NF(Py).

(4) s := 5" = f§ € F(C1) N F(Cy) N F(P).

(5) fc € ?(Cl) N ?<C4) N :T(P5)

(6) pe gj Cl) m?(Pg) ﬁg:(P5)

(7) a1 € F(P3) NF(Py) N F(Ps).

(8) a2 € F(Cu) NF(Py) N F(P5).

Proof. 1f F(D) (D € A(XCO+)) is a face component of ?Z?j, then dimF (D) =
dim(@f]’fj) = dim fPZ?j —1=3. So, if D1, Do, D3 are distinct elements of A(Xff?j), and
F(D;) (i =1, 2, 3) are face components, then dim (F(D;) N F(D3)) = 2 and dim (F(D1) N
F(Do) NF(D3)) =1

Now, we shall prove (1)—(8).

(1) Assume that 0 <t < 1or 1 < ¢ < 5. By previous lemma, we have {2 € L5 NF(Py)
for 0 <t < 5. Since dim £ = 2, we have L&' =R, - {** + R, -p € F(C}),

(2) Let w > 0 and t = (3u® — u+ 3)/u > 5. By previous lemma, f§ € F(C1) N F(Cy).
Since dim £{* =2, £§* =R - % + Ry - ga. As (1), we have £§1 =R, - f¢ + Ry - p.

(3)—(8) can be proved similarly. 0

Note that f¢* € F(C5), because j%°(z, z, 1, 1) = 0 for all z € R. By Lemmma 3.6(2),
we have F(C5) = R, - f%*. This also implies that F(Cy ) is not a face component.

Using the above lemma, we shall determine the structure of the face components F(C;"),
F(Cy), F(P3), F(Py) and F(Fs).

Lemma 3.14. For f, g € %2?4, let Fan(f, g) :== R, - f + R4 - g be the fan whose edges
are f and g. Put
W =Ry - {f"|0<t <5} cHY,, W =Ry -{ff [t >5} UR; -f5
Then the following hold.
(1) 0F(C;) = W U We U Fan(fS,, p) U Fan(p, fab).
(2) 83"((}4) =Weu Fan(f5, qz) U Fan(qg, fc )
(3) OF(Ps) = Fan(jab, q1) UFan(q1, p) UFan(p, f&). That is, F(Ps) is a triangle cone with
edges 3%, q; and p.
(4) 0F(Py) = W U Fan(fs, q2) U Fan(qa, q1) U Fan(qy, §2°).
(5) F(Ps) is a triangle cone with edges p, q1 and qz. Note that {$, € Fan(p, q2), and Fan(p,
foo) = F(P5) N F(Ch), Fan(fs,, a2) = F(P5) NF(Ca).
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fab Wb g

3:(01) = <f0 , fs, foo? p>
e
F(C4) = (f5 T d2)
W az F(Ps) = (f§*, a1, p)
F(Py) = (1", f5, g2, q1)
o F(Ps) = (p, a1, q2)

p
Fig.3.1. P

By the above lemma, we know that 8?50+ is enclosed by F(C;"), F(Cy), F(P3), F(Py)
and F(P5). We don’t need F(C3). See Fig.3. 1. Thus, we have:

Lemma 3.15. 9P = F(C) U F(Cy) U F(P3) UF(Py) UF(Ps), and E(XS%) C
C;uCyU{Ps, Py, Ps}. Especially, F(C3) is not a face component of fPZ?j.

Proof of Theorem 1.9(2). Put 0 := A} U A4. By Theorem 2.10, it is enough to show
that ®3%(Q1) D Cf UC,L U {Ps, Py, Ps}. But this is clear. O

Geometrically, C5 — {Ps, Py, Ps} is included in the interior of the convex closure of
Tjoj. So, any f € IPSO+ cannot satisfy f(0, z, 1,1) =0 for x > 0, z # 1.

Theorem 1.4 is also proved from the above results.

Finally, we shall study discriminants discp = disc(D) for D = C}", Cy4, P3, P, and Ps.
We use (po, p1, p2, p3) as a coordinate system of fo& as before. (po, p1, p2, p3) corresponds

to Zpisi € f}(ﬁf&.
i=0

Lemma 3.16.

disc(Cf) = Spo - 9;01 + 12pop1 + 12pop2 + 12pops,
disc(Cy) = — p? + 4pop2,

disc(P3) = po + 2p1 + p2 + p3,

disc(Py) = 2po + 2p1 + po,

disc(Ps) = po.

Proof. disc(C;") = disc(C4), since Zar(C;") = Zar(Cy).
3
If P=(co:ci:co:c3) € A(Tj?j), then disc(P) = Zcipi. Thus we have disc(F;) (i = 3,
i=1
4,5).
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We shall study disc(Cy). Take f = (1/3u®)bS + vgy € F(Cy) (u > 0, v > 0). The
coefficients of f are pi/po = —2(u? + 1)/u, pa/po = (u* + 4u? + 1)/u?, p3/po = 2(3u* +
3ud + 2u? + 3u + 3)/(3u?) + v. Eliminate v and v from these relations. Then we have
disc(Cy) = —8pj — pT + 4pop2 = 0. [

Proof of Theorem 3.8. The proof of Theorem 3.8 is almost completed. What we should
do is only to observe the signature of discriminants. Then, we find that we can use p + 4

and p+2/3 as separators to describe TZ% as a union of basic semialgebraic sets as (1)—(4)
of Theorem 3.8(I). O

Proof of Theorem 1.1(2), 1.4 and 1.8(2). This is same as the proof of Theorem 1.1(1),
1.2 and 1.8(1). 0

Proof of Proposition 1.7(2), (3).(2-1) Consider the case 0 <t < 1lor 1 <t < 5. Let
F(z,y,2) = 3f¢(z, y, 2 — 2 — y, —2), and f(z,y) = F(x,y,1). If §#° is reducible, then f
is also reducible. Consider the real curve I' := Vg(F) C P4. Note that f(y, x) = f(z, y).
Since

f(x,0) = f(0,2) =8(t +1)(a® —x +1)* > 0,

F(1,0,2) = F(0,1,2) = 8(t + 1)(2* — 2+ 1)? > 0,

f(lv 1) = f(1> _1) = f(_la 1) = _16(t - 1)2 <0,
I" has at least three connected components I'y, I'y, 'y in the 1-st, 2-nd and 4-th quadrant.
I'y, 'y, I'y are all bounded. This implies I' cannot contain a line. Moreover, I' cannot be a
union of two quadric curves. Thus V¢ (F) must be an irreducible curve.

(3) Consider the case t > 5. Let G(z,y,2) := 9f¢(z, y, z — x — y, —2), and g(z,y) =
G(z,y,1). Then,

9(w,0) = 9(0,2) = (t+7)*(2* —z +1)* >0,

G(1,0,2) = G(0,1,2) = (t + 7)*(z* — 2+ 1)* > 0,

g(1,1) = g(1,-1) = g(=1,1) = =32(t> + 2t — 11) < 0.
Thus Vi (G) must be an irreducible curve.

(2-ii) Consider the case t = 1. Assume that §{° is reducible. Since
1
(@, 1,1) = 5@ = y)*(32% + 2oy + 3y — 8v — 8y + 8),

§4° must be product of two real quadrics. But this is impossible. since (f¢*)aa(1,1,1,1) = 0.

O

Proof of Proposition 1.5. For f, = (0 <t <lorl<t<5)or f; = (t>5),let
Fy(a,b,c,d) := fi(a?, b?, ¢?, d?), and consider the zero point set Z; := Vi (F;) C P3.

Let u be a positive root of t = (3u? —u+3)/u if t > 5, and u := 1if 0 < t < 5.
Remember that f;(1,1,1,1) = f;(t,1,1,1) = £;(0,0,u,1) = 0. Let s := v/t and v := \/u.
Then Fy(£1, £1, £1, 1) = Fy(&s, £1, £1, 1) = F,(0, 0, +v, 1) = 0. Thus, if 0 < ¢ < 1 or
1 <t <5, then #7;, = 52. If t > 5, then #7;, = 64.

Assume that F; € ¥4g8. Then, there exists r € N and g1,..., g, € Hy 4 such that
F,=gi+ - +g¢2 Ifa€ Z, then g;(a) = --- = g.(a) = 0, since F;(x) > 0 for all x € P§.
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Note that dim Hy4 4 = 35. So, let’s find 35 points a; € Z; (1 < i < 35) such that there exists
no g € Hy 4 — {0} which satisfy g(a;) =0 for all 1 <17 < 35.

Let a; := (1:1: —=1: —1), ag := (1: 1: 1:s), a3 := (—s:1:1:1), ay := (1: —s:1: 1), a5 :=
(I:1: =s:1), ag := (1:1:1: =s), ay = (s: —1: 1 1) ag = (s:1:=1:1), ag := (s:1:1: —1),
ajg - — (—1 s:1: 1) al] = (1 s:—1: 1), a12 (128:12—1), alig = (—12128: 1), al
(I: =1:s:1), a5 := (1: 1:s: —1), agg := (—1: 1: 1 s) aj7 = (1:—1:1:s), a5 := )
ajg == (s:1:=1:—=1), agy := (s —1 1:=1), ag; := (s:—1:=1:1), ags := ( )
agg = (—lisi—1:1), agg = (l:s:—1:—1), ags = (—1l:—1:s:1), agg = (l:—1l:s:—1),
agy = (—Ll:ilis:—1), agg := (Ll:—1:—1:s), agg := (—1:1:—1:s), agy = ( )
agy = (v:1:0:0), agy := (v:0: —1:0), agz := (v:0:0: —1), agy := (0: v: 1:0) ags == (0:0:0:1).
Take 35 monomials eq,. .., €35 as a base of Hy 4, and denote g = cieq + -+ - + c35e35 € Hy 4.
Let A = (a;,;) be 35 x 35-matrix such that a; ; = e;j(a;). Then

det A = +549755813888¢13/2(t — 1)23(¢t 4 3)6
(1 4+t —2u)(tu +u — 2)(3u? —ut —u —1).

Note that 3u? —ut —u—1= (Bu? —ut —u+3)—4=—-4#0,tu+u—2=3u?*+1>0 and
u > 0. There exist no real solutions 1+t — 2u = 0, t = (3u? — u + 3) /u. Thus det A # 0 if
t > 0 and ¢ # 1. This implies there exists no g € Hy 4 — {0} which satisfy g(a;) = 0 for all
1 <4< 35. 0

Proof of Proposition 1.6. Let t > 5. We shall show that f{ S(IPI 4)- This is equivalent
to hg, € E(PY,) for all u > 0.
35
Let eq,..., egs be all the monomials in Hy 4, and denote f € Hy 4 as f = Zciei
i=1
(¢; €R). Let t := (3u? —u+3)/u. Let K be the subspace of all the f € 3, 4 which satisfies
the following 34 equalities:

fa(1,1,1,1) =0, f5(1,1,1,1) =0, f(t,1,1,1) =0,  fa(t,1,1,1) =0,
fb(tvlvlvl) :07 f(lvtaLl):O, fa(17t7171)207 fb(latalal) :07
fo(1,6,1,1)=0, f(1,1,6,1) =0,  fu(1,1,t,1)=0, fo(1,1,£,1) =0,
fo(1,1,6,1) =0, f(1,1,1,t) =0,  fu(1,1,1,8) =0, f(1,1,1,¢) =0,
f.(1,1,1,6) =0, f(0,0,u,1) =0,  f.(0,0,u,1) =0, f(0,u,0,1) =0,
f6(0,4,0,1) =0, f(0,u,1,0)=0,  f,(0,u,1,0) =0, f(u,0,0,1) =0,
fa(u70’0’]‘) :0’ f(uﬂoﬂ]‘?()) :07 f(u’]"O?O) :07 fa(u’]"oﬂo) :07
£(0,0,1,u) =0,  f(0,1,0,u) =0, f(0,1,u,0)=0, f(1,0,0,u) =0,

f(1,0,u,0) =0,  f(1,u,0,0) =

The system of these equation can be Written as Ac = 0 by a certain 34 x 35-matrix A,

i.e. K = Ker A. Add the vector (1, 0,..., 0) to the bottom of A, and make 35 x 35-matrix
B. Then

Il
o

det B = #t(t + 3)(t — 1)®u'?(u? — )2 (u? + 1)2(12u* + 12u® + 21u® + 10u + 9) # 0.
Thus dim Ker A = 1, and Ker A = R - 5. This implies b5, € E(P],). O

It seems that f2° ¢ 8(9’14) for t < 5. But the author does not have proof.
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Section 4. Cubic Inequalities of Four Variables

4.1. Structure of fPZ?gL

In this section, we shall study P55 = P(P3, H%). We use similar symbols with §3.
To state the main theorem of this section we need to fix some symbols. Put

3 3 3
o 3 . 2 . 2
S3 = g a;, 52,1,0 = g Qi Qi4-1, 52,0,1 = E a; 542,
i=0 i=0 i=0

3 3
S1201= Y @laiys, Si111:= Y 0011042,
i=0 =0
here we regard a;44 = a; for all ¢ € Z. We choose sg := S3 — S1,1,1, 51 := 52,10 — S1,1,1,
Sg9 = 52’0,1 — 5171’1, S3 = 517270 — 51,1’1 as a base of }CZ%, and define (132?3 : Pi cer —
P3 by ®5%(a) = (so(a) : si(a) : sa(a) : ss(a)). The coordinate system of A = P§ is
denoted by (ao: a1: ap: as) or (a:b: c:d), and the coordinate system of P((3H5%)") is denoted

by (zo:x1:xe:x3). We represent f € U'CZ% as f = poso + -+ + p3s3 (p; € R), and the

coordinate system of 9—(293 is denoted by (po, p1, p2, p3). If f € Ti?gr, then sg > 0. When

po = 1, we say f is monic. When pg = 0, we say f lies at infinity. The characteristic variety
is written by X{%" := ®5%(P3). Let

Py = (1:0:0:0) = ®5%(0: 0:0: 1) € dX %",

Py :=(1:0:1:0) = {@ﬁ%(a: bra:b) € P | a,beR,} € 6Xz?3+,

C = {90%(0:0::1) e P} | t >0} C 8X§?3+,

S = {®L5(0:s:t:1) € P | s> 0,¢ >0} COX

We denote F(FP;), F(C), F(S) by Fp,, Fc and Fg. As we prove later, Fp,, Fp,, Fc and

Fg are all the face components of fPZ?;’ . We need two discriminants discc and discg which

are defining equations of Zar(F¢) and Zar(Fg). discg is somewhat complicated polynomial.
discc (po, p1,ps) = 27p; + 4pop + 4popi — pip3 — 18pgp1ps = Discs(po, 1. ps, o),
ds(po,p2,q,7)
= (po — p2 — q)*(13p§ — 2pop2 + P53 + 2poq + 2p2q)”
(104pj + 100p5p2 — 4pops + 36p5q + 36pop2q — pog” — p2q° + 8¢°%)
+ (17173pd — 121pSpe — 5639p3p3 + T651pgps — 3489paps + 469p2pS
— 45pop§ + s + 6250pGq + 10028pgpaq + 3142pipsq — 1368p)piq — T46pgpsq
— 20pop3q — 6pSq + 898piq> + T230pgpaq” + 1748pip3q” — 1572p5psq?
— 86pop3q” — 26p3q” + 2780pgq” — 368p3p2q” + 1448pgpsq® — 496popsq”
+ 28paq® + 518p3g* + 1018p2pag® — 190popaq® + 78p3q* + 164p2q°
+ 168pop2q” + 4p3q°)r?
+ (2495pg — 317pyps — 1886pyp3 + 842pgps — 81pops + 3ps + 1768pyq
+ 4pipaq — 988p;p3q + 380popiq — 12p5q + 291p3q” + 897pgpaq® — 463popsq”
+ 83p3¢” + 226p5q° + 92pop2q® — 38p3q° — pog* — p2g*)rt
+ (95p5 + 65pgpa — 43pops + 3p5 + 98p5q — 20popaq — 6p3q — 4poq”)r®
+ (=3po + p2)r®,
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. 1
discs(po, p1,p2,p3) = st(p07p27p1 + p3,p1 — P3)-

Since disce(po, p1,p3) has an obstacle branch in the first quadrant p; /pg > 0, ps/po > 0, we
put

disco(1,z,2) (ifz <0or 2 <0)

1 (ifz>0and z > 0)

to avoid complexity. de(z,z) > 0 implies disco(1,z,2) > 0 or ‘o > 0 and z > 0’. Thus,
dc(z, z) > 0 defines a convex domain, but disce (1, x, z) > 0 does not. The following n(z, y)
is a nice separator whose property is explained in Lemma 4.10.

n(z,y) := 61 4 62x + 56y + 322 + 302y — 6y
+ 923 4 42y — 62y? — 169° + 2t — 42%y? — 621 + ¢yt — 2392,
We also need two constants k1, k2. Let k1 := 0.0129074031 - - - be a root of
817808203z — 5468070842° + 129155640x* — 1334201623 + 55608022 — 101762 + 64 = 0,
and k9 := 0.0318925844 - - - be a root of
430425372° — 45145142° — 188769z — 386842> + 41192% — 114z + 1 = 0.

The aim of this section is to prove the following theorem.

do(z,z) =

Theorem 4.1. (I) Take a monic f = so + p151 + p2S2 + P3ss € f]tCﬁ?g. Then, f(a) >0
for all a € Ri, if and only if one of the following holds:
(1) p2 = —1 and 8(p1 + p3) > (p1 — p3)>.
(2) —1 < pa <3, discs(1,p1,p2,p3) > 0 and dc(p1,p3) > 0.
(3) p2 >3, K1(p1 + p3) + Kap2 > 1, discs(1,p1,p2,p3) > 0, and dc(p1,p3) > 0.
(4) p2 > 3, k1(p1 + p3) + Kap2 < 1, n(p1 + p3,p2) > 0, discs(1,p1,p2,p3) > 0, and
do(p1,p3) > 0.
(5) p2 >3, k1(p1 +p3) + kap2 <1, n(p1 + p3,p2) < 0, and dc(p1,p3) > 0.
(IT) Let’s denote f = poso + p1S1 + p2s2 + p3ss. Then, all the discriminants of ?fl?; are

discs (po, p1,p2, p3), discc(po, p1,p3), discp, = po, and discp, = po + po.
(II) If f € HS% satisfies f(0, s, t, 1) >0 for all s, t € Ry, then f € P%.

This theorem will be proved after Lemma 4.8. By AM-GM inequality, we have
3
1

3 3 3
so(ag, ay,az,a3) = 3 E (a7 + a; g+ a0 — 3a;a;r1a;42) > 0,
i=0
s2(ao, a1, az,a3) = (ap — a1 + a2 — az)(apaz — arasz),
13

Z 3 3 3 2
S0 — S2 = g (ai +ai +ai+2—3aiai+2) 20,

i=0

3
2 3 2 2
Sp + 289 = E (a7ai+o + a; 1 +a;a;, o — 3a; Ait1Gi42) > 0,
i=0
3
2 2 2
281 + 59 = E (ajaip1 + ajaivo + ai 00; — 30;ai41ai42) > 0,
i=0
3
289 + 59 = .2 ) 2 . 2 _3a.a. ) >0
3+ s2= ) (aiai1q + ait107,5 + aiyo2a; — 3a;a;41a:42) > 0,
i=0
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3
1 2
S0 = 81= 3 E (a3 +a} +a},, —3aiai41) >0,
=0

3
1
S0 =53 = 3 ;(a? +ajyy +alyy - 3aad ) >0,
S1 + 83 = (ao + ag)(al — a3)2 + (al + ag)(ao - a2)2 > 0.
Thus Xjf); is a subset of a cube defined by —1/2 < s1/s9 <1, —1/2 < s9/s90 <1, —=1/2 <
s3/so < 1. Note that s; and s3 are not PSD, for s1(1/100, 1/2, 1/10, 1) = —229/20000 < 0.
% PR — XZ?;“ splits as
. ‘IIUO
o5, : P 7 PL/(Z/42) 23 XS0,
It is easy to see that W% : P3 /(Z/AZ)--- — XE?; is a birational map, but is not holomorphic
at a singular point 7(1:1:1:1). We shall provide more precise structure of X4C’03+. The

following e, ¢(ao, a1,a2,a3) € H{% (s, t € R) has a possibility to be an extremal element.
But there exists (s, t) such that e, is not PSD.

Proposition 4.2. For (u:v:w) € P2 — {(1:0:1)}, let

u,v,w) = —v(uwv® — (u—+ w)(u® + w*)v + vw(u — w)?),
= wv? — w(u + 2w)v? — 2uw(u — w)v? — u(2u® + v?w — 3w)v + wu® - w

o

1 ) f—w?)?
g5 (u,v,w) == v(v* + (2u® — 3uw + 2w?)v? — (u+w) (W + w*)v + (u — w)*(u® — uw + w?)),

5 ( )

)

3
e (@) = ) gl (u,v,w)s(a),
i=0

For simplicity, put g;(s,t) := g(s,t,1) and e, ,(a) := e, | (a).
(1) et ou = o = (u—w)(V* = (u+w)?)((u —w)* +2(u+w)v +v?)(s1 — s3).
(2) 221’0 - teth’l - (t2 - 1)(t2 + 1)252.
3) Assume that s > 0,t>0,t# s+ 1, go(s,t) > 0 and e, , € P If f € PLF satisfies
, 4.3 4.3
f(0,s,t,1) = 0, then there exists a > 0 such that f = ae, ;. Especially, ¢s; € E(Tj?gr).
4) Assume that s =0,t >0, t # 1 and eqy € P If f € PLF satisfies £(0,0,¢,1) =0
: 4.3 4,3
0
and %f(0,0,t,l) = 0, then there exists « > 0 such that f = oes;. Especially,
€0t € 8(?2?;)
5) Assume that v > 0, v > 0, and e” e PLOF.If f e PLF satisfies f(0,u,v,0) = 0
u,v,0 4.3 4.3
0
and %f(o,u,v,O) = 0, then there exists a > 0 such that f = 04627070. Especially,
el v0 € E(PLY).
(6) Ift = s+ 1, then
es,s41(a,0,¢,d) = (s + 1)(s* + 1)*(a = b+ ¢ — d)*(a + b+ ¢+ d) (*)
= (s +1)(s* + 1)?%e0.1(a, b, c,d).
If f e f}’j?; satisfies f(0,0,1,1) = 0 and f(0,1,2,1) = 0, then there exists a > 0 such
that f = aeg,1. Especially, es 541 € 8(?2?;).

28



(7) If go(s, t) <O, then es ¢ S(SPZ?;) and —es; ¢ S(TZ?;').

Proof. Denote f,(a,b,c,d) = % (a,b,c,d) and so on.

(1) and (2) follows from direct calculation.

(3) Assume that f = pgso + p151 + p2s2 + p3ss € fPff;r satisfies f(0,s,t,1) = 0. Then
f5(0,s,t,1) = 0 and f;(0,s,t,1) = 0 holds. Let ao; = s;(0,s,t,1), a1; = (s;)5(0,0,%,1),
as; = (5)¢(0,s,t,1), and A = (a; ;). Then

S3+t3—st+1 t(s?—s+t) s(l+s—t) t(st—s+1)
A= 352 —t (25 — 1)t 2s —t+1 tt—1)
32— s s2—s+2t —s 2st —s+1
Let B be the square matrix add (1,0,0,0) above A. Then det B = (t — s — 1)go(s,t) # 0.
Note that e;; € Ker A. Thus, Ker A =R - ¢, ;.

(4), (5) Same with (3).

(6) () follows from direct calculation. Assume that f € TZ?SJF satisfies f
and f(0,1,2,1) = 0. Then f(0,0,1,1) = 0, f,(0,0,1,1) = 0 and f,(0,1,2,
£c(0,0,¢,1) = 0 holds. By the same method as (3), we have the conclusion.

(7) We may assume ¢t # s+ 1. If eg; € S(Ti?;), then go(s,t) = ¢5+(0,0,0,1) > 0. On
the other hand, e,:(0,0,1,1) = (s+1)(t — s —1)*((s — 1) +t?) > 0. Thus —e,; ¢ E(P55 ).

0

(0,0,1,1) =0
1) = 0. then

The condition that e, € 8(?2?; ) will be determined at Theorem 4.13.

Lemma 4.3. Let
By :={(0:s:t:1) € P | s >0, t > 0},
By = {(0:s:t:u) € PY | (s:t:u) € PAY,
E, = {(aozal:agzao —aj +ag) € IP’?Ir ‘ a1 < ap +a2},

Ey:={(a:bra:b) € P | a, b e Ry},

X%($0,$1,$2,x3)
3

= (25 — 2oz1m3 + 23)% — 2o (@3 — TOT1 23 + 23) (TF + 3] — 4y w3 + 303)
+ 2 (azg(x% — 123 + 23) + 2z07173(T1 + X3)
+ 2] — Talzs + 92tw] — Tawqzl + x3)

+ 23 (2202} — 2o (427 + 2123 + 223) + (21 + 23) (2] — 3T125 + 73))

+ z3(2] + 123 + 23).
Then, the following hold:
(1) Bs®§% = {(1:1:1:1)} and the exceptional sets of ®§’% are Ey and Ey. ®§%(E;) =

(2:1:0:1), and %5 (Es) = P,.

(2) Zar(0X;%) = Va(f59).
(3) 5,(Bo) = OX% and § = Reg(®%(By)).
(4) Let £ be the local cone off]’fl?gJr at (0:s:t:1). Take (0:s:t:1) € By. Ifes is PSD,

(0:s:t:1)
then the local cone ngjs_:m) is a half line with the base ¢, and ¢s+ € S(TZ?QL). Ifess
is not PSD, then L?(()):—::tzl) =0.
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Proof. (1) follows from ®§% (a: b: ¢: a—b+c) = (2:1:0: 1), and ®3%(a: b: a:b) = (1:0:1:0).
(2), (3) The Jacobian of ®§% is equal to
—(a—b+ec—d)?*(a—c)*+ (b—ad)H*(a+b+c+d)sola,b,c,d)?>
Note that Vi (sg) = {(1:1:1:1)}. On the other hand,
f% (<I>f£3(a, b, c, d))
=abcd(a—b+c—d)*(a+b+c+d)*((a—c)*+ (b—d*)* >0.

By Corollary 2.13 and (1), we have the conclusion.
0

(4) Let fi($07x17$2ax3) = %fi%(xovxlal?ax?}) and
%
hi(s,t) == fi(5%(0,5,t,1)),

ge(s,t):

=st(t—s—1)2(s+t+1)((s —1)% + )2
Then h;(s,t) = gc(s,t)gi(s,t) (1 =0, 1, 2, 3). 0
It is easy to draw a graph of X 4Cf)3+ using Mathematica. But it may present incorrect

impression. It seems that X z?3+ is a convex set. But it is not true. The following observation
show us that X %" is not convex near (1:0:0:0). Cut BXE?; by the plane V(z1 —x3). Note
that

51,2y, 2) = 2% (20 — 3y — 1)(22° + 2%y — y® — 2% 4+ 2y% —y).
The graph of V(223 + 2%y — y® — 22 + 2y — y) is not convex near (z,y) = (0,0). Thus
Xf; is not convex. This also implies that e ¢ fPZ?gL for some (s,t) € By.

Lemma 4.4. Let (P1P,) := {®§%(0:4:0:1) € P4 | 0 <t < 1 }. Then the following
hold:
(1) Sing(Zar(9X5%")) N (0X5%") = C U (PLPy) U{Py, P2}. C and (P P,) are nodal double
curves. P; and P, are normal crossing triple points.
(2) A%(X550) = {Int(XE50) ), A(XGD) = {8}, ANXE) = {C, (PiP)}, A%(XES)
={P, P}.
Proof. Note that P, = (I)i?g(Ez), and
C = {(xozz:l:O: x3) € Pi_ | T3 — ror173 + T3 = 0} —{P, P}.

(1) is a result of basic but long calculation. Please observe the graph of ®%(0, s, ¢,1)
and ff%(l,x,y, z) = 0 using Mathematica.
(2) follows from (1). 0

Remember that 8?2?; = U F(D). Let’s observe whether each F(D) is a face
DeA(X{%h
components of TZ?; or not .
Since Zar(Int(Xi?;r)) =P3, ?(Int(Xj?;r)) is not a face component.
Zar (F((PP2))) is two dimensional plane defined by py = p = 0. Thus, F((P1P,)) is
not a face component. Therefore, we have:

Lemmma 4.5. (1) 8?2?; =Fp UTFp, UFsUTFc.
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(2) By is a test set of fPZ?;. In other words, if f € H§% satisfies f(0,s,t,1) = 0 for all
$>0,t>0, then f(a) >0 for allaeRj‘r.

Proof. (1) is already proved.
(2) By (1), we have Cls(®5%(Bo)) D 8Xif)3+ D S(XZ?;F). By Theorem 2.10, we have the
conclusion. 0

Note that (III) of Theorem 4.1 follows from the above proposition.

Lemma 4.6. We regard as f]{j?; = R* by identifying (po, p1, p2, p3) € R* with

3
Dis; € }CZ?;_ Then,
i=0

(2

) gl(svt)a 92(87t)7 93(87t)) =0 for all s, te R.
) gS(Svt)a 92(Sat)7 gl(sat)) =0 for all s, te R.
Zar (370 = Vr(disce).

)

2) Zar (Fp,) = Ve(po + p2)-
i (
(

Proof. (1) and (2) are trivial.

(3) and (4) follow from direct calculation.

(5) follows from study of ngJg See §3 of [3].

(6) follows from (3). O

Now, we shall observe Fp,. In the definition of es+, ¢1,9 is a zero polynomial, because

(ch+1,h
9:(1,0) =0 (i =0, 1,2 3). Put g"(c) := lim gileh + Lh) -~y a2 (c) = 1, g7 () =

. flzl—>0 4h2?
clc—2), g§2(c) = -1, g§2(c) =c(c+2).

Lemma 4.7. For c € R, let
el = 50+ c(c — 2)s1 — 53 + c(c + 2)s3,
and el? 1= s1 + s3.
(1) 0Fp, NH = {el” ’ c € Py }. Moreover, ef? € Fp, N Fg, L2 € Fp, NFsNFp,.
2 83:132 Cc Fg.

(2)
(3) Fp,NFg =V (po+ p2, 8po(p1 +p3) — (p1 — p3)?).
(4) ef2 € E(TZ?SJ’) for all ¢ € P}.

Proof. Let ca(u,v) := (u—1)2+v(u+1) and ¢; (u,v) := 2(u—1)v(v—u—1). ca(u,v) >0
for u > 0, v > 0. Then,

a(u,v) \2 (w4 1)((u—1)%+02)?
>> =0

2ueg (u, v ca(u,v)

Thus, f2 is PSD for ¢ € R. We have already proved that f22 = s; + s3 is PSD. Note that

e2(0,u,v,1) = vea(u,v) <c+

. 3
discs (po, p1, —po, p3) = 20 ((po — p1)* + (o — p3)?) (8po(p1 + p3) — (p1 — p3)?)".
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(1) Since ¢f? = }IL% echi1.n/4h*, we have el € Fg. It is easy to see that R, - ¢
Fp, NFo NFp,, We shall determine (Fp, NFe) — Fp,. Let
Vo o= {(L,p1,—1,p2) € €L | 8(p1 +ps) — (p1 — p3)? = 0}.
Since {(1, c(c —2), =1, c(c+2)) | ¢ € R} agree with Ve.
(2) Since Ry - Vo U R, - ef2 is a conic closed convex cone, it must agree with Fo, and
O0F ¢ is generated by ef2 (c € P}).
(3) follows from (1) and (2).

(4) Put Dp, == {(po: p1:p2:p3) € P} | po + p2 = 0, 8po(p1 + p3) = (p1 — p3)?}. Then
Fp, =Ry - Dp,, and ef? € 0F p,. Any point of dDp, is an extremal point of Dp,. 0

To characterized e£2. we need an infinitesimal local cone. Let m: X — A = Pi be the

blowing up at (1:0: 1),Ca;1d put e’(x,y,2) = ef2(xz, yz + 1, 2, 1)/2%2. Then e’(x,y,0) =
2(cx +y —t)%. This zero locus Vx (cx + y — t, z) characterizes el2.
Next we shall study Fs N Fe. Remember that disce is the edge discriminant of X§§
and X§?3+. Let
De = {(x,y, z) € ﬂtfj?gr ‘ y > —1and do(x,z) > 0}.
Then D¢ is a closed convex set such that 5,20; C D¢, and (85’2?; ) NInt(De) C Ve(discs)
by Lemma 4.6. We need the following polynomial to describe the cusp loci of Vg(discg).
&P (2, y) = 260403739669 + 153581431744z + 1022555530082 + 57589066562°
+ 2375407488z — 29801191685 4 4722332162° — 11572224027
+17307648x% — 4382722° + 4096210 + 89440948796y + 32061417248y
+ 81381248642y — 1752888547223y — 20670654722y — 82857254445y
+ 1188607488x%y — 1123184642y — 1559347225y — 1269762y + 819220y
— 2230719772862 — 16231383328zy? — 12833341936x%y% + 4037706534423y
+ 55052445442 y? 4 481918144025y — 26456396825y + 2189271042 >
+ 948224028y + 17612822 + 40962 %% + 30713189004y> + 89602255362>
+ 1770304998422y — 217047462423y> — 70851334402y — 4728214912253
— 185639219225y3 — 1124966402y — 39280642y — 1351682%°
+ 61229381323y* — 326714272002y — 161354198082z2y* — 1936345478423 y*
+ 2347438208z y* + 6684509442°y* + 11330055682°%y* + 4736409627y
+ 14643202y — 40004520712y° + 141147909762y> — 9212529922215
+ 9081775296231 + 7117734421 y5 + 6799189762°1° — 11229849625°
— 68218882715 + 10688483692y — 1398548800xy° + 34571021122:2y5
— 113581990423 y° + 5528793621y® — 1345775362°y® — 1862528025 y°
— 870429832y " + 226903552xy” — 7331863042%y” — 4861043223y"
— 353637122%y" — 121089282 y" — 108565637y® — 133149760xy>
+ 172510422y + 66465602°y® — 28113922%y® + 41474041° + 924099221°
+ 5649472x2%y° — 2633623y° + 2233722y'0 + 141654420 + 8494422 y1°
+ 121340yt + 168962y + 517y2.
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Lemma 4.8. Consider on f}ufi?g : (1, z,y,2) 2 R3. Then

Sing (Ve(discs(1, 2,9, 2))) N PL = {Qo} U L* UCS™P U CS™P U C§"P U C5"P  H,

where Qq, L* and C;"*? are as the follows:
(1) Qo is a point defined by (z,y,z) = (—1,3,—1). This lies on 65’2?;‘.

(2) L? is the half line defined by x = z = (y—1)/2, y > —1. Note that L® ﬂaﬂ’i(}; ={Qo}.
(3) The hyperbolic curve C* on the plane Vg(x — z) defined by * = z = —(y?> — 2y +
13)/(4y + 4) is a singular locus of of Vg(discs(1,z,y, 2)). But C* N 85PCO+ ={Qo}.

(4) Let x = a;(y) be all the four real roots of f¢***(x,y) = 0 when we regard y to be a
constant where y > 3 and a1 (y) < aa(y) < as(y) < as(y). Note that a;1(3) = aa(3) =

a3(3) = ay4(3) = 1. Then, the following four branches are cusps of S.

CP = {(L: o (y): y: a(y)) |y > 3},
C5"*P = {(L: a2 (y): y: 3(y)) |y > 3},
O3 ={(1:as(y): y: 2(y)) € j:(:zcl(,]?) ‘ y > 3},
C5*? = {(Lrau(y) v ar(y) € Hy | y > 3}

Proof. Let f(z, y, z) := discs(1, z, y, z) and f, := gf and so on. Sing (Vi(discg(1,
x

T, Y, z))) can be obtained by solve the system of equations f(z, y, 2) = fz(x, v, 2) = fy(z,
Yy, z2) = f.(x, y, z) = 0. But it is next to impossible to proceed this calculation. Instead
of it, we eliminate z from f,(x, y, 2) = 0, fy(z, y, 2) = 0, and f.(z, y, z) = 0. During
this elimination process, we obtain some factors which include Sing (Ve(discs(1,z,y, 2))).
2v+y—1,4x+1)*+ (y—3)% y* +4z(y+ 1) — 2y + 13 and f5"*’(z, y) are such factors.
Note that
discs(1, 2,9, 2) = (22 +y — 1)*(y* + 4y + 4o — 2y + 13)?
(1623 — 2y + 18zy — x? — y* + 18z + 25y + 26). 0

Proof of Theorem 4.1. We take the section of fVPZOJ by the hyperplane
H, = {( 1$yz)€Z}C }y—r}
We regard H, as (z, z)-plane. Put
Dy :={(z,2) € H, | ( 1a:rz)€f]’co+ ,

Do :=DcNH, = { (x,2) € Hy, ‘ do(z, 2) 20},

Vo :=0D¢c = {(m,z) c H, ‘ do(z,2) = O},

V§ = {(=,2) € H, | discg(1,2z,7,2) =0} — (C* U L*) N H,.
(O-1) If r < —1, then D, = (), by Lemma 4.6(2).

(O-2) If r = —1, then the condition of (1) of Theorem 4.1 determines the set :]V,Zo; NH_q,
because of Lemma 4.7.
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r+z=-2
) x . >
‘"“:FSingurarity L°nL, Piap — pggx\\ T
bl - Py
Singurarity d*nH, e disce = 0
Fig.4.1 : The case -1 <7 <3 Fig.4.2 : The case r =3

(I) When —1 < r < 3, V¢ is as Fig.4.1. Two points C°* N H, and L* N H, are all the
isolated singularities of Vr(discs) N Hs. V§ is a smooth curve in D¢ and enclose a convex
set TZ?;F N H,. Thus,

D, = {(z,2) € R* | discs(1,z,7,2) > 0 and dc(z, 2) > 0}.
Thus, the conditions of (2) of Theorem 4.1 determines j)iogr NH,.

(IT) Consider the case r = 3. Let
f2(x,2) == a8 — 422 + 7a2% — 8232% 4+ 7wt — 4a2® + 2

— 1742° — 3422*2 — 5082°%22 — 508222° — 34222* — 1742°

— 414z* — 71222 — 13322727 — 7T1222° — 4142*

— 8002° — 43202z — 4320z2% — 8002

— 659227 — 1651222 — 65922% — 163842 — 163842 — 11776.
Then discs(1,2,3,2) = —2(z + 2z + 2)2f§ (z,2). As Fig 4.2, Ve(f5) tangents Vo at three
points P:;“fif‘, Péfif and P?f’%n = Pg%ﬂ (these symbols will be explained in (IIT)). Moreover
V(f5) € Dc. Thus,

Ds = {(z,2) € R? | discs(1,2,3,2) > 0 and dc(z,2) > 0},

and the conditions of (2) of Theorem 4.1 determines fPCO+ N Hs.

Note that Ve(f5) N Ve(z + 11.851831---) = 0, and VR(fgg) N Vkr(z — zp) is two points
for zp > —11.851831 - - -

(ITT) Consider the case r > 3. Then, V§ has just four cusps P, := C7**’ N H,
(i(r), as—i(r)) (i =1, 2, 3, 4). Since V& is symmetric with respect to the line Vi (z — ), it
is enough to consider the part z > x. As Fig. 4.3, we divide the part z > a4(y) of V§ into
Ve and V&', Let V& be the smooth interval between P75 and P of Vi,

We observe Fg N Fe ﬂf]tffl%. Let
Ly = {(0:0:w:1) € P} | w € [0,00]},
Ly::{0w01 eIP3 \we 000]}



Note that 8Clspzjr (Bo) =L,UL,UL,.
Define a rational map G : By - - — P(H§%) by

G%(0,2,y,1) := (go(z,y): 91(2,y): 92(2,9): g5(2, 7).
Note that (0:1:0:1) € BsG. Since gi(s,t) = fi(®5%(0,s,t,1))/ge(s,t) (see the proof of
Lemma 4.3), we can extend G to G% : OP3 - — P(f}ffl??)) by G%(z:9:1:0) = G5 (y: 1: 0: ) =
G3(1:0:2:y) = G¥(0: 2y 1) = GS(O x,y, 1).
Since go(w,0) = 0, G5(L,) N HSL % = 0. Since G5(0: z:y:0) = G5(0:0:z/y: 1), we have
G%(L.) = G%(L,). Since
discc (go(ovw)a gl(oaw)7 93(07w)) =0,
we have G°(L,) C Vg(disco) N Vg (discs). Put Ct" .= GS(L,).
Similarly, we define a rational map G’ : By - - - — P(H5%) by
G'(0:x:y:1) := (go(x,y) cg3(z,y) gz, y) gl(x,y)),
and let C¥" := G'(L,). Then C'» U C%" C Vg(disce) N Vr(discs).
Put Hs3:= {(l:a:r:2) € HEL, | r>3}. We regard H>3 C iﬁﬁ% C P(H5%). We shall

determine C¥*" N H>3. Let § := 0 2055977425 - - - be the real root of 3 + 2 + 3t — 1 = 0.
Then, all the real roots of g2(0, t)/gg(O t)y=3aret=1,0. We put

= {G(0:0:w: 1) € P(HY) |0 <w <6} C ctan, P = CP N H, € PY
Chn = {G5(0:0:w: 1) € P 9{503 |w>1} c Clen, Pl = Cfn N H, € PYy
i = {G(0:0:w: 1) € P(HS%) | w > 1} C Ot P = Cfn N H, € Py
Cien = {G¥(0:0:w: 1) € P, ) [0<w< 8} C o, P = 0PN H, € PYy
Then O N Hsj3 = Ctan UCE™ and C8" N Hyy = C§ U C{™. Note that Fg N Fon
{GSOOwl)eIP’:}C \5<w<1} 0.

Lemma 4.9. C{** U CR™ U CP U O C Zar(Fs NFe) N H>s.
Proof. Clear. O

Put C°*? := Clsgeo (C7*P U C5*P U C5"P U C*P). Let’s determine C*™ N C“P.
4,3
Since C%* = G9(L,) C Vir(discc) N Vir(discs), and
1-2w® (w?+1)2—w w32>

GS(0:0:w: 1) = (1: e ” P
we put G2 (w) := (1 — 2w?) /w?, GS( )= ((w?+1)? —w)/w and G% (w) := (w3 —2)/w =

G3 (1/w).

Lemma 4.10. n(z,y) = 61 + 62z + 56y + 3222 + 30xy — 632 + 923 + 422y — 62y* —
16y + 2% — 422y? — 6293 + y* — 23y? has the following properties:

(1) If (1:z:y:2) € CE22 U CE2" | then n(xz + z, y) = 0.

(2) Let r > 3. On a plane H,., the zero locus n(x + z,r) = 0 is the union of two lines. One
is the line P}3* P3P, and the other is the line P3P}, n(x + z,7) < 0 between these
two lines, and n(x + z,r) > 0 outside.

Proof. (1) follows from n(G3 (w) + G (w), Gg(w)) =0.
(2) n(x,r) = 0 has just two real roots for r > 3, and n(y — 3,y) < 0 for y < 3. O
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Note that
cus (w— D)*(w? + 1)*(w* — 6w? — 8w + 1)2 f3s(w)
Is p(Gf(w), Gf(w)) = w22 ’
here f3g(w) is a polynomial of degree 38 whose real roots are two negative numbers w =
—8.590880 - - -, 2.4445756---. Let 7y := 0.1150--- and 75 := 2.9343-- - be the real roots of
w? —6w? — 8w+ 1=0, and

- 92(0,71) 92(0,72)

 90(0,71) 90(0,72)
be the real roots of r* — 283 — 90r2 — 92r + 16353 = 0. Then, all positive the roots
of f;usP(Gg(w)a Gﬁ(w)) =0arew = 1, 71, 7o. In the case w = 1, G¥(0:0:w:1) =
(1: =1:3: =1) = Q. Thus, C!2* N C“*? consists of three points Qo, P!} = P."P =

= 7.9207039574---, ro:= = 30.474537321 - - -.

7"1,1 7‘1,1
G®(0:0:71:1), and P = PP = G9(0:0: 792 1). Similarly, C¥*" N C“**P consists of three
points Qg, Prtlaf}l = Prcluyip =G'(0:0:71: 1), and Pfj% = Pf;f‘;p = G'(0:0: 9: 1).

Lemma 4.11. In ﬂfol??) ~ R3: (x,9,2), k1(z + 2) + Koy = 1 defines the plane which
passes through P, Pi%, Pty and PF™,

r1,17 + ro,2y r1,4°
Proof. Note that P} = P"{" = (a1(r1), r1, aa(r1)) and so on.
91(0,71) + ¢3(0,71)
90(0,71)
91(0, 72) + g3(0, 72)
gO(Oa 7—2)
Solve k1 (G5 (w) + G2 (w)) + k2G5 (w) = 1 for w = 71 and 75. Then, we obtain

as(r) +as(ry) = :Gf(Tl)"‘Gf(Tl),

aq(re) + ay(re) = =G (1) + G2 (12).

s — %+ 2t° — ¢
s4 — 283t — 2513 + 14 — 452t 4+ 5512 — 23 + 252 — 25t — s+ 1
= 0.0129074031 - - -,

K1 ‘=

—st2 2% +5— 2t
s — 283t — 2st3 +t4 — 452t + 5512 — 23 + 252 — 25t — s+ 1
= 0.0318925844 - - -,

Rg (=

where s = 71 + 79, t = 71 72. Let v, 6 be all the imaginal roots w* — 6w? — 8w + 1 = 0, and
put so:=7v+6, ty :=70. Then s+ s9 =0, tto =1, t + t3 + s5o0 = —6, tso + st = 8. When
we eliminate s, t, s1, t; from these relations, we have

817808203k5 — 546807084k° + 129155640k] — 13342016k3 4 5560802 — 10176k, + 64 = 0,
43042537k5 — 45145145 — 188769k5 — 38684k35 + 41193 — 114Ky + 1 = 0. O

Now, we shall complete the proof of Theorem 4.1. To prove (3), (4), (5) of Theorem
4.1, we put

D®) .= {(z,2) € H, ‘ k1(x + 2) 4+ Kkor > 1, discg(1, 2,7, 2) > 0, de(z, 2) > 0},
ki(z+2)+kar <1, n(x+2z,7)>0,

discs(1,z,7,2) > 0, do(x,2) > 0 } ’

DS’) = {(m,z) € H, } ki(x+2)+ror <1,n(z+2z1)<0,do(zx, z) > 0}.

DW .= {(x,z) € H,
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— Tangent Pf3" POF
Ve
; Py = (an(r), au(r))
Vc‘l“x.
Vi PR = (0a(r).05(r)

ﬁ\k Tangent P *

Vo e
)4
’ Vevye
Fig.4.3: Thecase 3<r<mr Fig.4.4: The case 3<r<mr;

(II-1) If 3 < r < 71, then P = (a1 (r), aa(r)) € Int(D¢), and V§* tangents to Ve
at Pfy", as Fig. 4.3. This implies that Pf3" € (0F¢) N (0F5). We divide the curve segment

r,1

Vg at the point P3", and denote the upper part by
Vit = {(z,2) € H, | discs(z,r,2) =0, de(x,2) > 0, 2 > 2(Pim)},

where z(P) is the z-coordinate of the point P € H,. Then V{'' € Fg. Every P € Vi — v
is obtained as P = G(0: s:t: 1) for a certain (s, t) € C2 — By.

Let Vg’z be the symmetric set of V§’1 with respect to the line z = z on H,.

Similarly, (az(r), as(r)) € Int(D¢), and VI tangents to Vo at Pf3*, as Fig. 4.4. Let

Vg’g = {(iL‘, z) € H, ‘ discs(x,r,2) =0, do(z,2) > 0, z(P,fagn) <z< z(P,faQH)}
be the interval of Vg™ between P3" and P4 By Lemma 4.10,

discs(1,z,7,2) =0, de(x, 2) >0, }

r,1 r,2 3 _ o cO+
Ve uVgeruvg” = {(la:rz) € 0Py 5 (@ + 2,7) > 0

So, D, = D¥ uDW U DY,

(III-2) If r = 71, then PP = (o1(r1), aa(r1)), P = (aa(r1), oaa(r1)) € (0Fc) N
(0Fs). The line defined by k1 (z + 2) + kg1 = 1 agrees with the line P} P!, Others are
similar as (III)-1.

(ITI-3) Consider the case r1 < r < ry. About VST’3 the situation is same as (III-1).

The situation of V4" and Vg changes. If 7 > ry, then (ai(r), as(r)) ¢ Dc. and
P" ¢ D¢ as Fig. 4.5. In this case, Vo and Vg™ intersect at a point Qf transversally. So,
let

Vg = {(z,2) € H, | discs(z,7,2) = 0, do(z,2) > 0, 2 > 2(Qf) },
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be the interval of V¢'® upper than Q¢. Let VST’2 be the symmetric set of VST’1 with respect
to Vk(z — 2z). Then,

ngl U Vg’Q = {(1:1‘:7‘:2) S 89)51?;_

discs(1,z,r,2) =0, do(x,z) > 0, }
Ki(x 4+ 2) + kor > 1 ’
discs(1,z,7r,2) =0, do(x, z) > 0, }

VIS =3 (1ix:r: 2) € 9P
S {( ) 4.3 n(x+z,7) >0, ki(x+2)+kror <1

So, D, = D¥ U DW™ U DY,

Fig.4.5 : The case r > r; Fig.4.6 : The case r > ry

(III—4) If r = T2, then Ptan = (CVQ(TQ), (13(7’2)), P:ga’% = (042(7’3), CK3(7‘2)) S (81}'0) N

7‘2,2 -

(0Fs). Others are similar as (III-3).

(III-5) If 7 > 7o, then (aa(r), as(r)) ¢ D¢, and P, P ¢ D¢ as Fig.4.6. In this
case, Vo and V' intersect at two points el Q¢ transversally. So, let

Vg’?’ = {(,2) € H, | discg(z,r,2) =0, do(z,2) > 0, 2(Q?) < 2 < 2(QP)}
be the interval of Vg between Q¢! and Q¢?. Then
Vituvituvet = {(Lizir:2) € 8?2?; | discs(1,2,r,2) =0, do(z, 2) > 0}.
If r > 7o, then k1 (x + 2) + Kor > 1 holds for any (z, z) € D¢. Thus D, = D7(n3) in this case.

By (III-1)—(III-5) and Lemma 4.11, we conclude that the conditions of (3), (4), (5) of
Theorem 4.1 determine SPZ(’); when r > 3. 0

Proposition 4.12. (1) s; + s3 + cs2 € ?Z?gr, if and only if 0 < ¢ < 16. Moreover
Ss1+ 83+ 1659 = 61’4/64 and s; + so = efg.
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(2) Let & := 0.0308472031 - -- and & := 7.631998798 - - - be real roots of t* — 3t3 — 27t —
64t + 2 = 0. Then s; + c¢so and s3 + csg are PSD, if and only if & < ¢ < &s.

(3) Let up := 0.2882309962 - - -, u4 := 1.4587325322--- be real roots of pu* + p® — 2u® —
3u+1=0, v :=0.1070225045 - - -, vy := 5.2319384324 - - - be real roots of v* — Tv3 +
1302 —20v +2 = 0, and v, := 0.3713081034 - - -, v5 := 3.586633132 - - - be real roots of
vt — 413 4 302 —6v 42 = 0. Moreover, put s := 1/p4 and p3 := 1/p1. Then sy + & 59,
s3+&152, s3+&252 and s1 + {252 are positive multiples of e, vy, €y vss Cug,vs a0d €4y 0y
respectively.

(4) Fp, is given as the following. Normalize f € Fp, as f = xs1 + (1 — x)s3 + yss, and

correspond this f to the point (z, y) € R?. Let
D(Py) = {(z,y) € R? ’ zs1 4+ (1 — x)s3 +yss € Fp, },
Ve = {(x,y) € R? ‘ 0<z<1,4<y<8, discs(0,z,y,1 —x) :0},
Vei={(z,y) e R? |0<2<1,0<y<4, discs(0,2,y,1 —x) =0} U{(1/2,0)}.
Then, D(Py) is a convex domain enclosed by V&, V& and lines x = 0, z = 1.
u

Proof. (1) Let f; := s1 + s3 + ts2, w(u) := u+ 1/u, v (u) = m(t + 2 — w(u)),
and ry(u) = —w(u)? + 2(3t + 2)w(u) — (¢t — 2)%. Then
F1(0,u,0,1) = (u+ 1) (0 — vp(u))? + m

Note that w(u) > 2.

Consider the case w(u) > t 4+ 2. Then v(u) < 0 and f;(0,u,v,1) is monotonically
increasing with respect to v in v > 0. Thus f;(0,u,v,1) > f:(0,u,0,1) = tu(u+ 1) > 0.

Consider the case 2 < w(u) < t+2. Then r¢(u) > (1) = t(16—t). Thus, f;(0,u,v,1) >
0if0<t¢t<16. Ift <O0ort > 16, then v,(2) > 0 and f;(0,1,v,(1),1) = r(1)/8 =
#(16 — 1) /8 < 0.

Since f16(0,1,v,1) = 2(v — 4)? and g¢1(1,4) = 64, we have fig = e1,4/64.

(2) Let f; := s1+ts, vi(u) := u(t+1—u)/2, and r(u) := —ud+(2t+2)u?—(t—1)?u+4t.
Then f;(0,u,v,1) = (v—v(u))?+ (u/4)r¢(u). Ifu > t+1, then f;(0,u,v,1) > f(0,u,0,1) =
tu(u +1) > 0.

Assume that 0 < u < t+1. Observe the cubic function r(u). The roots of (d/du)ri(u) =
0 are uy := (2(t + 1) £ Vt* + 14t + 1)/3. Note that 0 < u_ <t + 1 < uy. Thus min f; =
min7; = r4(u_). If the cubic equation 7 (u) = 0 has a double root at u = u_, then Discg(—1,
2t+2, —(t—1)2, 4) = 0. Since Disc3(—1, 2t+2, —(t—1)2, 4) = —16t(t* —3t3 - 271> — 64t +2),
s1+tso is PSD, if and only if & < t < &. Since discg(0, 1, ¢, 0) = —t2(t* —3t3 —27t%2 —64t+2)
ft € Fgif t =& and &s.

Since discg (0, z,y, z) = discs(0, z,y, x), s3 + tso is PDS, s1 + tsy is PSD, if and only if
&1 <t < &.

Since s3(a, b, ¢, d) + tsa(a, b, c,d) = s1(b,a,d, c) + ts2(b, a,d, c), we have the same result
for sg + tss.

(3) Consider the case f; := s1 + tsp with ¢t = &, &. Eliminate t from 7 (u) = —u? +
(2t +2)u? — (t — 1)%u+ 4t = 0 and t* — 3t3 — 27t% — 64¢ + 2 = 0, we obtain

u(u — 1) (u* + u® — 2u® — 3u + 1) (u* — 160> + 48u? — 384u + 512) = 0.

The root u relating &, {&; must be appear as double roots, because ¢, (u) = 0 has u as a
double root. Thus, we obtain @1 and py. Similarly, we obtain v; and other p;.

I
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(4) For f = PoSo + P1S1 + p2S2 + p3s3 € %2?3, diSC(Pl) = Do and diSC(PQ) = po + p2.
By Lemma 4.5, 0Fp, C Fp, UFgs U Fe. disc(Py) = 0 corresponds to y = 0. Thus, D(P)
must be included in the upper half space y > 0. Since discc(0, z, (1 — z)) = —z%(1 — x)?
and (1/2, 1) € D(Py), D(P) is included in the stlipe 0 < z < 1. V& and V! are curves as

Fig 4.7. Thus, we have the conclusion. O
'UA tll "
b P an
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Vo =Vs \
| 6174 u,0 u,2,
8 VG VG 9
(,U'37V3) Vg, L%
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?P u’O u Dh
" O P e e
Ll
© (p2,v2)
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1 ; V(l;,o / 1 g
. : h
Fig. 4.7 Fp, Vi = Vi Fig. 4.8 D!
Let
hoo_ . 2 | h 0+\\1 _ - 2 | ,h 0+
D = {(u.v.w) e Py | € v € 8(?273 )} = {(u.v.w) c Py ‘ €y pw € fPfL?) ,
disce (g8 (u,v,v), gl (u,v,w), gh(u,v,w))
Ch 0\ @ V) JT T Yy > I3\ Y
do " (u,v,w) = ;

ww?(u+w —v)?((u—w)? + v?)?
dec(sv t) = deCh(Sv L, 1)

dS"(u,v,w) is a homogeneous polynomial of degree 10. Let L, := Vi(w) C P2 be the
infinity line segment. For (u:v:w) € P34 — Ly, let s := u/w, t := v/w and regard P — L,
to be the the first quadrant of the (s, t)-plane R%. The point (s,¢) = (1,0) ¢ D! because
e10 = 0. For completion of D, it is better to put ef2 = s1 + s3 at (s, t) = (1, 0). In the
quadrant s > 0 and ¢ > 0, the curve Vi := Vg(dS (s,t)) has two connected components V.
and V4. Similarly, Vi := Vk(go(s,t)) has two connected components V) and V¥. V{ and
Vcl; are included in ¢t < s+ 1, and V4, V¥ are included in ¢ > s + 1.

VEnVE = {(m, ), (p2,12)}, and VI NVE = '{(M&Vs); (ua,v4)}. Divide V¢ and
V/, by the points (u1,v1) and (p2,vs), and define V5’ and V' (i = 0, 1, 2) as Fig. 4.8.
Similarly, we divide V% and V¥ by the points (us,v3) and (ua,v4) and define V5" ang V5"
(i=0, 1, 2) as Fig. 4.8. The segment V(l;’l corresponds to Vé, and Vg o1 corresponds to V.

Theorem 4.13.
DI = {(uzv:w) € P3| gh(u,v,w) >0, v >0 and one of the following (1) or (2) holds.}.
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(1) dS"(u,v,w) > 0.
(2) g7 (u,v,w) > 0 and g} (u,v,w) > 0.

Proof. We already proved that if ¢/ is PSD, then e € 8(9’2?5“ ). By Proposition

4.2, gl (u,v,w) > 0 is required.

(i) Consider the case gf(u,v,w) > 0.

Let p; = g'(u,v,w)/gh(u,v,w) (i = 1, 2, 3). ek ., is PSD, if and only if (p1,
pe2, ps3) satisfy the condition of Theorem 4.1. If eZ,U,w is PSD, then eZyU,w € Fs and
discs(1,p1,p2,p3) = 0. Conditions on n(p; + ps, p2) and k1(p1 + p3) + Kk2p2 — 1 does not
have special sence in this case. Thus, eZMw is PSD, if and only if dc(p1,p3) > 0. That is,
disce(1,p1,p3) > 0or ‘py > 0 and p3 > 0. disce (1, p1,p3) > 0 is equivalent to u > 0, w > 0
and dS"(u,v,w) > 0. Thus, we have the conclusion.

(ii) Consider the case gf(u,v,w) = 0.

In this case, Vé and V¢ of Proposition 4.12 appears in OD". By Proposition 4.12,
VL U VY is determined by go(s,t) =0, g1(s,t) > 0 and g3(s,t) > 0. O

By the avobe theorem, ¢, is PSD, if and only if 77 < t < 7. Similarly, 27};1,0 =
teg, — (t* = 1)(t* + 1)%sy is PSD, if and only if 1/75 <t < 1/7.

We shall observe D! precisely. Fs N Fp, and Fs N Fp, are determined already. We
observe the part of D" corresponding to Fs N Fc.

Let Llc be the line segment defined by s = 0 and 74 < ¢t < 79, and put Vslc =
VAP U LL UVAY Since Vi, C V(disce) NADE, if (s,t) € Vdg, there exists p € PL such
that e5.(0,0,p,1) = 0. We denote this p by p(s,t) = p(u,v,w). Note that p(0,7) = 7,
p(ur, 1) = 0. If (s,t) € Vé’o, p(s,t) is monotonically decreasing from 71 to 0 with respect
to s. Similarly, p(0,72) = T2, p(us, v3) = +00, and of (s,t) € Vg’o, p(s,t) is monotonically
increasing from 73 to 400 with respect to s. If (s,t) € L%, then p(s,t) = t. So, each p € [0,
+0o0], there exists unique (s, t) € Vo such that p(s,t) = p. That is, e5+(0,0,u,1) = 0.
Note that (s,t) = (0,71) corresponds to Py = P:*}, and (s,t) = (0,72) corresponds to
Py = PP,

When w = 0, let L, be the interval of L,, between (1:71:0) and (1:72:0). Note that
Vi N Ly = (1:71:0) and V2?0 Ly, = (1:79:0). Put V&, := V& U L% U V5. Note that
p(pa,vq) = 0, p(1:¢:0) = 1/t, and p(us,v3) = +o00. So, each p € [0, +o0], there exists
unique (u:v:w) € V&, such that p(u:v:w) = p.

LL, corresponts to C%*", and LY, corresponts to C20. PfA™ moves on the interval of L¢
defined by 1/m < wv/u < 1. Q% moves on Vcl,’z. P3" moves on the interval of LY, defined by
1 <t <7 Q! moves on Vg’o.

If (s,t) € V(ljo U Vé’Q U V(}"O U VC%’Q and p = p(s,t), then s and p satisfy the following
relation:

(p* +1)*(p* — 8p® — 6p° +1)s*

+ (Bp+1)(—p” —3p% —2p" — 6p° — 14p° + 6p" — 2p> — 6p*> — 5p + 1)s°
—2(p™ + 1208 +26p" — p° +4p° — pt +26p3 + 12p2 + 1)s>
+(p+3)(p? —5p% —6p" —2p° +6p° — 14p* — 6p> — 2p* —3p — 1)s

+ (p® 4+ 1)%(p* —6p* —8p+1) = 0.

Especially, we have the following:
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Proposition 4.14. For t € [0, +oo]. let £ C Fo be the local cone of ?Z?; at
(0:0:¢:1) € P3.. Take (u;:v;:w;) € Lo such that p(u;:viiw;) =1 (i =1, 2). Then
Ltc = R+ ’ 221701,101 + R+ ) ezz,vz,wz'
Theorem 4.15. All the elements ofE(fPZ?gr) is the positive multiple of e} , ,, ((u:v:w)
€ D) orel® (t € P}).

Proof of Proposition 1.11. Let ey,..., ego be all the monomials in Hy4 3. Assume that
(s:t:1) € D! s> 0,¢t>0and t # s+ 1. Put u:= /s, v:=+/t and Es,(a,b,c,d) := es,(a?,
b%, %, d?*). Vg(Es;) contains at least 27 isolated points. Among Vi (Es;), we choose the
following 20 points: a; = (1:1:1:1), ag = (—1:1:1:1), ag = (1: —1:1:1), ay = (1:1: —1:1),
a; = (1:1:1: 1), ag = (1:1:—1:-1), a7 = (1:—1:1: 1), ag = (1:—=1:—1:1), ag =
(0:u:v:l), ajp = (1:0:wiw), a;3 = (v:1:0:u), ajp = (w:v:1:0), ayg = (0:w:v:—1), a;y =
(=1:0:ww), a5 = (v:—1:0:u), ajg = (wv:—1:0), a;7 = (0:u: —v: 1), ayg = (1:0:u: —v),
ajg = (—v:1:0:u), agy = (u: —v:1:0). Let a; ; :=e;(a;) and A := (a; ;). Then

det A = £104857657t%(t — s — 1)*((s — 1)* + t%)* # 0.
Thus, there exists no g € Hy 3—{0} such that g(a;) =0 forall 1 <i <20. Thus Es; ¢ 346.
O

It seems that if (s,t) € V' U VL U VR uvet uveyt U Ve — (L U LY), then
es € E(PL3). If (s,t) € Int(D}) UL ULY, then ey ¢ E(P] 5). This suggests that €(P}5)
is not so simple.

If (s,t) € VUV UVEO U VE? — (LL U L) — {(ui,vi) | i = 1, 2, 3, 4}, then
es(a?,b%,c2, d?) has 35 isolated zeros, because ¢s4(0,0,7,1) = 0 by r = p(s,t) > 0, t # 1.
So, ¢s.(a?,b?, c%,d?) will be an extremal element of P, ¢ which is irreducible.

4.2. Structure of TZE

We have not complete any of (I1), (I2), (I3) for TZE. But, we shall give (I4) and some

information about X{7%.

We choose sq := 53—51,1,1, S1 = 52,1,0—51,1,1, 52 1= 5’2,0,1—51,1,17 3 1= 51,2,0—51,1,17
sy = S1,1,1 as a base of H{ 5, and define ®§ 5 : P3 — P4 by @ 3(a) = (so(a) : si(a) :
sa(a) : s3(a) : sa(a)). Put Xff:g = @5 5(P3). ©i% : P3 /(Z/4AZ) - -- — Xj?;‘ split as

c
Vis

\113?3 P /(2/47) == X;;g LN Xg?;.

Proposition 4.16. (1) Zar(X{%) is the hypersurface of Pg : (to:- - - :ts) = P((H§ 5)Y)
defined by

ff,3($0,$1,$2,$3,$4)
= x:{’ — ToT1T3 + x% + x%xz + xlxg + 33%563 + :Cg:l:?) — XoT1T2 — ToX2XL3 — T1T2X3
+ x4 (mg + 5:1:% + a:% + 51:% — 2xox1 — 2x0T9 — 2x0x3 + 2T1T2 — 613 + 2x2x3>
This cubic hypersurface has an isolated singularity at ®§ 5(1:1:1:1) = (0:0:0:0: 1).
(2) Zar(X$h) = {x € Py | fi3(x) =0, f{3(x) > 0}.
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(3) wi% : P3 /(Z/4Z) — Xj?g"' is an isomorphism.

Proof. (1) follows from ff 5(so, 51, 52, 53, 54) = 0.

(2) Define pr : Xi:g cee = Xj?;r by pr(zg:---:x4) = (xg:---:23). This is a birational
map. By Lemma 4.3, we have the conclusion.

(3) It is easy to see that W§% : P} /(Z/4Z) — Zar(XiE) is an isomorphism. By (2),
we have the conclusion. 0

Proposition 4.17. ng does not have the main component.

Proof. Assume that X{% has the main component. Note that S(TZ?; ) = E(P5H)N
f}Cﬁ?;r . Let f be an element of the main component such that f € &(P5%) — S(Tj?gr ). Then,
there exists a = (a: b: ¢: 1) € Int(P3) such that f(a) = 0. (a, b, ¢) # (1, 1, 1), since f ¢ ij?g“.
Put b := (b:c:1:a) € Int(P%). Note that a # b. Then the line ab is a bitangent line of the
cubic surface Ve (f) € PL. But a cubic surface has no bitangent line. A contradiction. O

Proof of Theorem 1.10. Let XZ:E = X(P3, HS 3),
By :={(0:s:t:1) € P | s, t € Ry},

and Q := {(1:1:1:1)} U By. By Theorem 2.10, it is enough to show &(X{%) C @5 3(1).
Take any x € E(Xj’g). Then, there exists D € A(ng) such that x € D and that Fp is
a face component. By the above proposition, D C 8Xf§ U Sing(XiE). Ifx e ang, then
x € ®§3(Bo). If x € Sing(Xig), then x = ®f 5(1:1:1: 1) by Proposition 4.16. O

For test condition, we can prove the following by the same idea.

Proposition 4.18. Assume that f(z1,..., ©,) € H, 3, and there exists a € Int(IPi_l)

such that f(a) = 0 and 8if(a) =0 for alli = 1,..., n. Then f € ?:73 if and only if

f(b) >0 for all b € OP" 1.

Proof. Assume that f(c) < 0 for a certain ¢ € Int(P~"). We may assume that f take
a minimal value at c¢. Put g(¢t) := f((1 — t)a + tc). Then, a cubic polynomial g(¢) takes
minimal values at t =0 and ¢t = 1. A contradiction. 0

Section 5. Philosophy of Semialgebraic Variety.

5.1. Real algebraic quasi-variety.

Till §4, we used the notion of (quasi-) semialgebraic varieties without exact definition.
In this section, we shall discuss how its definition should be, at least for theory of PDS
cones. Before to give it, we must discuss what a real algebraic variety is.

Usually, we say (X, Ox) is an algebraic variety over R when (X, Ox) is an integral
separated scheme of finite type over R. X (R) denotes the set of R-rational points, and
Xc := X Xgpecr Spec C. By this definition, X and X¢ are irreducible and reduced. To treat
possibly reducible or non-reduced varieties, we shall call a separated scheme of finite type
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over Spec(R) to be an algebraic quasi-variety. This notion is not convenient for algebraic
inequalities. For example, there exists infinitely many algebraic varieties X over R such that
X(R) = R% X may not be affine even if X(R) = R?.

The definition of a real algebraic variety is given in §3.2 in [8]. According to this defini-
tion, every real algebraic variety is reduced but may be reducible (i.e. not irreducible). To
keep consistency with complex algebraic geometry, we shall add a restriction that real alge-
braic varieties must be irreducible and separated. To treat possibly non-reduced varieties,
we shall give alternative definition of real algebraic quasi-varieties as the following;:

Definition 5.1.(Real algebraic quasi-variety) (I) A locally ringed space (X, Rx) is
called a real algebraic quasi-variety, if there exists a separated scheme (Y, Oy ) of finite type
over Spec R which satisfies the following:

(1) There exists an injective morphism ¢: (X, Rx) — (Y, Oy) as locally ringed spaces,
and ¢ induces a homeomorphism X — Y (R) as topological spaces with respect to Zariski
topology and Euclidean topology.

(2) Take any affine open subset V' C Y. Let np be the maximal ideal of Oy (V) corre-
sponding to a closed point P € Y. For an arbitral non-empty subset U C V N (X)), we
put

SU = m (Oy(V) —np).
PeU

If U is an Euclidean open set, then t* : S;;'Oy (V) — Rx (¢71(U)) is an isomorphism

of R-algebra. Thus, each maximal ideal m C Rx(:1(V)) corresponds to a point

Pe. V) cCX.

(3) Take an arbitral affine open subset V' C Y. Then

{feOy(V)| f(P)=0forall PeV(R)}

is a nilpotent ideal of Oy (V).

In this case, Y is said to be a R-scheme which represents X. If we can choose Y such
that Y is irreducible and reduced, then we shall call X to be a real algebraic variety (See
Notation 0.1 of [18]).

U C X is called an affine open subset of X, if there exists an affine open subset Uy C Y
such that U = 71 (Uy (R)). Zariski open (resp. closed) subsets are defied similarly. The
Euclidean topology of X is the topology induced from the analytic topology of Y¢. Y (R) is
also denoted as Y¢(R). When V' C Y is an affine open subset and B C V(R) is a subset
such that Clsy ) (Int(B)) = Clsy g)(B), we put

SB = ﬂ (OY(V) _nP)7
PeB
and Ry (171(B)) := " (S5'Oy (V)). By this definition, (X, Rx) can be also regarded as a
locally ringed space with respect to the Zariski topology and the Euclidean topology. We
usually omit to write ¢. For example, we write X = Y (R).

Note that if (X, Rx) is a (possibly reducible) separated real algebraic variety in the
sense of [8], there exists a reduced scheme (Y, Oy) which satisfies the above conditions.
Contrary, if (X, Rx) is a reduced real algebraic quasi-variety as Definition 5.1, then (X,
Rx) is a real algebraic variety in the sense of [8]. Definition 5.1 may not be so clear, the
author wishes someone will give more nice definition.
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5.2. Semialgebraic quasi-variety.

Definition 5.2.(Semialgebraic quasi-variety) A locally ringed space (A, R4) is called
semialgebraic quasi-variety, if there exists a real algebraic quasi-variety (X, Ry ) and a finite
affine open covering {V;}7_; of X which satisfies the following:

(1) There exists an injective morphism ¢: (4, Ry) — (X, Rx) as locally ringed spaces,
and ¢ induces a homeomorphism A — ¢(A) as Euclidean spaces. Moreover, ((A) is a
semialgebraic subset of X, i.e. t(A)NVj is a semialgebraic subset of V; for each ¢ = 1,.. .,
r.

(2) Zarx(A) = X.

(3) Take an arbitral i € {1, 2,..., r}, and take any Euclidean open subset U C +~1(V;). Put
R; := Ry, (V;). For a point P € «(U), let mp be the maximal ideal of R; corresponding
to P, and let

Sy = m (Rl — mp) C R;.
PeU

Then ¢* : S;;' R; — R4(U) is an isomorphism of R-algebra.

Moreover, if X is a real algebraic variety, then A is said to be an semialgebraic variety.
In this case, the field of fractions Q(R4(U;)) is called the field of rational functions, and is
denoted by Rat(4) := Q(Ra(U)).

The Zariski topology and the Euclidean topology on A are defined naturally. A semi-
algebraic quasi-variety A is called irreducible if it is irreducible with respect to the Zariski
topology. A is said to be reduced if R4 p has no nilpotent elements except 0 for every
P e A, dim A is defined by dim A = rlglgic Krull dimRy4 p. A is called connected if it is

connected with respect to Euclidean topology. Note that A may not be connected even if
A is irreducible. A is called affine, if we can choose X to be isomorphic to a closed Zariski
subset of R™ for a certain n.

Notions about singularities of A are defined using R4 p. Note that if Y is a R-scheme
which represents X, then R4 p = Oy, p. We denote

Sing(A) := {P €A } R4, p is not a regular local ring},
Reg(A) := Int(A) — Sing(A).

A regular map or holomorphic map (resp. isomorphism) between semialgebraic quasi-
varieties is defined as a morphism (resp. isomorphism) of locally ringed space.

We can choose a real algebraic quasi-variety X and a separated scheme Y of finite type
over R so that Y¢ is complete and Y represents X. Then, we say X is a real envelope of A,
and Y¢ is a complex envelope of A.

X and Y¢ are not unique for A, but it is easy to see that:

Proposition 5.3. Let A be a semialgebraic quasi-variety, Yc and Y} be complex
envelopes of A. Then Y¢ and Y{ are birational equivalent. If A is a semialgebraic variety,
then Rat(A) ®@r C = Rat(Y¢).

This follows from Proposition 5.10 given later.

By this proposition, if v(Y¢) is a certain birational invariant of complex algebraic va-
rieties, then we can define v(X) := v(Yc) to be an invariant of X. Especially, when A is
non-singular semialgebraic variety, we can choose Y to be non-singular projective, and we
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can define h'(A) := dim¢ H*(Yc, Oy,) and P, (A) := dim¢c H°(Ye, Oy, (mKy,)) for m > 0.
Using P,,,(A), we can define the Kodaira dimension k(A),

Remark 5.4. (1) Reg(A) # 0 if A is reduced.

(2) Reg(A) is not always dense in A with respect to the Euclidean topology. For
example, consider the case that A has an isolated singularity as a connected component.

(3) If P € Reg(A) NInt(A) and dim A = n, then there exists an Euclidean open
neighborhood P € U C A such that U is homeomorphic to an open subset of R".

(4) By our definition, an isolated singular locus of A is included in Int(A). But Sing(A)
sometimes acts as if it is a boundary. So it will be safe to discuss Int(A) N Reg(A).

In complex algebraic geometry, a subscheme is a closed subscheme of an open subscheme.
But to define semialgebraic subvarieties, we must be careful. For example, any semialgebraic
subset B of a real algebraic variety A, must be able to be treated as semialgebraic quasi-
subvariety of A.

Definition 5.5.(Image of a regular map) Let A, B be semialgebraic quasi-varieties,
and p: A — B be a regular map. Let C := ¢(B). By Tarski-Seidenberg theorem, C' is a
semialgebraic subset of B. We define R as the following:

We may assume A and B are affine, since definition of R¢ is local. Let R4 := R4 (A),
Rp := Rp(B), and ¢p*: Rg — R4 be the homomorphism induced by ¢. We put R :=
Rp/Kerp*. Note that R defines Zarp(C). For a point P € C, there exists the unique
maximal ideal mp C R corresponding to P. Put S := ﬂ (R —mp), and Rc := S™'R.

pPeC
Note that R¢ is a Rg-module. The structure sheaf of C' is defined by R¢ := ],%Zw which is
the coherent Rp-module defined by Rc¢.

(C, Re) is called the image of ¢, and simply denoted by C = p(A).

Definition 5.6.(Semialgebraic quasi-subvariety) Let A, B be semialgebraic quasi-
varieties. A morphism ¢ : (B, Rp) — (A, R4) is called an immersion, if ¢ induces
an isomorphism B — ¢(B).

If B is a semialgebraic subset of A, and the inclusion map B — A is an immersion,
then B is called a semialgebraic quasi-subvariety of A.

If A is a semialgebraic quasi-variety, and B C A be a semialgebraic subset. Then, there
exists a unique sheaf of rings Rp such that (B, Rp) is a semialgebraic quasi-subvariety of

(A, Ry) and (B, Rp) is reduced. Rp is called the reduced structure of B C A.

Assume that A, B, C are non-singular semialgebraic varieties such that A = B U C,
and P € BNC. It may happen that Rp p 2 R, p. It is easy to see that Ry p agree with
one of Rp p and R¢,p.

Definition 5.7.(Fibre product) Let A, B, C be semialgebraic quasi-varieties, and
f:A— C, g: B— C be regular maps. The fiber product A x¢c B is a semialgebraic set

AxcB=/{(a,b) € Ax B]| f(a) =g(b)}

with a structure sheaf Ry @x, Rp.
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Definition 5.8.(Inverse image) Let A, B be semialgebraic quasi-varieties, and ¢: A —
B be a regular map. Let C C B be a semialgebraic quasi-subvariety. The inverse image
0 1(0) is defined as the fiber product ¢~(C) := A xp C.

Definition 5.9.(Birational map) Let A, B be semialgebraic quasi-varieties. If there
exists Zariski open subsets U C A and W C B such that Zary(U) = A, Zarg(W) = B
and there exists a regular map ¢:U — W, then we say that there exists a rational map
p:A--- — B. Moreover, if p:U — W is an isomorphism, we say that p:A--- — Bis a
birational map, and A and B are birational equivalent.

Proposition 5.10. Let A, B be semialgebraic quasi-varieties, and let X, Y be complex
envelopes of A, B.
(1) If there exists a rational map ¢: A--- — B, then there exists a rational map ®: X¢ -+ - —
Y such that ®|4 = .
(2) In (1), if ¢ is a birational map, then ® is a birational map.

Proof. (1) We may assume ¢ is a regular map. Take a point P € Int(A) such that
Q = ¢(P) € Int(B), and take an affine open subset W C Y such that Q C W.

We can choose fi,..., fr € Ry,g such that we can regard f; € Oy (W) and Oy (W) =
Clfi,..., fr]. Put gj := ¢*(f;) € Ra,p. We can find an affine open subset U C X¢ such
that g1,..., g, are holomorphic (regular) on U, and that U N X is dense in X and U N A is
dense in A. Then, ¥*:Rp — Ry induces ¥*: Oy (W) — Ox(U). ¥* induces a rational
map &: X --- - Y.

(2) is easy. O

5.3. Some properties of semialgebraic quasi-varieties.

A notion of semialgebraic quasi-varieties brings some merits to Real Algebraic Geome-
try.

Theorem 5.11. Every semialgebraic quasi-variety is affine. In other words, if A is a
semialgebraic quasi-variety, then there exists n € N and an immersion t: A — R™.

Proof. Let A be a semialgebraic quasi-variety. We can take a real envelope X of A.
Take an affine open covering {Vi,..., V;.} of X. Fix a 1 < j <r. We may assume V; is a
closed subset of R". Let (z1,..., z,) be the coordinate system of R", and s; := 1/(2? + 1),
ti == x;/(2? +1). For P € X —V;, we put s;(P) = 0 and ¢;(P) = 0. Then s; and
t; are regular functions on X. The set of functions F}; := {si, t; ‘ 1 <4< n} defines
a map ®;: X — R?". This ®, is a regular map as semialgebraic quasi-varieties, and
®;ly,: V; — R*" is an immersion. Note that ®;(X) is a semialgebraic quasi-variety but is
not always algebraic quasi-variety. Put F := F1U---UF, and N := #F. F defines a regular
map ®: X — RY, and F is an immersion as semialgebraic quasi-varieties. (]

Remark 5.12. A real algebraic variety is an affine semialgebraic variety, but is not
always a real affine variety. For example, R? — {(0,0)} is not a real affine variety.

Corollary 5.13. Let A be a semialgebraic quasi-variety (or a real algebraic quasi-
variety) and put Ra := Ry (A). Then, Ry is the sheaf obtained as Ry4.
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Note that R4 is a Noetherian ring, but is not finitely generated over R if dim A > 1.
Each maximal ideal of R4 corresponds to a certain point of A.

Corollary 5.14. Let A be a semialgebraic quasi-variety (or a real algebraic quasi-
variety) and F be a quasi-coherent R s-module. Then, H'(A, F) =0 for all i > 0.

Proof. There exists an immersion ¢: A — R™. As Definition 5.5, there exists a closed real
algebraic quasi-subvariety X C R™ such that X is real envelope of A. Let Ry := Rx (X) and
R4 :=R4(A). We can present as Rgq = SZIR x by a certain multiplicatively closed set S4.
Since R4 is an Rx-module, F is a quasi-coherent Rx-module. Thus, F is a quasi-coherent
Rrm-module. Thus we have

HY(A, F) =2 H'(R™, F) =0
(see [16] Chap.III, Theorem 3.5). O

By the way, birational geometries of complex and real algebraic varieties are very differ-
ent. In a complete complex algebraic variety, exceptional subsets are special subsets. This
is not true for complete real algebraic varieties.

Theorem 5.15. Let A be a semialgebraic quasi-variety, E C A be a closed semialge-
braic subset such that E = Zar4(E) ; A. Then there exists a semialgebraic quasi-variety
B and a regular surjective morphism ¢: A — B such that P := ¢(F) is a point and that
Yla—g : (A— FE) — (B — P) is an isomorphism, i.e. ¢ is a contraction of E to a point P.

Proof. We may assume A C R". Let f1,..., f, be defining polynomials of Zargn (F) in
R[x1,. .., z5]. Consider a map ®:R™ — R defined by linear system with the base {xz [ ‘
1<i<n,1<j< r}. ® is a regular map. Put B := ®(A) and ¢ := ®|4: A — B. Then, B
and ¢ satisfy the conclusion of the Proposition. (]
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