
Some Cubic and Quartic Inequalities of Four Variables
Tetsuya Ando

Version. 20 Sep. 2022.

Abstract. Let H ⊂ Hn,d := R[x1,. . ., xn]d be a vector space, and A be a compact
semialgebraic subset of Pn−1

R . We shall study some PSD cones P = P(A, H) :=
{
f ∈ H

∣∣
f(a) ≥ 0 (∀a ∈ A)

}
. Our interests are (1) to determine the extremal elements of P, (2) to

determine discriminants of P, (3) to describe P as a union of basic semialgebraic subsets,
and (4) to find a nice test set when dimH is low. In this article, we present (1), (2), (3)
and (4) for P(R4, Hs0

4,4) and P(R4
+, Hs0

4,4), where Hs0
n,d :=

{
f ∈ Hn,d

∣∣ f is symmetric and
f(1, . . . , 1) = 0

}
. We also provide (1)—(4) for P(R4

+, Hc0
4,3), where Hc0

n,d :=
{
f ∈ Hn,d

∣∣ f

is cyclic and f(1, . . . , 1) = 0
}
.

§1. Introduction.

Let Hn,d := R[x1,. . ., xn]d (the part of degree d), and H ⊂ Hn,d be a vector subspace.
For a semialgebraic subset A of Rn,

P(A, H) :=
{
f ∈ H

∣∣ f(a) ≥ 0 for all a ∈ A
}

is called the PSD cone on A in H. Our interests are:
(I1) To determine all the extremal elements of P := P(A, H).
(I2) To determine all the discriminants of P (see Definition 2.6).
(I3) To describe P as a union of basic semialgebraic subsets using some inequalities.
(I4) Find a nice test set for (A, H) when dimH is low (see Definition 2.9).

In this article, we present (I1), (I2), (I3) and (I4) for PSD cones Ps0
4,4, Ps0+

4,4 and Pc0+
4,3 .

We also treat some SOS problems relating these PSD cones. We shall explain these symbols.
Let

Hc
n,d :=

{
f ∈ Hn,d

∣∣ f(x2, . . . , xn, x1) = f(x1, . . . , xn)
}
,

Hs
n,d :=

{
f ∈ Hn,d

∣∣ f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for all σ ∈ Sn

}
,

H0
n,d :=

{
f ∈ Hn,d

∣∣ f(a, a, . . . , a) = 0 for all a ∈ R}
,

E(P) :=
{
f ∈ P

∣∣ f is a extremal element of P
}
,

R+ :=
{
x ∈ R ∣∣ x ≥ 0

}
,

and Hc0
n,d := Hc

n,d ∩H0
n,d, Hs0

n,d := Hs
n,d ∩H0

n,d. We denote Pn,d := P(Rn, Hn,d), P+
n,d :=

P(Rn
+, Hn,d), Ps

n,d := P(Rn, Hs
n,d), Ps+

n,d := P(Rn
+, Hs

n,d), Ps0
n,d := P(Rn, Hs0

n,d), Ps0+
n,d :=

P(Rn
+, Hs0

n,d), Pc
n,d := P(Rn, Hc

n,d), Pc+
n,d := P(Rn

+, Hc
n,d), Pc0

n,d := P(Rn, Hc0
n,d), and
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Pc0+
n,d := P(Rn

+, Hc0
n,d). The rule of indexing will be clear. “c” means cyclic, “s” means

symmetric, “0” means an equality condition f(a,. . ., a) = 0, and “+” means A = Rn
+.

We have already completed (I1), (I2) and (I3) for the PSD cones Pc+
3,3, Pc0+

3,3 , Pc0
3,4, Pc0+

3,4 ,
Ps

3,4 and Ps0+
3,5 . See [3], [2]and [1]. For Pc0

3,4, see also [13]and [19]. (I4) for Pc+
3,3 is provided

in Example 2.11. (I1) for P+
3,3 is given in [4].

In §3, we study Ps0
4,4 and Ps0+

4,4 . (I1)—(I4) for Ps0
4,4 are given in Theorem 3.4, and these

for Ps0+
4,4 are given in Theorem 3.8. Here, we present (I3) for Ps0

4,4 and Ps0
4,4 slightly different

style from Theorem 3.4 and 3.8.

Theorem 1.1. Let σ1 := a0 +a1 +a2 +a3, σ2 :=
∑

0≤i<j≤3

aiaj , σ3 :=
∑

0≤i<j<k≤3

aiajak,

and σ4 := a0a1a2a3. Consider a family of quartic symmetric polynomials

f(a0, a1, a2, a3) = σ4
1 + p1σ

2
1σ2 + p2σ

2
2 + p3σ1σ3 − (256 + 96p1 + 36p2 + 16p3)σ4 ∈ Hs0

4,4

(p1, p2, p3 ∈ R). Then
(1) f(a0, a1, a2, a3) ≥ 0 for all a0,. . ., a3 ∈ R if and only if 16 + 6p1 + 2p2 + p3 ≥ 0 and

9p2
1 ≤ 128 + 24p1 + 36p2 + 12p3.

(2) f(a0, a1, a2, a3) ≥ 0 for all a0 ≥ 0,. . ., a3 ≥ 0 if and only if “(i) or (ii)” and “(iii) or
(iv)” hold:

(i) p1 ≤ −8 and p2
1 ≤ 4p2.

(ii) p1 ≥ −8 and 4p1 + p2 + 16 ≥ 0.
(iii) p1 ≤ −14/3 and 9p2

1 ≤ 128 + 24p1 + 36p2 + 12p3.
(iv) p1 ≥ −14/3 and 27 + 9p1 + 3p2 + p3 ≥ 0.

Next, we present (I1).

Theorem 1.2. All the extremal elements of Ps0
4,4 are positive multiples of the following

polynomials:

gt(a0, a1, a2, a3) :=
1
3
(
3σ4

1 − 2(t + 7)σ2
1σ2 + (t + 3)2σ2

2 − 2(t2 − 9)σ1σ3 − 4(t + 3)2σ4

)
,

g∞(a0, a1, a2, a3) := σ2
2 − 2σ1σ3 − 4σ4,

p(a0, a1, a2, a3) := σ2
2 − 3σ1σ3 + 12σ4.

Here, t ∈ R. Conversely, these are extremal elements of Ps0
4,4.

gt (t 6= 1, −3) is characterized by the equality conditions gt(t, 1, 1, 1) = gt(−1, −1, 1,
1) = 0. g1 is characterized by the equality conditions g1(x, x, 1, 1) = 0 for all x ∈ P1

R. g−3

is characterized by the equality conditions g−3(a, b, c, −a − b − c) = 0 for all a, b, c ∈ R.
g∞ is characterized by the equality conditions g∞(0, 0, 0, 1) = g∞(−1, −1, 1, 1) = 0.

p is characterized by the equality conditions p(0, 0, 0, 1) = 1 and p(s, 1, 1, 1) = 0 for
all s ∈ R.

We say f is characterized by the equality conditions f(xλ) = 0 (λ ∈ Λ) if

R+ · f :=
{
g ∈ P

∣∣ g(xλ) = 0 for all λ ∈ Λ
}
.

Note that if f ∈ P is characterized by certain equality conditions, then f is extremal. About
the converse, please read [4].
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An elements f ∈ Pn,2d is called SOS, if there exists r ∈ N and g1,. . ., gr ∈ Pn,d such
that f = g2

1 + · · ·+ g2
r . The set of all the SOS elements in Pn,2d are written by the symbol

Σn,2d, and is called a SOS cone. In this case, gt, g∞, p ∈ Σ4,4, since

3gt(a, b, c, d) =
(
a2 + b2 − c2 − d2 + (t + 1)(cd− ab)

)2

+
(
a2 − b2 + c2 − d2 + (t + 1)(bd− ac)

)2

+
(
a2 − b2 − c2 + d2 + (t + 1)(bc− ad)

)2

=
1
16

∑

τ∈S4

(
aτ(0) − aτ(1)

)2(2(aτ(0) + aτ(1))− (t + 1)(aτ(2) + aτ(3))
)2

,

g∞(a, b, c, d) = (ab− cd)2 + (ac− bd)2 + (ad− bc)2,
p(a, b, c, d) = (1/2)

(
(a− b)2(c− d)2 + (a− c)2(b− d)2 + (a− d)2(b− c)2

)
.

Here (a0, a1, a2, a3) = (a, b, c, d). Moreover, gt, p /∈ E(Ps0+
4,4 ). Thus we obtain:

Corollary 1.3. Ps0
4,4 ⊂ Σ4,4, and E(Ps0

4,4) ∩ E(P4,4) = ∅.

Remember that E(Pc0
3,4) ∩ E(P3,4) = ∅, for f ∈ E(Pc0

3,4) is not a square of a quadric
polynomial (see [13]). The following theorem provides extremal elements which do not
appear in [25].

Theorem 1.4. All the extremal elements of Ps0+
4,4 are positive multiples of the following

polynomials:

fab
t (a0, a1, a2, a3) := (1/3)

(
3σ4

1 − 2(t + 7)σ2
1σ2 + 8(t + 1)σ2

2

+ (t2 − 6t + 21)σ1σ3 − 16(t2 + 3)σ4

)
(0 ≤ t ≤ 5),

fct(a0, a1, a2, a3) := (1/9)
(
9σ4

1 − 6(t + 7)σ2
1σ2 + (t + 7)2σ2

2

+ 12(t− 1)σ1σ3 − 12(t− 1)(3t + 13)σ4

)
(t ≥ 5),

p(a0, a1, a2, a3) := σ2
2 − 3σ1σ3 + 12σ4,

q1(a0, a1, a2, a3) := σ2
1σ2 − 4σ2

2 + 3σ1σ3 =
∑

i<j

aiaj(ai − aj)2,

q2(a0, a1, a2, a3) := σ1σ3 − 16σ4 =
1
4

∑

τ∈S4

aτ(0)aτ(1)

(
aτ(2) − aτ(3)

)2
.

Conversely, these are extremal elements of Ps0+
4,4 .

fab
t (0 ≤ t < 1 or 1 < t ≤ 5) is characterized by the equality conditions

fab
t (t, 1, 1, 1) = fab

t (0, 0, 1, 1) = 0.

fct (t > 5) is characterized by the equality conditions

fct(t, 1, 1, 1) = fct(0, 0, u, 1) = 0,

where u ∈ R+ is any root of 3u2 − (t + 1)u + 3 = 0. fab
1 is characterized by the equality

conditions fab
1 (t, t, 1, 1) = 0 for all t ≥ 0 and

∂2

∂a2
0

fab
1 (1, 1, 1, 1) = 0. q1 is characterized by the

equality conditions

q1(1, 1, 1, 0) = q1(1, 1, 0, 0) = q1(1, 0, 0, 0) = 0.
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q2 is characterized by the equality conditions q2(s, 1, 0, 0) = 0 for all s ≥ 0.

By the above representation, we have p(a2, b2, c2, d2), qi(a2, b2, c2, d2) ∈ Σ4,8 (i = 1,
2). But for f = fab

t and fct , we obtain:

Proposition 1.5. If 0 < t ≤ 5 and t 6= 1, then fab
t (a2, b2, c2, d2) /∈ Σ4,8. If t > 5, then

fct(a
2, b2, c2, d2) /∈ Σ4,8.

It is clear that p, q1, q2 /∈ E(P+
4,4). But we have:

Proposition 1.6. If t > 5, then fct ∈ E(Ps0+
4,4 ) ∩ E(P+

4,4).

Remember that if f ∈ E(Ps0
3,4), f can be written as f = gg, where g is an imaginal

quadric polynomial.

Proposition 1.7. (1) If t 6= −3, then gt is irreducible in C[a, b, c, d].
(2) If 0 ≤ t ≤ 5, then fab

t is irreducible in C[a, b, c, d].
(3) If t > 5, then fct is irreducible in C[a, b, c, d].

An irreducible quartic surface in P3
C has at most 16 isolated singularities. This fact is

well known in theory of K3 surfaces. The zero locus VC(gt) ⊂ P3
C (t 6= −3) is an irreducible

quartic surface which has 8 real isolated singularities which appear as the real zero points
VR(gt) ⊂ P3

R. Remember that a real Kummer surface has 4 or 12 real isolated singularities.
Number of isolated singularities of irreducible elements of P4,4 is discusses in Proposition 7
and Lemma 10 of [5]. If f ∈ E(P4,4) is exposed and VC(f) is irreducible, then VR(f) contain
just 10 points.

A quartic surface VC(hab
t ) ⊂ P3

C and VC(hc
t) are irreducible surface which has 5 real

isolated singularities, for t as in the above proposition. All singularities are A1 type rational
ordinary double points.

We should explain about the discriminants of P = P(A, H). Let s0, s1,. . ., sN be a
basis of the vector space H, and let ΦH:A → · · ·PN

R be the rational map defined by ΦH(a) =(
s0(a): · · · : sN (a)

)
. X := ΦH(A) is called the characteristic variety. Let ∆(X) =

{
D1,. . .,

Dr

}
be the critical decomposition of X (see Definition 2.3). Each D ∈ ∆(X) is a smooth

semialgebraic variety, and D has its dual variety D∨. Let disc(D) be the defining equation
of the Zariski closure of D∨ in H, and let VH(disc(D)) be the zero locus of disc(D) in H. If
dim

(
VH(disc(D)) ∩ ∂P

)
= dimP− 1, we say disc(D) is a discriminant of P. Assume that

a subset B ⊂ A satisfies ΦH(B) = D. Then, for each f ∈ VH(disc(D)) ∩ ∂P, there exists
a point a ∈ B such that f(a) = 0. In this case, we shall say that disc(D) is a discriminant
corresponding to B.

Theorem 1.8. Let’s denote the elements of Hs0
4,4 as

f(a0, a1, a2, a3) = p0σ
4
1 + p1σ

2
1σ2 + p2σ

2
2 + p3σ1σ3 − (256p0 + 96p1 + 36p2 + 16p3)σ4,

and use (p0,. . ., p3) as a coordinate system of Hs0
4,4.

(1) Ps0
4,4 has the following two discriminants:

d1 := 128p2
0 + 24p0p1 + 36p0p2 + 12p0p3 − 9p2

1, d2 := 16p0 + 6p1 + 2p2 + p3.
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d1 corresponds to
{
(t, 1, 1, 1) ∈ R4

∣∣ t ∈ R, t 6= −3, 1
}
, and d2 corresponds to a point

(1, 1, −1, −1).
(2) Ps0+

4,4 has the following five discriminants:

d1 := 128p2
0 + 24p0p1 + 36p0p2 + 12p0p3 − 9p2

1, d3 := 4p0p2 − p2
1,

d4 := 27p0 + 9p1 + 3p2 + p3, d5 := 16p0 + 4p1 + p2, d6 := p0.

d3 corresponds to
{
(0, 0, t, 1) ∈ R4

∣∣ 0 < t < 1
}
. d4, d5, d6 corresponds to points (1, 1,

1, 0), (1, 1, 0, 0), (1, 0, 0, 0) respectively.

We explain about (I4). For general f ∈ Hs
n,d, Riener, Timofte and Harris proved that

f ∈ Ps
n,d if f(x) ≥ 0 for all x ∈ {

(x1, . . . , xn) ∈ Rn
∣∣ #{x1,. . ., xn} ≤ r0

}
. Moreover,

f ∈ Ps+
n,d if f(x) ≥ 0 for all x ∈ {

(x1, . . . , xn) ∈ Rn
∣∣ #

({x1,. . ., xn} − {0}
) ≤ r0

}
. (See

Corollary 1.3 of [22], Corollary 2.1 of [23]. See also [24], [25].)
In the case Ps

4,4, the above test conditions are f(t, t, 1, 1) ≥ 0 and f(t, 1, 1, 1) ≥ 0
(∀t ∈ R). In the case Ps+

4,4, the above test conditions are f(t, t, 1, 1) ≥ 0, f(t, 1, 1, 1) ≥ 0,
f(0, t, 1, 1) ≥ 0 and f(0, 0, t, 1) ≥ 0 (∀t ∈ R+). We prove that the number of test conditions
can be decreased as the following theorem in the cases of Ps0

4,3 and Ps0+
4,3 .

Theorem 1.9. (1) If f ∈ Hs0
4,4 satisfies f(−1, −1, 1, 1) ≥ 0 and f(t, 1, 1, 1) ≥ 0 for

all t ∈ R, then f(a, b, c, d) ≥ 0 for all a, b, c, d ∈ R.
(2) If f ∈ Hs0

4,4 satisfies f(t, 1, 1, 1) ≥ 0 and f(0, 0, t, 1) ≥ 0 for all t ≥ 0, then f(a, b,
c, d) ≥ 0 for all a, b, c, d ∈ R+.

In §4, we study the PSD cone of cyclic cubic polynomials Pc0+
4,3 . (I2) and (I3) for Pc0+

4,3

are given in Theorem 4.1. (I1) is presented in Theorem 4.15. Pc0+
4,3 has 4 discriminants.

Since one of them is very complicated polynomial, the structure of Pc0+
4,3 is not simple. We

also need somewhat strange algebraic numbers to state (I3). Extremal elements of Pc0+
4,3

are not also simple. This is completely different from cases of Pc0+
3,3 and Pc+

3,3. Please read
Theorem 4.1 and Theorem 4.15.

We provided (I4) for Pc+
4,3 in §4.2. It is simple theorem as the following:

Theorem 1.10. If f ∈ Hc
4,3 satisfies f(1, 1, 1, 1) ≥ 0 and f(0, s, t, 1) ≥ 0 for all s,

t ∈ R+, then f(a, b, c, d) ≥ 0 for all a, b, c, d ∈ R+.

In [4], we have proved that E(Pc0+
3,3 ) ⊂ E(Pc+

3,3) ⊂ E(P+
3,3). But E(Pc0+

4,3 ) 6⊂ E(P+
4,3). An

extremal element eh
u,v,w ∈ E(Pc0+

3,3 ) is somewhat complicated to present here. The definition
of eh

u,v,w is given at Proposition 4.2, and Dh
e is described in Theorem 4.13. Relating SOS

problem, eh
u,v,w satisfies:

Proposition 1.11. Assume that (u: v:w) ∈ Dh
e , u > 0, v > 0, w > 0 and v 6= u + w.

Then, eh
u,v,w(a2, b2, c2, d2) /∈ Σ4,6.

In §5, we will give an exact definition of semialgebraic varieties, and prove some basic
general theorems. In this article, we use P3

R/S4 and P+/S4. These are not real algebraic
variety. P3

R/S4 does not agree with a real weighted projective space. But we need to
treat these with certain variety structure, i.e. semialgebraic varieties. So, the author think

5



it will be better to give an exact definition of semialgebraic variety. For example, there
exists continuous rational map which is not holomorphic (regular). Such maps do not exist
in complex algebraic geometry. Some results will be useful for studies of real algebraic
varieties. Especially, Theorem 5.11 and Theorem 5.15 show that semialgebraic geometry is
very different from complex algebraic geometry. In our theory of algebraic inequalities in
this article, a phenomenon of Theorem 5.15 occurs. For example, ΦH:A · · · → X include
some exceptional set even if A = P3

R.

We shall explain a short history of study of PSD cones. Originally, Pn,2d is called a
PSD cone. Hilbert proved, Pn,2d = Σn,2d if and only if n ≤ 2 or 2d = 2 or (n, 2d) = (3, 4)
([17]). History of studies till 1991 are written in §6.6 of [8]. So we don’t explain them again.
Choi and Lam found some extremal forms of Pn,2d which don’t belong to Σn,2d in [9]. In
[21], Reznick studied the condition that f ∈ Pn,2d is included in Σn,2d. He also studied the
condition that f ∈ Pn,2d is extremal. See also [10]. They implies that if f ∈ E(Pn,2d), then
VR(f) is larger set. This fact is formalized in Theorem 2.7 and Proposition 2.9 of [4].

An element f ∈ Hn,2d is called even, if f ∈ R[x2
1,. . ., x2

n]. Choi, Lam and Reznick
studied Pes

n,2d := Pn,2d ∩R[x2
1,. . ., x2

n] in [11]. They studied the condition for Pes
n,2d ⊂ Σn,2d.

Note that Pes
n,2d

∼= Ps+
n,d, as is stated in [12]. About a relation of E(P3,6) and E(P+

3,3), please
see [4]. Harris proved Pes

3,8 ⊂ Σ3,8 in [15]. The relations Ps
n,2d and Σs

n,2d are studied by
Goel, Kuhlmann and Reznick in [14]. A related study can be found in [7]. Our study of
E(Ps0+

4,4 ) and E(Pc0+
4,3 ) will give a small contribution for it.

About discriminants of P(A, H), Nie shown some interesting results in [20]. He treated
the case that A is an affine real algebraic variety. In this article, we only treat the cases that
A is a compact semialgebraic variety. But they have very close relation. [6] provides many
nice ideas to treat algebraic inequalities using complex algebraic geometry.

About P3,6, Σ3,6, P4,4 and Σ4,4, very important results are obtained in [5]. It provides
relation with theory of K3 surfaces.

dimH4,3 = 20 and dimH4,4 = 35 are somewhat large to proceed precise numerical
analysis. It will not be insignificant to study some lower dimensional subspaces H ⊂ Hn,d.

To check many calculations in this article, we will need Mathematica or a similar tool.
The author provides a file for Mathematica in the authors WEB and in arXiv’s anc folder.
It will be useful for experimentation of inequalities.

§2. General theories

2.1. Known results.

By studies in [3], we have better to use Pn−1
R and Pn−1

+ instead of Rn and Rn
+ where

Pn
+ :=

{
(x0: · · · :xn) ∈ Pn

R
∣∣ x0 ≥ 0,. . ., xn ≥ 0

}
.

The merits are that Pn−1
R is compact and dimPn−1

R < dimRn. But f ∈ Hn,d is not a
function on Pn−1

R . So, we must treat Hn,d as a signed linear system on Pn−1
R . We need

some more generalizations. About the exact definition of a semialgebraic variety, please see
§5. We may understand here that a semialgebraic variety (A, RA) is a locally ringed space
with semialgebraic set A and a sheaf of rings RA which represent real holomorphic functions
on open subsets of A. We only use RA to define singularities of A, regular maps between
semialgebraic varieties, and signed linear systems. The author apologizes that Definition 1.7
of [3] must be corrected as the following:
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Definition 2.1. Let (A, RA) be a semialgebraic variety, and C0
A be the sheaf of germs

of real continuous functions on A.
(1) Let I be an invertible RA-sheaf. I is called a signed invertible sheaf on A if

(i) there exists C0
A-invertible sheaf J such that I⊗RA

C0
A = J⊗C0

A
J, and

(ii) there exists e ∈ J(A) such that e2 ∈ I(A) and I(A) = RA(A) · e2.
Then, for f ∈ H0(A, I), there exists g ∈ H0(A, RA) such that f = ge2. We define
sign(f(P )) ∈ {0, ±1} by sign(f(P )) = sign(g(P )) for P ∈ A.

(2) Let I be a signed invertible RA-sheaf. A finite dimensional vector subspace H ⊂ H0(A,
I) is called a signed linear system on A. For f ∈ H, we say f is PSD on A if f(P ) ≥ 0
for all P ∈ A.

(3) P = P(A, H) :=
{
f ∈ H

∣∣ f(P ) ≥ 0 for all P ∈ X
}

is called the PSD cone on A in H.
Note that Pn,d = P(Pn−1

R , Hn,d) and P+
n,d = P(Pn−1

+ , Hn,d) and so on.
(4) Bs H :=

{
P ∈ A

∣∣ f(P ) = 0 for all f ∈ H
}

is called the base locus of H. When P is
non-degenerate in H, we define Bs P := Bs H.
If dim Bs P < dimA, we can define a rational map ΦH : A · · · → PR(H∨), using a base

of H. X = X(A, H) := Cls(ΦH(A)) (Euclidian closure) is called the characteristic variety
of A.

For example,

Hn+1,d :=
{
f(x0, . . . , xn)

∣∣ f is a homogeneous polynomial of degree d
} ∪ {0}

is a signed linear system on Pn
+. For f ∈ Hn+1,d and P ∈ Pn

+, we cannot define the value
f(P ) but can define sign(f(P )). If d is even, Hn+1,d is also a signed linear system on Pn

R.

Proposition 2.2. Let X := X(A, H), and let Y be the convex closure of X in P(H∨).
Then

P(A, H) = P(X, HN+1,1) = P(Y, HN+1,1),
where HN+1,1 is the set of linear polynomials on P(H∨).

Proof. P(A, H) = P(X, HN+1,1) is proved at Proposition 1.13 in [3]. P(X, HN+1,1) =
P(Y , HN+1,1) is clear since every element of HN+1,1 is linear.

Assume that a semialgebraic set B is a subset of a complete real algebraic variety V .
The minimal closed algebraic subset which contains B is called the Zariski closure of B and is
denoted by ZarV (B). We denote the Euclidian closure of B in V by ClsV (B) or B. Assume
that ZarV (B) = V . The interior of B is defined by Int(B) := V −ClsV (V −B). The boundary
of B is defined by ∂B := B − Int(B). Do not confuse with ∂V B := ClsV (B)− Int(B). Note
that Int(B) and ∂B do not depend on the choice of V . But ClsV (B) and ∂V B depend on
V .

Definition 2.3.(Critical decomposition. See Definition 1.5 of [3]) Let A be a reduced
semialgebraic variety with dimA = n. We shall define ∆i(A) (i = 0,. . ., n) by induction
on n. If dimA = 0, then A = {P1,. . ., Pm} where Pi are points. In this case we put
∆0(A) = {P1,. . ., Pm}, and put ∆i(A) = ∅ for i 6= 0.

Assume that n = dimA ≥ 1. Let Z1,. . ., Zr be all the irreducible components of A
with dimZi = n. Put Ai := Int(Zi − Sing(A)

)
, and ∆n(A) :=

{
A1,. . ., Ar

}
. Note that

Zi ∩ Zj ∩ Int(A) ⊂ Sing(A) for i 6= j.

7



Let Y1,. . ., Yk be all the irreducible components of A with dimYj ≤ n − 1, and let
Bj := Yj − (A1 ∪ · · · ∪Ar). Put

B := Sing(A) ∪ ∂A ∪B1 ∪ · · · ∪Bk.

Then, we can regard B to be a semialgebraic subvariety of A with the reduced structure.
Note that dimB < dimA. Thus we put ∆i(A) := ∆i(B) for i 6= n.

We denote ∆(A) := ∆0(A)∪∆1(A)∪ · · ·∪∆n(A), and is called a critical decomposition
of A. Each element D ∈ ∆(A) is called a critical set of A. Note that D is a non-singular
semialgebraic variety with ∂D = ∅.

Example 2.4. Consider the case A = P2
+. This is homeomorphic to a triangle. Let

Px := (1: 0: 0), Py := (0: 1: 0), and Pz := (0: 0: 1). For two points P , Q ∈ P2
+, we denote the

open line segment connecting P and Q as (PQ). Then, the critical decomposition of P2
+ is

∆0(P2
+) =

{
Px, Py, Pz

}
, ∆1(P2

+) =
{
(PxPy), (PyPz), (PzPx)

}
, ∆2(P2

+) =
{

Int(P2
+)

}
.

On the other hand, if A = Pn
R, then ∆n(Pn

R) =
{
Pn
R)

}
, and ∆r(Pn

R) = ∅ for r 6= n.

Definition 2.5. (1) Let X be a subset of Rn or Pn
R. e ∈ X is said to be extremal in

X, if a > 0, b > 0 and x, y ∈ X satisfy e = ax + by then x = y = e. For a closed convex
cone P, 0 6= f ∈ P is called extremal in P, if g, h ∈ X satisfy f = g + h then g and h are
multiples of f . For both cases Y = X and Y = P, we denote that

E(Y ) :=
{
y ∈ Y

∣∣ y is extremal in Y
}
.

(2) For a semialgebraic variety A and a ∈ A − Bs H and a signed linear system H on
A, we put

Ha :=
{
f ∈ H

∣∣ f(a) = 0
}
, Pa := P ∩Ha = P(A, Ha).

Pa is called the local cone of P at a.
Even if a ∈ Bs H, we can define Pa as Definition 2.6 of [4]. But we don’t use it in this

article.

Definition 2.6. (See Definition 1.15 and 1.17 of [3]) (1) Let P = PN
R and P∨ be the

set of all the hyperplanes in P. Assume that D ⊂ P is a non-singular semialgebraic variety
with ∂D = ∅ (i.e. ∆(D) = {D}). For x ∈ D, let TD,x := TZar(D),x ⊂ P be the tangent space
of Zar(D) at x. Then,

D∨ :=
{
H ∈ P∨

∣∣ H ⊃ TD,x for a certain x ∈ D
}

is called the dual variety of D. Since D is irreducible and non-singular, D∨ is irreducible.
Thus D∨ is a semialgebraic variety.

(2) Under the same notation with Definition 2.1, let π : (H − {0}) → P(H) be the
natural surjection. For D ∈ ∆(X), we denote

F(D) := ClsH(π−1(D∨) ∩ ∂P).

If dim F(D) = dim(∂P), then F(D) is called a face component of P or of ∂P, and an
irreducible defining equation of the Zariski closure Zar(F(D)) is called a discriminant of P,
and denoted by discD or disc(D).

Especially, if D ∈ ∆dim X(X) and F(D) is a face component, then F(D) is called a
main component of P, and disc(D) is called a main discriminant of P.

For example, if X ∼= Pn
R = A, then P has unique discriminant which is a main discrim-

inant.
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In the case D ∈ ∆0(X), disc(D) is linear. That is, if ΦH is defined by basis {s0,. . ., sN}
of H, and if we represent f ∈ H as f = p0s0 + · · ·+ pNsN , and D = (b0: · · · : bN ) ∈ P(H∨),
then disc(D) = b0p0 + · · ·+ bNpN .

Theorem 2.7.(Theorem 1.18 of [3]) We use the same notation as Definition 2.1 and
the above.
(1) Let

D :=
{
D ∈ ∆(X)

∣∣ F(D) is a face component of P
}
.

Then ∂P =
⋃

D∈D

F(D).

(2) For D ∈ ∆(X), take a subset B ⊂ A such that ΦH(B) ⊂ D and ClsD

(
ΦH(B)

)
= D.

Put B0 := B − BsΦH. Then,

F(D) = ClsH

( ⋃

a∈B0

Pa

)
.

(3) Assume that P := P(X, HN+1,1) is non-degenerate in HN+1,1. Take x ∈ D ∈ ∆r(X).
Then dimPx ≤ N − r.

The author should apologize for that Proposition 1.27 of [3] is not correct. It should be
corrected as (3) of the above theorem. We present a corrected proof of (3).

Proof. (3) For f ∈ H, let Hf be the hyperplane in P(H∨) defined by f = 0. Since P

is non-degenerate, dim(U ∩ P) = N + 1 for any Euclidean open neighborhood U of x. Let
L :=

{
f ∈ H

∣∣ TD,x ⊂ Hf

}
. Note that dimTD,x = dim D = r ≤ N + 1, since D is non-

singular. The condition TD,x ⊂ Hf means that f passes through independent r + 1 points.
Thus, dimL = dim H− (r + 1) = N − r. Since Px = P ∩L, we have dim Px ≤ N − r.

Even if we determine all the discriminants of P, the signature of disc(D) may not be
constant in Int(P). To describe P as a union of basic semialgebraic sets of H using some
inequalities, we need some more inequalities to cut off extra parts or to avoid the interior zero
locus Int(P)∩VH(disc(D)). Such inequalities are called separators. Note that discriminants
are unique up to multiplication by non-zero constant, but there may be many possibilities
of the choice of separators.

About extremality of f ∈ P, the following theorem is useful. About the definition of
infinitesimal local cone, please see Definition 2.9 and 2.12 of [4].

Theorem 2.8. Let P = P(A, H). Assume that dimP ≥ 2.
(1) If f ∈ E(P), then there exists local cones or infinitesimal local cones P1,. . ., Pr ⊂ P

with respect to f which satisfy P1 ∩ · · · ∩Pr = R+ · f .
(2) Let f ∈ P. If there exists local cones or infinitesimal local cones P1,. . ., Pr ⊂ P such

that P1 ∩ · · · ∩Pr = R+ · f . Then, f ∈ E(P).

In the above theorem, infinitesimal local cones appear for special f ∈ E(P). In ordinary
case, there exists points a1,. . ., ar ∈ A such that

R+ · f =
{
g ∈ P

∣∣ g(a1) = · · · = g(ar) = 0
}
.
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We can choose each ai so that ΦH(ai) ∈ E(X). Infinitesimal local cones appears when not
less than two zero points of f become infinitely near points.

Definition 2.9. Let H be a signed linear system on a semialgebraic variety A. A
subset Ω ⊂ A is called a test set for (A, H), if f(a) ≥ 0 for all a ∈ Ω, then f(a) ≥ 0 for all
a ∈ A.

The following theorem will be trivial.

Theorem 2.10. Let H be a signed linear system on a compact semialgebraic variety
A with dimH ≥ 3, and let X := Cls(ΦH(A)) be the characteristic variety. Take a subset
Ω ⊂ A. If E(X) ⊂ Cls(ΦH(Ω)), then Ω is a test set for H.

Example 2.11. Consider the case A = P2
+, H = Hc

3,3. Then

Ω := {(1: 1: 1)} ∪ {
(0: t: 1) ∈ P2

+

∣∣ t ≥ 0
}

is a test set for Hc
3,3 (see Theorem 3.1 of [3]). Thus, if f ∈ Hc

3,3 satisfies f(1, 1, 1) ≥ 0 and
f(0, t, 1) ≥ 0 for all t ≥ 0, then f(a, b, c) ≥ 0 for all a, b, c ∈ R+.

2.2. Some more general theorems.

Let V and W be non-singular semialgebraic varieties with dimV = n, dim W = m, and
ϕ:V → W be a regular map. Take a point a ∈ V and put b := ϕ(a). We can take open
neighborhoods a ∈ UV ⊂ V and b ∈ UW ⊂ W such that ϕ(UV ) ⊂ UW and that UV , UW

have local coordinate systems (x1,. . ., xn) and (y1,. . ., ym) whose origins are a, b. ϕ can be

represented by functions yj = ϕj(x1,. . ., xn) (j = 1,. . ., m). Let Ja :=
(

∂yj

∂xi

)∣∣∣∣
(x1,...,xn)=a

be the Jacobian matrix of ϕ at a. Note that rankJa does not depend on the choice of (x1,. . .,
xn) and (y1,. . ., ym). We denote

Sing(ϕ) :=
{
a ∈ V

∣∣ rankJa < dimϕ(V )
}
.

Proposition 2.12. If V is a non-singular complete real algebraic variety, then ∂
(
ϕ(V )

)
⊂ ϕ

(
Sing(ϕ)

)
.

Proof. Put r := dim ϕ(V ), and assume that rankJa = r. We may assume that

det
(

∂yj

∂xi

)

1≤i≤r, 1≤j≤r

6= 0

at a. Let U ′ :=
{
(x1,. . ., xn) ∈ UV

∣∣ xr+1 = · · · = xn = 0
}
. If UV is sufficiently small

Euclidean open set, ϕ
∣∣
U ′ :U

′ −→ ϕ(U ′) is an isomorphism. Thus b /∈ ∂
(
ϕ(V )

)
.

When V has singularities, we put Sing(ϕ) := Sing
(
ϕ
∣∣
Reg(V )

)
.

Corollary 2.13. Assume that A is a compact semialgebraic variety, then,

∂
(
ϕ(A)

) ⊂ ϕ
(
Sing(ϕ) ∪ Sing(A) ∪ ∂A

)
.

Proposition 2.14. Let Xs+
3,d := X(P2

+, Hs
3,d). If d ≥ 4, then Xs+

3,d
∼= P2

+/S3.

10



Proof. We denote the coordinate system of P2
+ by (a: b: c), and put S1 := a + b + c.

Φ3,d := ΦHs
3,d

: P2
+ → X+

3,d is decomposed as Φ3,d:P2
+

σ−→ P2
+/S3

Ψ3,d−→ X+
3,d. By Proposition

2.13, 2.14 and §4.5 in [3], Ψ3,4:P2
+/S3 −→ X+

3,4 is an isomorphism. Since BsS1 ∩ P2
+ = ∅,

the multiplication map ×S1:Hs
s,d −→ Hs

s,d+1 induces an isomorphism Xs+
3,d+1 → Xs+

3,d.

In the cyclic case Y +
n,d := X(Pn−1

+ , Hc
n,d), we know that Y +

n,d
∼= Pn−1

+ /Cn if d ≥ n,
here Cn = Z/nZ (see Proposition 1.36 in [3]). When n = 3, ∆1(Y3,d) has a unique element
C+

n,d :=
{
Φc

3,d(0: s: 1)
∣∣ s > 0

}
. We call disc(C+

n,d) to be the edge discriminant of Pc+
3,d (see

Definition 2.7 in [3]). The following Theorem is a replacement of Proposition 2.10, Theorem
5,9 and Theorem 6.8 in [3].

We denote the discriminant of cnxn + cn−1x
n−1 + · · ·+ c1x + c0 by

Discn(cn, cn−1, . . . , c1, c0).

Theorem 2.15. Let’s denote the coordinate system of P2
+ by (a: b: c), and put Sm,n =

Sm,n(a, b, c) := ambn + bmcn + cman, Sn := Sn(a, b, c) = an + bn + cn, and U := U(a, b, c) =
abc. Take the base of Hc

3,d so that s0 = Sd, s1 = Sd−1,1, s2 = Sd−2,2,. . ., sd−1 = S1,d−1,. . ..
Here, if i ≥ d, then si is a multiple of abc. We represent f ∈ Hc

3,d as f =
∑

pisi. Then, the

edge discriminant of Pc+
3,d agrees with Discd(p0, p1, . . . , pd−1, p0).

Proof. Let Lc+
0,t be the local cone of Pc+

3,s at (0: t: 1) ∈ P2
+. Take f ∈ Lc+

0,t ⊂ F(C+
n,d)

(p0 > 0 and t > 0). Then f(0, t, 1) = 0. Since f(0, x, 1) ≥ 0 for all x > 0, the equation
f(0, x, 1) = 0 has a multiple root at x = t. Thus, the discriminant of f is equal to 0.
Since Si,d−1(0, x, 1) = xi (1 ≤ i ≤ d − 1), Sd(0, x, 1) = xd + 1 and U(0, x, 1) = 0, we have
f(0, x, 1) = p0x

d + p1x
d−1 + · · ·+ pd−1x + p0.

Since Discd and discc+
d are irreducible, we have the conclusion.

Theorem 2.16. Consider the cases A = Pn−1
R or Pn−1

+ , and H = Hs
n,d or Hs0

n,d. Let

P := P(A, H), X := X(A, Hn,d), and Φ := ΦH:A · · · → X. Let σ:Pn−1
R −→ Pn−1

R /Sn ⊂
PR(1, 2, . . . , n) be the natural surjection, and Ψ:Pn−1

R /Sn · · · → X be the rational map such
that Ψ ◦ π = Ψ. Assume that Ψ is a birational map. Let D ∈ ∆r(X) with r ≥ max{2,
bd/2c}. Then F(D) is not a face component of P.

Proof. Let r0 := max{2, bd/2c}, and take D ∈ ∆r(X) with r0 ≤ r ≤ n − 1. Assume
that F(D) is a face component of P. Then dim F(D) = n− 1.

(1) Consider the case A = Pn−1
R .

Let Ω :=
{
(x1: · · · :xn) ∈ Pn−1

R
∣∣ #{x1,. . ., xn} ≤ r0

}
. Ω is included in a union of

some (r0 − 1)-dimensional linear subspace of Pn−1
R . Take general f ∈ F(D). There exists

a semialgebraic subset E ⊂ A such that Φ(E) = D, and a ∈ E such that f(a) = 0. Since
F(D) is a face component, we may assume that the hyperplane Hf ⊂ P(H∨) corresponding
to f , tangents to X only at the unique point Φ(a). This means that if b ∈ A−Bs H satisfies
f(b) = 0, then Φ(b) = Φ(a). We can choose such f and a.

By Corollary 1.3 of [22] or Corollary 2.1 of [23], there exists b ∈ Ω such that f(b) = 0.
We denote this b by b(a). a can move a certain r-dimensional subset of E. But dim Ω =
r0 − 1 < r. Thus, there exists a ∈ E such that Φ(b(a)) 6= Φ(a). A contradiction. Thus
F(D) is not a face component of P.
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(2) Consider the case A = Pn−1
+ .

Let Ω′ :=
{
(x1: · · · :xn) ∈ Pn−1

+

∣∣ #
({x1,. . ., xn} − {0}

) ≤ r0

}
. Ω′ is also included in a

union of some (r0 − 1)-dimensional linear subspace of Pn−1
R .

The left part is same as (1).

If F(D) is not a face component, then, for each f ∈ F(D), there exist D1,. . ., Dr ∈
∆(X)− {D} such that f ∈ F(D1) ∩ · · · ∩F(Dr), and that all F(Di) are face components.

Section 3. Quartic Inequalities of Four Variables
In this section, we shall study Ps0

4,4 and Ps0+
4,4 . We write the homogeneous coordinate

system of A = P3
R or A = P3

+ by (a: b: c: d) or (a0: a1: a2: a3). We regard a4n+i = ai for
n ∈ Z. We denote

Sd :=
3∑

i=0

ad
i , Tp,q :=

3∑

i=0

ap
i (a

q
i+1 + aq

i+2 + aq
i+3), Sp,p :=

∑

0≤i<j≤3

ap
i a

p
j ,

Tp,q,q :=
3∑

i=0

ap
i (a

q
i+1a

q
i+2 + aq

i+1a
q
i+3 + aq

i+2a
q
i+3), U := a0a1a2a3.

A polynomial f ∈ Hs
n,d or Hc

n,d is called monic, if the coefficient of Sd = ad
0 + · · ·+ ad

n−1 is
equal to 1. For a subset V ⊂ Hc

n,d, we denote

V̆ :=
{
f ∈ V

∣∣ f is monic
}
.

We denote as Pn
R : (a0: · · · : an) when we treat Pn

R with a homogeneous coordinate system
(a0: · · · : an). Similarly we denote as Rn : (x1, . . . , xn) when we study Rn with a coordinate
system (x1,. . ., xn).

3.1. Structure of P3
R/S4

Let (a0: · · · : an) be the homogeneous coordinate system of Pn
R, and σk = σk(a0,. . ., an)

be the k-th symmetric function of a0,. . ., an (0 ≤ k ≤ n + 1). The sequence of functions
(σ1,. . ., σn+1) defines the regular map σ:Pn

P −→ PR(1, 2, . . . , n+1), where PR(1, 2, . . . , n+1)
is the real weighted projective space which is defined as the real part of the complex weighted
projective space PC(1, 2, . . ., n+1). The image σ(Pn

R) is isomorphic to Pn
R/Sn+1 as semialge-

braic varieties. Note that Pn
C/Sn+1

∼= PC(1, 2, . . . , n+1), but Pn
R/Sn+1 6∼= PR(1, 2, . . . , n+1).

In general, for two points P , Q ∈ Pn
R, (PQ) represents an open line segment, [PQ] :=

(PQ) ∪ {P , Q} represents a closed line segment, and PQ represents a line.

Definition 3.1. Assume that a finite group G acts on a semialgebraic variety A. Let
σ:A → A/G be the natural surjection. A closed semialgebraic subset A0 ⊂ A is called a
fundamental domain of A/G, if σ(A0) = A/G and σ : Int(A0) −→ σ(Int(A0)) ⊂ A/G is an
isomorphism.

Example 3.2. (1) Let A = Pn
R and G = Z/(n + 1)Z. Then (Pn

R)
G = {1}, and

Sing(Pn
R/G) = σ

(
(Pn
R)

G
)

= {σ(1)}, here 1 = (1: 1: · · · : 1) ∈ A. The following Ac is a
fundamental domain.

Ac :=
{

(a0: · · · : an−1: 1) ∈ Pn
R

∣∣∣∣
a0 + a1 + · · ·+ an−1 + 1 ≥ 0,
a0 ≤ 1, a1 ≤ 1,. . ., an−1 ≤ 1

}
.
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(2) Let A = Pn
+ and G = Z/(n + 1)Z. Then (Pn

R)
G = {1}, and

A+
c :=

{
(a0: · · · : an−1: 1) ∈ Pn

R
∣∣ 0 ≤ a0 ≤ 1,. . ., 0 ≤ an−1 ≤ 1

}

is a fundamental domain.
(3) Let A = Pn

R and G = Sn+1. Then

As :=
{
(a0: · · · : an−1: 1) ∈ Ac

∣∣ a0 ≤ a1 ≤ · · · ≤ an−1

}

is a fundamental domain.
(4) Let A = Pn

+ and G = Sn+1. Then

A+
s :=

{
(a0: · · · : an−1: 1) ∈ Pn

R
∣∣ 0 ≤ a0 ≤ a1 ≤ · · · ≤ an−1 ≤ 1

}

is a fundamental domain.

Note that P3
C/S4

∼= PC(1, 2, 3, 4) has cyclic quotients singularities at P̃0 := (0: 1: 0: 0),
P̃ ′0 := (0: 0: 1: 0) and P̃ ′′0 := (0: 0: 0: 1).

Proposition 3.3. About the structures of P3
R/S4 and P3

+/S4, we have the following:

(1) Let σ:P3
R −→ P3

R/S4
⊂−→ PR(1, 2, 3, 4) be the natural map. Then σ−1(P̃ ′0) = ∅,

σ−1(P̃ ′′0 ) = ∅, and σ(−1, 0, 0, 1) = P̃0.
(2) ∆2(P3

R/S4) =
{
D̃1

}
, ∆1(P3

R/S4) =
{
C̃1, C̃2

}
, and ∆0(P3

R/S4) =
{
P̃0, P̃1, P̃2

}
, where

D̃1, C̃i and P̃i are as follows:

D̃1 :=
{
σ(s: t: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ s + t + 2 > 0, s < t
}
,

C̃1 :=
{
σ(s: 1: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ s 6= −3, 1
}
,

C̃2 :=
{
σ(s: s: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ −1 < s < 1
}
,

P̃1 := σ(1: 1: 1: 1) = (4: 6: 4: 1) ∈ PR(1, 2, 3, 4),
P̃2 := σ(−1:−1: 1: 1) = (0:−2: 0: 1) ∈ PR(1, 2, 3, 4).

(3) ∆2(P3
+/S4) =

{
D̃+

1 , D̃0

}
, ∆1(P3

+/S4) =
{
C̃+

1 , C̃+
2 , C̃3, C̃4

}
, and ∆0(P3

+/S4) =
{
P̃1,

P̃3, P̃4, P̃5

}
, where D̃+

1 , D̃0, C̃ ′1, C̃i and P̃i are as follows:

D̃+
1 :=

{
σ(s: t: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < t, s 6= 1, t 6= 1
}
,

D̃0 :=
{
σ(0: s: t: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < t < 1
}
,

C̃+
1 :=

{
σ(s: 1: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < 1 or s > 1
}
,

C̃+
2 :=

{
σ(s: s: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < 1
}
,

C̃3 :=
{
σ(0: s: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < 1 or 1 < s
}
,

C̃4 :=
{
σ(0: 0: s: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < 1
}
,

P̃3 := σ(0: 1: 1: 1) = (3: 3: 1: 0) ∈ PR(1, 2, 3, 4),
P̃4 := σ(0: 0: 1: 1) = (2: 1: 0: 0) ∈ PR(1, 2, 3, 4),
P̃5 := σ(0: 0: 0: 1) = (1: 0: 0: 0) ∈ PR(1, 2, 3, 4).

(4) disc(D̃1) = Disc4, and C̃1 ∪ C̃2 ⊂ Sing(V (Disc4)), here V (f) is the zero locus of f in
PR(1, 2, 3, 4).

(5) Cls C̃1 is isomorphic to a cubic curve on P2
R with a cusp at P̃1.

(6) C̃2 = (P̃1P̃2) is isomorphic to an open line segment with ends P̃1 and P̃2.
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(7) P3
R/S4 is the semialgebraic subset of PR(1, 2, 3, 4) defined by Disc4(1, σ1, σ2, σ3, σ4) ≥ 0,

8σ2 ≤ 3σ2
1 , and 64σ4 − 16σ2

2 + 16σ2
1σ2 − 16σ1σ3 − 3σ4

1 ≤ 0. Here, σi is the elementary
symmetric polynomials of a0, a1, a2, a3 of degree i.

Proof. (1) is clear.
(2) and (3) follows from the critical decompositions of fundamental domains As and

A+
s in the above example.

(4) This follows from conditions that a quartic equation has a double root, a triple root
or two double roots.

(5) Eliminate t from x = σ2(t, 1, 1, 1)/σ1(t, 1, 1, 1)2, y = σ3(t, 1, 1, 1)/σ1(t, 1, 1, 1)3, z =
σ4(t, 1, 1, 1)/σ1(t, 1, 1, 1)4, then we obtain 32(x − 3/8)3 + 27(x − 3/8)2 − 108(x − 3/8)(y −
1/16) + 108(y − 1/16)2 = 0 and x2 = 3y − 12z. This cuve is isomorphic to a cubic curve on
P2
R, and have a cusp at (x, y, z) = (3/8, 1/16, 1/256) = P̃1.

(6) Eliminate t from x = σ2(t, t, 1, 1)/σ1(t, t, 1, 1)2, y = σ3(t, t, 1, 1)/σ1(t, t, 1, 1)3, z =
σ4(t, t, 1, 1)/σ1(t, t, 1, 1)4, then we obtain 4x − 8y = 1 and y2 = z. This is a non-singular
rational curve.

(7) This follow from theory of quartic equations. g(a, b, c, d) := 64σ4− 16σ2
2 +16σ2

1σ2−
16σ1σ3 − 3σ4

1 is a separator. Note that

g(a, a, c, d) = −(c− d)2(8a2 − 8ac + 3c2 − 8ad + 2cd + 3d2),
g(a, a, a, d) = −3(a− d)4.

Thus, V (g) pass through C̃2.

3.2 The PSD cone Ps0
4,4

In this subsection, we shall study Ps0
4,4 := P(P3

R, Hs0
4,4).

We choose s0 := S4 − 4U , s1 := T3,1 − 12U , s2 := S2,2 − 6U , s3 := T2,1,1 − 12U as a
base of Hs0

4,4, and define Φs0
4,4 : P3

R · · · → P3
R by Φs0

4,4(a) =
(
s0(a) : s1(a) : s2(s) : s3(a)

)
. Let

Xs0
4,4 := Φs0

4,4(P3
R) = X(P3

R, Hs0
4,4) ⊂ P

(
(Hs0

4,4)
∨)

),

and let Ψ:P3
R/S4 · · · → Xs0

4,4 be the rational map such that Φs0
4,4 = Ψ ◦σ. Put D1 := Ψ(D̃1),

C1 := Cls(Ψ(C̃1)), C2 := Ψ(C̃2), and Pi := Ψ(P̃i) for i = 0, 2, 3. Note that BsHs0
4,4 =

{(1: 1: 1: 1)}, and Ψ is undefinite at P̃1.
The aim of this subsection is to prove the following theorem.

Theorem 3.4. (1) For a monic f = s0 +ps1 +qs2 +rs3 ∈ H̆s0
4,4, f(a) ≥ 0 for all a ∈ R4

if and only if
p + r ≥ 0 and − 9p2 + 12p + 12q + 12r + 8 ≥ 0.

(2) All the extremal elements of Ps0
4,4 are positive multiples of gt (t ∈ P1

R = R ∪ {∞}) or p.
(3) All the discriminants of Ps0

4,4 are discC1 = 9p2 + 12p + 12q + 12r + 8 and discP2 = p + r.

(4)
{
(t: 1: 1: 1) ∈ P3

+

∣∣ t ≥ 0
} ∪ {(−1:−1: 1: 1)} is a test set for Ps0

4,4.

This theorem will be proved after Lemma 3.7.
For f ∈ C[x1,. . ., xn]d and K = R or C, we denote

VK(f) :=
{
a ∈ Pn

K

∣∣ f(a) = 0
}
, V+(f) := VR(f) ∩ Pn

+.

In some articles, VK(f) are also denoted by Z(f). The symbol VK(f) is rather popular in
algebraic geometry.
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Lemma 3.5. Ψ : (P3
R/S4 − {P̃1}) −→ Xs0

4,4 is a birational morphism, and ∆0(Xs0
4,4) =

{P2}, ∆1(Xs0
4,4) = {C1, C2}, ∆2(Xs0

4,4) = {D1}, ∆3(Xs0
4,4) = {Int(Xs0

4,4)}. Moreover, ∂Ps0
4,4 =

F(C1) ∪F(P2), and E(Xs0
4,4) ⊂ C1 ∪ {P2}.

Proof. Let

fs0
4,4(x0, x1, x2, x3) := −3x0x

4
1 + 4x5

1 + 6x2
0x

2
1x2 − 24x0x

3
1x2 + 14x4

1x2 − 3x3
0x

2
2

+ 20x2
0x1x

2
2 − 48x0x

2
1x

2
2 + 16x3

1x
2
2 + 34x2

0x
3
2 + 16x0x1x

3
2 + 8x2

1x
3
2 + 44x0x

4
2

− 48x1x
4
2 − 72x5

2 + 12x2
0x

2
1x3 + 12x0x

3
1x3 − 36x4

1x3 − 12x3
0x2x3 + 20x2

0x1x2x3

+ 120x0x
2
1x2x3 − 56x3

1x2x3 − 76x2
0x

2
2x3 − 32x0x1x

2
2x3 − 64x2

1x
2
2x3

− 32x0x
3
2x3 + 112x1x

3
2x3 + 144x4

2x3 − 12x3
0x

2
3 − 40x2

0x1x
2
3 − 112x1x

3
2x3

+ 144x4
2x3 − 12x3

0x
2
3 − 40x2

0x1x
2
3 − 18x0x

2
1x

2
3 + 104x3

1x
2
3 + 14x2

0x2x
2
3

− 104x0x1x2x
2
3 + 84x2

1x2x
2
3 + 64x0x

2
2x

2
3 + 16x1x

2
2x

2
3 − 152x3

2x
2
3 + 28x2

0x
3
3

+ 12x0x1x
3
3 − 136x2

1x
3
3 + 8x0x2x

3
3 − 56x1x2x

3
3 + 32x2

2x
3
3 − 3x0x

4
3 + 84x1x

4
3

+ 14x2x
4
3 − 20x5

3.

Note that the greatest common divisor of determinants of 3 × 3 minors of the Jacobian
matrix JP of Φs0

4,4 is equal to

∏

i<j

(ai − aj)2


 S2

1(S2 − S1,1)(S4 − 4U).

Since

fs0
4,4(s0, s1, s2, s3) = 16(a0 + a1 + a2 + a3)4


∏

i<j

(ai − aj)2





∑

i<j

(ai − aj)2


 ,

we have ∂Xs0
4,4 ⊂ VR(fs0

4,4) ⊂ P3
R by Corollary 2.13. Since fs0

4,4 is irreducible, we have
Zar(∂Xs0

4,4) = VR(fs0
4,4). This implies that the rational map Φs0

4,4 : As · · · → Xs0
4,4 is generically

one to one, here As is the fundamental domain in Example 3.2. So, Ψ : (P3
R/S4−{P̃1}) −→

Xs0
4,4 is a birational morphism.

Thus, every D ∈ ∆(Xs0
4,4) is obtained as D = Ψ(D̃) byr a certain D̃ ∈ ∆(P3

R/S4).
Since (1: 1: 1: 1) ∈ Bs Hs0

4,4, there are no element in ∆(Xs0
4,4) corresponding to P̃1. We

put
P1 := (2: 3: 1: 1) = lim

t→1
Φs0

4,4(t, 1, 1, 1).

Note that lim
t→1

Φs0
4,4(t, t, 1, 1) 6= P1, and {P1} /∈ ∆(Xs0

4,4). We denote the coordinate system

of P
(
(Hs

4,4)
∨)

= P3
R by (x0:x1:x2:x3), here Φs0

4,4 is defined by xi = si(a). Let

g2(x0, x1, x2, x3) := (x1 − x3)2 + 2x2
2 − 3x2x0.

Then C1 is the conic defined by x2 = x3 and g2(x0, x1, x2, x3) = 0. Note that Q0 =
(2:−2: 1: 0) ∈ C1, P1 ∈ C1, and C1 is non-singular. Thus, {Ψ(P̃0)} /∈ ∆(Xs0

4,4).
Next, C2 =

{
Φs0

4,4(t: t: 1: 1)
∣∣ −1 < t < 1

}
= Ψ(C̃2) is an open line segment (P1P2)

defined by x0 = 2x2, x1 − 2x2 − x3 = 0 and x1/x0 ≤ 3/2. Note that

P2 = (0: 1: 0: 1) = (0:−1: 0:−1) = lim
t→−∞

(a: t: c: t) = Φs0
4,4(−1:−1: 1: 1) = Ψ(P̃2).

In general, if D ∈ ∆(X) has ruling structure, then F(D) cannot be a face component. Thus,
F(C2) is not a face component of Ps0

4,4. By Theorem 2.16, F(D1) and F(Int(Xs0
4,4)) are
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not face components of Ps0
4,4. Thus ∂Ps0

4,4 = F(C1) ∪ F(P2). This also implies E(Xs0
4,4) ⊂

C1 ∪ {P2}.

Proof of Theorem 1.9(1). Put Ω := {(−1:−1: 1: 1)} ∪ {
(t: 1: 1: 1) ∈ P3

R
∣∣ t ∈ R}

. By
Theorem 2.10, it is enough to show that Φs0

4,4(Ω) ⊃ C1 ∪ {P2} ⊃ E(Xs0
4,4). But this is clear.

We regard Hs0
4,3 = R4, by identifying f =

3∑

i=0

pisi ∈ Hs0
4,3 and (p0, p1, p2, p3) ∈ R4. We

also use (p0, p1, p2, p3) as a coordinate system of Hs0
4,3 = R4. We denote the local cone of

Ps0
4,4 at (t: 1: 1: 1) ∈ P3

R by Ls0
t . Note that if f ∈ F(C1), there exists t ∈ R such that f(t, 1, 1,

1) = 0. Thus f ∈ Ls0
t . For t = ∞ ∈ P1

R, we denote the local cone of Ps0
4,4 at (1: 0: 0: 0) ∈ P3

R
by Ls0

∞.

We shall observe gt, g∞ and p ∈ Ps0
4,4. Note that

3gt(a, b, c, d) = 3s0 − 2(t + 1)(s1 − s3) + (t2 + 2t− 1)s2

=
(
a2 + b2 − c2 − d2 + (t + 1)(cd− ab)

)2

+
(
a2 − b2 + c2 − d2 + (t + 1)(bd− ac)

)2

+
(
a2 − b2 − c2 + d2 + (t + 1)(bc− ad)

)2
,

g∞(a, b, c, d) = s2 = (ab− cd)2 + (ac− bd)2 + (ad− bc)2,
p = s2 − s3 = (a− b)2(c− d)2 + (a− c)2(b− d)2 + (a− d)2(b− c)2.

Espacially, gt, g∞, p ∈ Σ4,4.

For f(a, b, c, d) ∈ R[a, b, c, d], we dnote
∂

∂a
f by fa,

∂2

∂a2
f by faa, and so on.

Lemma 3.6. gt ∈ E(Ps0
4,4) for all t ∈ P1

R, and p ∈ E(Ps0
4,4). These are characterized as

the following:
(1) Let t ∈ R−{1, −3}. If f ∈ Ps0

4,4 satisfies f(t, 1, 1, 1) = 0 and f(−1, −1, 1, 1) = 0, then
there exists α ≥ 0 such that f = αgt.

(2) If f ∈ Ps0
4,4 satisfies f(x, x, 1, 1) = 0 for all x ∈ R, then there exists α ≥ 0 such that

f = αg1.
(3) If f ∈ Ps0

4,4 satisfies f(x, y, z, −x − y − z) = 0 for all x, y, z ∈ R, then there exists
α ≥ 0 such that f = αg−3.

(4) If f ∈ Ps0
4,4 satisfies f(0, 0, 0, 1) = 0 and f(−1, −1, 1, 1) = 0, then there exists α ≥ 0

such that f = αg∞.
(5) If f ∈ Ps0

4,4 satisfies f(0, 0, 0, 1) = 0 and f(x, 1, 1, 1) = 0 for all x ∈ R, then there
exists α ∈ R+ such that f = αp.

Proof. Note that of f ∈ Ps0
4,4 satisfies f(a, b, c, d) = 0, then fa(a, b, c, d) = 0. Similarly,

if faa(a, b, c, d) = 0, then faaa(a, b, c, d) = 0. Otherwise, f will be negative at a certain point
near (a, b, c, d). f ∈ Hs

4,4 can be written as f = p0s0 + p1s1 + p2s2 + p3s3) by p0, p1, p2,
p3) ∈ R.

(1) Take t ∈ R− {1, −3}. Let’s consider a system of equations

f(t, 1, 1, 1) = 0, fa(t, 1, 1, 1) = 0, f(−1,−1, 1, 1) = 0. (∗)
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Put a0,j = sj(t, 1, 1, 1), a1,j = (sj)a(t, 1, 1, 1), a2,j = sj(1, 1,−1,−1), and A = (ai,j) ∈
M3,4(R). Then, (∗) is equivalent to Ap = 0. That is




(t− 1)2(t2 + 2t + 3) 3(t− 1)2(t + 2) 3(t− 1)2 3(t− 1)2

4(t3 − 1) 9(t2 − 1) 6(t− 1) 6(t− 1)
0 −16 0 −16







p0

p1

p2

p3


 =




0
0
0


 .

Using Mathmatica, we can soon check that Ker A = R ·gt. If f ∈ Ps0
4,4 satisfies f(t, 1, 1, 1) =

0, then fa(t, 1, 1, 1) = 0 always holds. Thus, if f ∈ Ps0
4,4 satisfies f(t, 1, 1, 1) = 0 and

f(−1,−1, 1, 1) = 0, then f = αgt by a certain α > 0.
(2) Consider a system of equations f(0, 0, 1, 1) = 0, f(2, 2, 1, 1) = 0 instead of (∗).

Then dim KerA = 2, and fab
1 and g := s1 − 2s2 − s3 is a base of Ker A. g is not PSD. Since

fab
1 (x, 1, 1, 1) + cg(x, 1, 1, 1) = (x− 1)3(x− 1− c), fab

1 + cg is PSD only if c = 0.
(3) Consider f(1, 2, 3,−6) = 0, fa(1, 2, 3,−6) = 0, f(1, 2, 4,−7) = 0.
(4) Consider f(0, 0, 0, 1) = 0, fa(0, 0, 0, 1) = 0, f(−1,−1, 1, 1) = 0.
(5) Consider f(2, 1, 1, 1) = 0, f(0, 0, 0, 1) = 0, fa(0, 0, 0, 1) = 0.
Each A of the cases (2)—(5) are as the following:

(2) A =




18 26 9 8
24 34 12 10
24 18 0 0


 , (3) A =




1538 −962 769 576
148 248 314 516
2898 −2002 1449


 ,

(4) A =




1 0 0 0
0 1 0 0
0 16 0 −16


 , (5) A =




11 12 3 3
1 0 0 0
0 1 0 0


 .

gt (t ∈ P1
R) degenerates when t = 1, −3. Since g1(x, x, 1, 1) = 0 for all x ∈ P1

R, we have
F(C2) = R+ · g1. This also implies that F(C2) is not a face component of Ps0

4,4, and we can
omit

{
(x:x: 1: 1) ∈ P3

R
∣∣ x ∈ R+

}
from the test set.

Lemma 3.7. Ls0
t = R+ · gt + R+ · p, and the discriminant of F(C1) and F(P2) are

discC1(p0, p1, p2, p3) = 8p2
0 − 9p2

1 + 12p0p1 + 12p0p2 + 12p0p3,

discP2(p0, p1, p2, p3) = p1 + p3.

Proof. Since P2 = (0: 1: 0: 1), discP2(p0, p1, p2, p3) = p1 + p3, by Remark 1.28 of [4].
Since gt, p ∈ Ls0

t (t ∈ P1
R), we have dim Ls0

t ≥ 2. On the other hand, since dimLs0
t <

dimPs0
4,4 = 3, we have dim Ls0

t = dim Ls0
∞ = 2 (t 6= 1). Since gt, p ∈ E(Ps0

4,4), we have
Ls0

t = R+ · gt + R+ · p for all t ∈ P1
R.

Using PC, we can check that gt (∀t ∈ P1
R) and p exists on the hypersurface in Hs0

4,4

defined by 8p2
0− 9p2

1 +12p0p1 +12p0p2 +12p0p3. This equation is also the defining equation
of the dual variety of C1. So, this is discC1 .

Proof of Theorem 3.4. By the above lemma, we have

F(P2) =

{
3∑

i=0

pisi ∈ Hs0
4,4

∣∣∣∣∣ p1 + p3 = 0, p0 ≥ 0, −9p2
1 + 12p0p2 + 8p2

0 ≥ 0

}
,
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F(C1) =

{
3∑

i=0

pisi ∈ Hs0
4,4

∣∣∣∣
p1 + p3 ≥ 0, p0 ≥ 0,
−9p2

1 + 12p0p1 + 12p0p2 + 12p0p3 + 8p2
0 = 0

}
.

Thus, all the extremal elements of Ps0
4,4 are gt (t ∈ P1

R) and p.
Thus, for f = s0 +ps1 +qs2 +rs3 ∈ Hs0

4,4, f(a) ≥ 0 for all a ∈ P3
R if and only if p+r ≥ 0

and −9p2 + 12p + 12q + 12r + 8 ≥ 0.
(4) follow from ∂Ps0

4,4 = F(C1) ∪F(P2).

Proof of Theorem 1.1(1), 1.2 and 1.8(1). Let t0 := σ4
1 − 256σ4, t1 := σ2

1σ2 − 96σ4,
t2 := σ2

2 − 36σ4, t3 := σ1σ3 − 16σ4. Then s0 = t0 − 4t1 + 2t2 + 4t3, s1 = t1 − 2t2 − t3,
s2 = t2 − 2t3 and s3 = t3. Using these substitution for gt, g∞ and p, we obtain Theorem
1.2.

Take f = p0s0 + p1s1 + p2s2 + p3s3 = q0t0 + q1t1 + q2t2 + q3t3 ∈ Hs0
4,4. Since t0 =

s0 + 4s1 + 6s2 + 12s3, t1 = s1 + 2s2 + 5s3, t2 = s2 + 2s3 and t3 = s3, we have p0 = q0,
p1 = 4q0 + q1, p2 = 6q0 + 2q1 + q2, and p3 = 12q0 + 5q1 + 2q2 + q3. Substitute these for pi

in discC1 and discP2 of Lemma 3.7, we obtain d1 and d2 of Theorem 1.8(1). Theorem 1.1(1)
follows from these.

Proof of Proposition 1.7(1). Let f(x, y) := gt(x, y, 1,−x − y − 1)/(t + 3)3 for t ∈
P1
R − {−3}. If gt is reducible, then f is also reducible. By

∂

∂x
f(x, y) = 2(2x + y + 1)(x2 + xy + y2 + x + 3y + 1)

and so on, we have

Sing(VC(f)) =
{
(−1:−1: 1), (−1: 0: 1), (0: 1: 1)

}
.

Moreover, these are acnodes. Assume thar f = gh. If deg g = 1, then # Sing(VC(f)) = 4
or # Sing(VC(f)) ⊂ VC(g). This cannot occur. Thus, g and h are irreducible quadric curves
which intersect transversally. Then, # Sing(VC(f)) = 4. Therefore, VC(f) must be an
irreducible rational quartic curve.

Proof of Corollary 1.3. E(Ps0
4,4) ⊂ Σ4,4 is already proved. Since, any element of Ps0

4,4

can be written as a sum of some elements in E(Ps0
4,4), we have Ps0

4,4 ⊂ Σ4,4.
Assume that ∃f ∈ E(Ps0

4,4) ∩ E(P4,4) 6= ∅. f is SOS, since E(Ps0
4,4) ⊂ Σ4,4. Since,

f ∈ E(P4,4), we have f ∈ E(Σ4,4). Thus, there exists g ∈ H4,2 such that f = g2. Then
VR(g) = VR(f). Since #VR(gt) ≥ 2 and #VR(p) ≥ 2, we have #VR(g) ≥ 2. Such conic g
satisfies dimR VR(g) ≥ 1. But, VR(f) is a finite set.

3.3. The PSD cone Ps0+
4,4

In this subsection, we shall study Ps0+
4,4 := P(P3

+, Hs0
4,4). The aim of this subsection is

to prove the following theorem.

Theorem 3.8. (I) For a monic

f = s0 + ps1 + qs2 + rs3 ∈ H̆s0
4,4,

f(a) ≥ 0 for all a ∈ R4
+ if and only if the following “(1) or (2)” and “(3) or (4)” hold:

(1) p ≤ −4 and p2 ≤ 4q − 8.
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(2) p ≥ −4 and 2p + q + 2 ≥ 0.
(3) p ≤ −2/3 and 9p2 ≤ 12p + 12q + 12r + 8.
(4) p ≥ −2/3 and 3q + 3r ≥ 1.

(II) All the extremal elements of Ps0+
4,4 are positive multiples of fab

t (0 ≤ t ≤ 5), fct
(5 < t < ∞), p = s2, q1 = s1 − 2s2 or q2 = s3.

(III) The following set is a test set for (P3
+, Hs0+

4,4 ).
{
(t: 1: 1: 1) ∈ P3

+

∣∣ t ≥ 0
} ∪ {

(0: 0: t: 1) ∈ P3
+

∣∣ t ≥ 0
}
.

This theorem will be proved after Lemma 3.16.
Essentially, we use the same symbols as the previous subsection, but there are some

changes. Let A := P3
+ : (a0: a1: a2: a3), Xs0+

4,4 := Φs0
4,4(P3

+) = X(P3
+, Hs0

4,4) ⊂ P
(
(Hs0

4,4)
∨)

. As
§3.2, put D0 := Ψ(D̃0), D+

1 := Ψ(D̃+
1 ) ⊂ D1, P1 := (2: 3: 1: 1), C+

1 := Ψ(C̃+
1 ) ∪ {P1} ⊂ C1,

C+
2 := Ψ(C̃+

2 ) ⊂ C2, Ci := Ψ(C̃i) for i = 3, 4 and Pj := Ψ(P̃j) for j = 3, 4, 5. Note that

P3 = (1: 2: 1: 1) = Φs0
4,4(0, 1, 1, 1),

P4 = (2: 2: 1: 0) = Φs0
4,4(0, 0, 1, 1),

P5 = (1: 0: 0: 0) = Φs0
4,4(0, 0, 0, 1).

We divide C+
1 into three parts 0 < t < 1, 1 < t < 5, 5 < t and denote these by Ca

1 , Cb
1, Cc

1.
Put Cab

1 := Ca
1 ∪ {P1} ∪ Cb

1.
Every D ∈ ∆(Xs0+

4,4 ) is obtained as D = Ψ(D̃) for a certain D̃ ∈ ∆(P3
+/S4). But,

P1 /∈ ∆(Xs0+
4,4 ), since (1: 1: 1: 1) ∈ Bs Hs0

4,4. Thus, we have the following:

Lemma 3.9. ∆0(Xs0+
4,4 ) = {P3, P4, P5}, ∆1(Xs0+

4,4 ) = {C+
1 , C+

2 , C3, C4}, ∆2(Xs0+
4,4 ) =

{D0, D+
1 }, ∆3(Xs0+

4,4 ) = {Int(Xs0+
4,4 )}.

Int(Xs0+
4,4 ), F(D0) and F(D+

1 ) are not face components of Ps0+
4,4 by Theorem 2.16.

F(C+
2 ) is not also a face component of Ps0+

4,4 , because C+
2 is an open line segment (P1, P4).

Thus, we have

Lemma 3.10. (1) ∂Ps0+
4,4 = F(C+

1 ) ∪F(C3) ∪F(C4) ∪F(P3) ∪F(P4) ∪F(P5).
(2) Take f ∈ Hs0

4,4. If f(x, 1, 1, 1) ≥ 0, f(0, x, 1, 1) ≥ 0, f(0, 0, x, 1) ≥ 0 for all x ≥ 0,
then f ∈ Hs0

4,4.

Proof. (2) Let
A+

1 :=
{
(t: 1: 1: 1) ∈ P3

+

∣∣ t ≥ 0
}
,

A+
2 :=

{
(t: t: 1: 1) ∈ P3

+

∣∣ 0 ≤ t ≤ 1
}
,

A3 :=
{
(0: t: 1: 1) ∈ P3

+

∣∣ t ≥ 0
}
,

A4 :=
{
(0: 0: t: 1) ∈ P3

+

∣∣ t ≥ 0
}
.

Note that Φs0
4,4(A

+
i ) ⊃ C+

i (i = 1, 2), and Φs0
4,4(Aj) ⊃ Cj (j = 3, 4). By Corollary 1.3 of [22]

or Corollary 2.1 of [23], we can choose A+
1 ∪A+

2 ∪A3 ∪A4 as a test set for (P3
+, Hs0

4,4). Since
F(C+

2 ) is not a face component of Ps0+
4,4 and P1 ∈ C+

1 , P4 ∈ Cls(C3)∩Cls(C4), we can omit
A+

2 from the test set. Thus, if f ∈ Hs0
4,4 satisfies f(x, 1, 1, 1) ≥ 0, f(0, x, 1, 1) ≥ 0 and f(0,

0, x, 1) ≥ 0 for all x ≥ 0, then f ∈ Ps0+
4,4 .
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In fact, F(C3) is not a face component, and we can omit A3 from the test set. But it
will be proved later. We summarize here what C+

1 , C3 and C4 are.

Lemma 3.11.
(1) Zar(C+

1 ) is a conic defined by x2
1 − 2x1x2 − 3x0x2 + 3x2

2 = 0, x2 − x3 = 0. Especially,
Zar(C+

1 ) is nonsingular. The ends of C+
1 are P3 and P5.

(2) Zar(C3) has a cusp at P3. The ends of C3 are P4 and P5.
(3) Zar(C4) is a conic defined by x2

1− 2x2
2− x0x2 = 0 on the plane VR(x3). The ends of C4

are P4 and P5.

Next, we shall study fab
t (0 ≤ t ≤ 5), fct (5 ≤ t < ∞), p = s2 − s3, q1 = s1 − 2s2, and

q2 = s3. Note that

fab
t =

1
3
(
3s0 − 2(t + 1)s1 + 2(2t− 1)s2 + (t2 + 3)s3

)
,

fct =
1
9
(
9s0 − 6(t + 1)s1 + (t2 + 2t + 19)s2 + 2(t2 + 5t− 8)s3

)
,

and fab
5 = fc5. Put fc∞ := s2 + 2s3. Since fc∞ = p + 3q2, fc∞ is not extremal. For u ≥ 0, let
hc

u := 3u2s0 − 6u(u2 + 1)s1 + 3(u4 + 4u2 + 1)s2 + 2(3u4 + 3u3 + 2u2 + 3u + 3)s3.

If t = (3u2−u+3)/u, then hc
u = 3u2fct . So, hc

u is not a new polynomial, but it is convenient
to study F(C4) for the property hc

u(0, 0, u, 1) = 0.
We shall denote the local cone of Pc0+

4,4 at the point (t: 1: 1: 1) ∈ P3
+ by LC1

t , and the
local cone at the point (0: 0: t: 1) by LC4

t .

Lemma 3.12. fab
t (0 ≤ t ≤ 5), fct (5 < t < ∞), p, q1, and q2 are extremal elements of

Ps0+
4,4 . These are characterized as the following:

(1) Let 0 ≤ t < 1 or 1 < t ≤ 5. If f ∈ Ps0+
4,4 satisfies f(t, 1, 1, 1) = 0 and f(0, 0, 1, 1) = 0,

then there exists α ∈ R+ such that f = αfab
t .

(2) If f ∈ Ps0
4,4 satisfies faa(1, 1, 1, 1) = 0 and f(x, x, 1, 1) = 0 for all x ≥ 0, then there

exists α ∈ R+ such that f = αfab
1 .

(3) Assume that t, u ∈ R+ satisfy 3u2 − (t + 1)u + 3 = 0. If f ∈ Ps0
4,4 satisfies f(t, 1, 1,

1) = 0 and f(0, 0, u, 1) = 0, then there exists α ∈ R+ such that f = αfct .
(4) If f ∈ Ps0

4,4+ satisfies f(0, 0, 0, 1) = 0, fa(0, 0, 0, 1) = 0 and f(x, 1, 1, 1) = 0 for all
x ≥ 0, then there exists α ∈ R+ such that f = αp.

(5) If f ∈ Ps0
4,4 satisfies f(0, 1, 1, 1) = 0, f(0, 0, 1, 1) = 0 and f(0, 0, 0, 1) = 0, then there

exists α ∈ R+ such that f = αq1.
(6) If f ∈ Ps0

4,4 satisfies f(0, 0, x, y) = 0 for all x, y ∈ R+, then there exists α ∈ R+ such
that f = αq2.

Proof. We shall show that fab
t (0 ≤ 1 ≤ 5), fct (t ≥ 5), p, q1 and q2 belong to Ps0+

4,4 .
Since

fab
t (0, x, 1, 1) =

1
3
x(x + 2)

((
t− 2(x− 1)2

(x + 2)

)2

+
x(16− x)(x− 1)2

(x + 2)2

)
,

we have fab
t (0, x, 1, 1) ≥ 0 if x ≤ 16. On the other hand

fab
t (0, x, 1, 1) =

1
3
x
(
18(25− t)2 +

(
t2 + 120(5− t) + 1575

)
(x− 16)

+
(
4(5− t) + 120

)
(x− 16)2 + 3(x− 16)3

)
,
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we have fab
t (0, x, 1, 1) ≥ 0 for x ≥ 16. Similarly,

fab
t (x, 1, 1, 1) = (x− t)2(x− 1)2 ≥ 0,

fab
t (0, 0, x, 1) =

1
3
(x− 1)2

(
3

(
x− t− 2

3

)2

+
1
3
(5− t)(1 + t)

)
≥ 0,

fct(x, 1, 1, 1) = (x− t)2(x− 1)2 ≥ 0,

fct(0, x, 1, 1) =
1
9
(2x + 1)2

((
t− (x− 1)2(6x + 5)

(2x + 1)2

)2

+
24x(x− 1)2(x + 2)(3x + 2)

(2x + 1)4

)
≥ 0,

fct(0, 0, x, 1) =
1
9
(3x2 − (t + 1)x + 3)2 ≥ 0,

hc
u(0, 0, x, 1) = 3(x− u)2(ux− 1)2 ≥ 0,

q1(x, 1, 1, 1) = 3x(x− 1)2 ≥ 0,

q1(0, x, 1, 1) = 2x(x− 1)2 ≥ 0,

q1(0, 0, x, 1) = x(x− 1)2 ≥ 0,

q2(x, 1, 1, 1) = 3(x− 1)2 ≥ 0,

q2(0, x, 1, 1) = x(x + 2) ≥ 0,

q2(0, 0, x, 1) = 0.

Thus fab
t , fct , q1, q2 ∈ Ps0+

4,4 .
The left part can be proved similarly as the proof of Lemmma 3.6.

(1) Consider a system of equations f(t, 1, 1, 1) = 0, fa(t, 1, 1, 1) = 0, f(0, 0, 1, 1) = 0
instead of (∗) in Lemmma 3.6. Then Ap = 0 become




(t− 1)2(t2 + 2t + 3) 3(t− 1)2(t + 2) 3(t− 1)2 3(t− 1)2

4(t3 − 1) 9(t2 − 1) 6(t− 1) 6(t− 1)
2 2 1 0







p0

p1

p2

p3


 =




0
0
0


 .

Using Mathematica, we can check Ker A = R · fab
t if t 6= 1. fa(t, 1, 1, 1) = 0 follows from

f(t, 1, 1, 1) = 0 if f ∈ Ps0+
4,4 .

(2) Consider faaa(1, 1, 1, 1) = 0, f(0, 0, 1, 1) = 0, fa(0, 0, 1, 1) = 0.

(3) This case is slightly complicated. Let t = (3u2 − u + 3)/u and consider the system
of equations f

(
(3u2 − u + 3)/u, 1, 1, 1

)
= 0, fa

(
(3u2 − u + 3)/u, 1, 1, 1) = 0, f(0, 0, u, 1) = 0.

Then Ap = 0 become




(t− 1)2(t2 + 2t + 3) 3(t− 1)2(t + 2) 3(t− 1)2 3(t− 1)2

4(t3 − 1) 9(t2 − 1) 6(t− 1) 6(t− 1)
u4 + 1 u(u2 + 1) u2 0







p0

p1

p2

p3


 =




0
0
0


 .

Using Mathematica, we can check Ker A = R · fct .
(4) Same with (5) of Lemmma 3.6.

(5) Consider f(0, 1, 1, 1) = 0, f(0, 0, 1, 1) = 0, f(0, 0, 0, 1) = 0.

(6) Consider f(0, 0, 0, 1) = 0, f(0, 0, 1, 1) = 0, f(0, 0, 1, 2) = 0.
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Each A of the cases (2), (5), (6) are as the following:

(2) A =




24 18 0 0
2 2 1 0
0 2 0 2


 , (5) A =




3 6 3 3
2 2 1 0
1 0 0 0


 , (6) A =




1 0 0 0
2 2 1 0
17 10 4 0


 .

Lemma 3.13.
(1) fab

t ∈ F(C1) ∩F(P4) and LC1
t = R+ · fab

t + R+ · p for 0 < t < 1 or 1 < t ≤ 5.
(2) fct ∈ F(C1)∩F(C4) and LC1

t = R+ ·fct +R+ ·p for t > 5. Moreover, LC4
u = R+ ·hc

u+R+ ·q2

for u ≥ 0 with t = (3u2 − u + 3)/u.
(3) fab

0 ∈ F(C1) ∩F(P3) ∩F(P4).
(4) f5 := fab

5 = fc5 ∈ F(C1) ∩F(C4) ∩F(P4).
(5) fc∞ ∈ F(C1) ∩F(C4) ∩F(P5).
(6) p ∈ F(C1) ∩F(P3) ∩F(P5).
(7) q1 ∈ F(P3) ∩F(P4) ∩F(P5).
(8) q2 ∈ F(C4) ∩F(P4) ∩F(P5).

Proof. If F(D) (D ∈ ∆(Xc0+
4,4 )) is a face component of Pc0+

4,4 , then dimF(D) =
dim(∂Pc0+

4,4 ) = dimPc0+
4,4 − 1 = 3. So, if D1, D2, D3 are distinct elements of ∆(Xc0+

4,4 ), and
F(Di) (i = 1, 2, 3) are face components, then dim

(
F(D1) ∩F(D2)

)
= 2 and dim

(
F(D1) ∩

F(D2) ∩F(D3)
)

= 1.
Now, we shall prove (1)—(8).
(1) Assume that 0 ≤ t < 1 or 1 < t ≤ 5. By previous lemma, we have fab

t ∈ LC1
t ∩F(P4)

for 0 ≤ t ≤ 5. Since dimLC1
t = 2, we have LC1

t = R+ · fab
t + R+ · p ⊂ F(C1),

(2) Let u > 0 and t = (3u2 − u + 3)/u ≥ 5. By previous lemma, fct ∈ F(C1) ∩ F(C4).
Since dimLC4

t = 2, LC4
u = R+ · hc

u + R+ · q2. As (1), we have LC1
u = R+ · fct + R+ · p.

(3)—(8) can be proved similarly.

Note that fab
1 ∈ F(C+

2 ), because fab
1 (x, x, 1, 1) = 0 for all x ∈ R. By Lemmma 3.6(2),

we have F(C+
2 ) = R+ · fab

1 . This also implies that F(C+
2 ) is not a face component.

Using the above lemma, we shall determine the structure of the face components F(C+
1 ),

F(C4), F(P3), F(P4) and F(P5).

Lemma 3.14. For f , g ∈ Hs0
4,4, let Fan(f , g) := R+ · f +R+ · g be the fan whose edges

are f and g. Put

W ab := R+ ·
{
fab
t

∣∣ 0 ≤ t ≤ 5
} ⊂ Hs0

4,4, W c := R+ ·
{
fct

∣∣ t ≥ 5
} ∪ R+ · fc∞.

Then the following hold.
(1) ∂F(C+

1 ) = W ab ∪W c ∪ Fan(fc∞, p) ∪ Fan(p, fab
0 ).

(2) ∂F(C4) = W c ∪ Fan(f5, q2) ∪ Fan(q2, fc∞).
(3) ∂F(P3) = Fan(fab

0 , q1)∪Fan(q1, p)∪Fan(p, fab
0 ). That is, F(P3) is a triangle cone with

edges fab
0 , q1 and p.

(4) ∂F(P4) = W ab ∪ Fan(f5, q2) ∪ Fan(q2, q1) ∪ Fan(q1, fab
0 ).

(5) F(P5) is a triangle cone with edges p, q1 and q2. Note that fc∞ ∈ Fan(p, q2), and Fan(p,
fc∞) = F(P5) ∩F(C1), Fan(fc∞, q2) = F(P5) ∩F(C4).
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F(C1) = 〈fab
0 , f5, fc∞, p〉

F(C4) = 〈f5, fc∞, q2〉

F(P3) = 〈fab
0 , q1, p〉

F(P4) = 〈fab
0 , f5, q2, q1〉

F(P5) = 〈p, q1, q2〉

q1 q2

p

fab
0

W ab

W c

f5

fc∞
q

Fig.3.1. Ps0+
4,4

By the above lemma, we know that ∂Ps0+
4,4 is enclosed by F(C+

1 ), F(C4), F(P3), F(P4)
and F(P5). We don’t need F(C3). See Fig.3.1. Thus, we have:

Lemma 3.15. ∂Ps0+
4,4 = F(C+

1 ) ∪ F(C4) ∪ F(P3) ∪ F(P4) ∪ F(P5), and E(Xs0+
4,4 ) ⊂

C+
1 ∪ C4 ∪ {P3, P4, P5}. Especially, F(C3) is not a face component of Ps0+

4,4 .

Proof of Theorem 1.9(2). Put Ω+ := A+
1 ∪A4. By Theorem 2.10, it is enough to show

that Φs0
4,4(Ω+) ⊃ C+

1 ∪ C4 ∪ {P3, P4, P5}. But this is clear.

Geometrically, C3 − {P3, P4, P5} is included in the interior of the convex closure of
Ps0+

4,4 . So, any f ∈ Ps0+
4,4 cannot satisfy f(0, x, 1, 1) = 0 for x > 0, x 6= 1.

Theorem 1.4 is also proved from the above results.
Finally, we shall study discriminants discD = disc(D) for D = C+

1 , C4, P3, P4 and P5.
We use (p0, p1, p2, p3) as a coordinate system of Hs0

4,4 as before. (p0, p1, p2, p3) corresponds

to
3∑

i=0

pisi ∈ Hs0
4,4.

Lemma 3.16.

disc(C+
1 ) = 8p2

0 − 9p2
1 + 12p0p1 + 12p0p2 + 12p0p3,

disc(C4) = −8p2
0 − p2

1 + 4p0p2,

disc(P3) = p0 + 2p1 + p2 + p3,

disc(P4) = 2p0 + 2p1 + p2,

disc(P5) = p0.

Proof. disc(C+
1 ) = disc(C1), since Zar(C+

1 ) = Zar(C1).

If P = (c0: c1: c2: c3) ∈ ∆(Ps0+
4,4 ), then disc(P ) =

3∑

i=1

cipi. Thus we have disc(Pi) (i = 3,

4, 5).
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We shall study disc(C4). Take f = (1/3u3)hc
u + vq2 ∈ F(C4) (u > 0, v ≥ 0). The

coefficients of f are p1/p0 = −2(u2 + 1)/u, p2/p0 = (u4 + 4u2 + 1)/u2, p3/p0 = 2(3u4 +
3u3 + 2u2 + 3u + 3)/(3u2) + v. Eliminate u and v from these relations. Then we have
disc(C4) = −8p2

0 − p2
1 + 4p0p2 = 0.

Proof of Theorem 3.8. The proof of Theorem 3.8 is almost completed. What we should
do is only to observe the signature of discriminants. Then, we find that we can use p + 4
and p+2/3 as separators to describe Pc0+

4,4 as a union of basic semialgebraic sets as (1)—(4)
of Theorem 3.8(I).

Proof of Theorem 1.1(2), 1.4 and 1.8(2). This is same as the proof of Theorem 1.1(1),
1.2 and 1.8(1).

Proof of Proposition 1.7(2), (3).(2-i) Consider the case 0 ≤ t < 1 or 1 < t ≤ 5. Let
F (x, y, z) := 3fab

t (x, y, z − x − y, −z), and f(x, y) := F (x, y, 1). If fab
t is reducible, then f

is also reducible. Consider the real curve Γ := VR(F ) ⊂ P2
R. Note that f(y, x) = f(x, y).

Since

f(x, 0) = f(0, x) = 8(t + 1)(x2 − x + 1)2 > 0,

F (1, 0, z) = F (0, 1, z) = 8(t + 1)(z2 − z + 1)2 > 0,

f(1, 1) = f(1,−1) = f(−1, 1) = −16(t− 1)2 < 0,

Γ has at least three connected components Γ1, Γ2, Γ4 in the 1-st, 2-nd and 4-th quadrant.
Γ1, Γ2, Γ4 are all bounded. This implies Γ cannot contain a line. Moreover, Γ cannot be a
union of two quadric curves. Thus VC(F ) must be an irreducible curve.

(3) Consider the case t > 5. Let G(x, y, z) := 9fct(x, y, z − x − y, −z), and g(x, y) :=
G(x, y, 1). Then,

g(x, 0) = g(0, x) = (t + 7)2(x2 − x + 1)2 > 0,

G(1, 0, z) = G(0, 1, z) = (t + 7)2(z2 − z + 1)2 > 0,

g(1, 1) = g(1,−1) = g(−1, 1) = −32(t2 + 2t− 11) < 0.

Thus VC(G) must be an irreducible curve.
(2-ii) Consider the case t = 1. Assume that fab

1 is reducible. Since

fab
1 (x, y, 1, 1) =

1
3
(x− y)2(3x2 + 2xy + 3y2 − 8x− 8y + 8),

fab
1 must be product of two real quadrics. But this is impossible. since (fab

1 )aa(1, 1, 1, 1) = 0.

Proof of Proposition 1.5. For ft = fab
t (0 < t < 1 or 1 < t ≤ 5) or ft = fct (t > 5), let

Ft(a, b, c, d) := ft(a2, b2, c2, d2), and consider the zero point set Zt := VR(Ft) ⊂ P3
R.

Let u be a positive root of t = (3u2 − u + 3)/u if t > 5, and u := 1 if 0 < t ≤ 5.
Remember that ft(1, 1, 1, 1) = ft(t, 1, 1, 1) = ft(0, 0, u, 1) = 0. Let s :=

√
t and v :=

√
u.

Then Ft(±1, ±1, ±1, 1) = Ft(±s, ±1, ±1, 1) = Ft(0, 0, ±v, 1) = 0. Thus, if 0 < t < 1 or
1 < t ≤ 5, then #Zt = 52. If t > 5, then #Zt = 64.

Assume that Ft ∈ Σ4,8. Then, there exists r ∈ N and g1,. . ., gr ∈ H4,4 such that
Ft = g2

1 + · · ·+ g2
r . If a ∈ Zt, then g1(a) = · · · = gr(a) = 0, since Ft(x) ≥ 0 for all x ∈ P3

R.
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Note that dim H4,4 = 35. So, let’s find 35 points ai ∈ Zt (1 ≤ i ≤ 35) such that there exists
no g ∈ H4,4 − {0} which satisfy g(ai) = 0 for all 1 ≤ i ≤ 35.

Let a1 := (1: 1:−1:−1), a2 := (1: 1: 1: s), a3 := (−s: 1: 1: 1), a4 := (1:−s: 1: 1), a5 :=
(1: 1:−s: 1), a6 := (1: 1: 1:−s), a7 := (s:−1: 1: 1), a8 := (s: 1:−1: 1), a9 := (s: 1: 1:−1),
a10 := (−1: s: 1: 1), a11 := (1: s:−1: 1), a12 := (1: s: 1:−1), a13 := (−1: 1: s: 1), a14 :=
(1:−1: s: 1), a15 := (1: 1: s:−1), a16 := (−1: 1: 1: s), a17 := (1:−1: 1: s), a18 := (1: 1:−1: s),
a19 := (s: 1:−1:−1), a20 := (s:−1: 1:−1), a21 := (s:−1:−1: 1), a22 := (−1: s: 1:−1),
a23 := (−1: s:−1: 1), a24 := (1: s:−1:−1), a25 := (−1:−1: s: 1), a26 := (1:−1: s:−1),
a27 := (−1: 1: s:−1), a28 := (1:−1:−1: s), a29 := (−1: 1:−1: s), a30 := (−1:−1: 1: s),
a31 := (v: 1: 0: 0), a32 := (v: 0:−1: 0), a33 := (v: 0: 0:−1), a34 := (0: v: 1: 0), a35 := (0: v: 0: 1).
Take 35 monomials e1,. . ., e35 as a base of H4,4, and denote g = c1e1 + · · ·+ c35e35 ∈ H4,4.
Let A = (ai,j) be 35× 35-matrix such that ai,j = ej(ai). Then

det A = ±549755813888 t13/2(t− 1)23(t + 3)6

× u3(1 + t− 2u)(tu + u− 2)(3u2 − ut− u− 1).

Note that 3u2 − ut− u− 1 = (3u2 − ut− u + 3)− 4 = −4 6= 0, tu + u− 2 = 3u2 + 1 > 0 and
u > 0. There exist no real solutions 1 + t− 2u = 0, t = (3u2 − u + 3)/u. Thus detA 6= 0 if
t > 0 and t 6= 1. This implies there exists no g ∈ H4,4 − {0} which satisfy g(ai) = 0 for all
1 ≤ i ≤ 35.

Proof of Proposition 1.6. Let t > 5. We shall show that fct ∈ E(P+
4,4). This is equivalent

to hc
u ∈ E(P+

4,4) for all u > 0.

Let e1,. . ., e35 be all the monomials in H4,4, and denote f ∈ H4,4 as f =
35∑

i=1

ciei

(ci ∈ R). Let t := (3u2−u+3)/u. Let K be the subspace of all the f ∈ H4,4 which satisfies
the following 34 equalities:

fa(1, 1, 1, 1) = 0, fb(1, 1, 1, 1) = 0, f(t, 1, 1, 1) = 0, fa(t, 1, 1, 1) = 0,
fb(t, 1, 1, 1) = 0, f(1, t, 1, 1) = 0, fa(1, t, 1, 1) = 0, fb(1, t, 1, 1) = 0,
fc(1, t, 1, 1) = 0, f(1, 1, t, 1) = 0, fa(1, 1, t, 1) = 0, fb(1, 1, t, 1) = 0,
fc(1, 1, t, 1) = 0, f(1, 1, 1, t) = 0, fa(1, 1, 1, t) = 0, fb(1, 1, 1, t) = 0,
fc(1, 1, 1, t) = 0, f(0, 0, u, 1) = 0, fc(0, 0, u, 1) = 0, f(0, u, 0, 1) = 0,
fb(0, u, 0, 1) = 0, f(0, u, 1, 0) = 0, fb(0, u, 1, 0) = 0, f(u, 0, 0, 1) = 0,
fa(u, 0, 0, 1) = 0, f(u, 0, 1, 0) = 0, f(u, 1, 0, 0) = 0, fa(u, 1, 0, 0) = 0,
f(0, 0, 1, u) = 0, f(0, 1, 0, u) = 0, f(0, 1, u, 0) = 0, f(1, 0, 0, u) = 0,
f(1, 0, u, 0) = 0, f(1, u, 0, 0) = 0.

The system of these equation can be written as Ac = 0 by a certain 34× 35-matrix A,
i.e. K = Ker A. Add the vector (1, 0,. . ., 0) to the bottom of A, and make 35× 35-matrix
B. Then

det B = ±t(t + 3)(t− 1)25u12(u2 − 1)12(u2 + 1)2(12u4 + 12u3 + 21u2 + 10u + 9) 6= 0.

Thus dim KerA = 1, and KerA = R · hc
u. This implies hc

u ∈ E(P+
4,4).

It seems that fab
t /∈ E(P+

4,4) for t < 5. But the author does not have proof.
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Section 4. Cubic Inequalities of Four Variables

4.1. Structure of Pc0+
4,3

In this section, we shall study Pc0+
4,3 := P(P3

+, Hc0
4,3). We use similar symbols with §3.

To state the main theorem of this section we need to fix some symbols. Put

S3 :=
3∑

i=0

a3
i , S2,1,0 :=

3∑

i=0

a2
i ai+1, S2,0,1 :=

3∑

i=0

a2
i ai+2,

S1,2,0 :=
3∑

i=0

a2
i ai+3, S1,1,1 :=

3∑

i=0

aiai+1ai+2,

here we regard ai+4 = ai for all i ∈ Z. We choose s0 := S3 − S1,1,1, s1 := S2,1,0 − S1,1,1,
s2 := S2,0,1 − S1,1,1, s3 := S1,2,0 − S1,1,1 as a base of Hc0

4,3, and define Φc0
4,3 : P3

+ · · · →
P3

+ by Φc0
4,3(a) =

(
s0(a) : s1(a) : s2(a) : s3(a)

)
. The coordinate system of A = P3

R is
denoted by (a0: a1: a2: a3) or (a: b: c: d), and the coordinate system of P((Hc0

4,3)
∨) is denoted

by (x0:x1:x2:x3). We represent f ∈ Hc0
4,3 as f = p0s0 + · · · + p3s3 (pi ∈ R), and the

coordinate system of Hc0
4,3 is denoted by (p0, p1, p2, p3). If f ∈ Pc0+

4,3 , then s0 ≥ 0. When
p0 = 1, we say f is monic. When p0 = 0, we say f lies at infinity. The characteristic variety
is written by Xc0+

4,3 := Φc0
4,3(P3

+). Let

P1 := (1: 0: 0: 0) = Φc0
4,3(0: 0: 0: 1) ∈ ∂Xc0+

4,3 ,

P2 := (1: 0: 1: 0) =
{
Φc0

4,3(a: b: a: b) ∈ P3
+

∣∣ a, b ∈ R+

} ∈ ∂Xc0+
4,3 ,

C :=
{
Φc0

4,3(0: 0: t: 1) ∈ P3
+

∣∣ t > 0
} ⊂ ∂Xc0+

4,3 ,

S :=
{
Φc0

4,3(0: s: t: 1) ∈ P3
+

∣∣ s > 0, t > 0
} ⊂ ∂Xc0+

4,3 .

We denote F(Pi), F(C), F(S) by FPi , FC and FS . As we prove later, FP1 , FP2 , FC and
FS are all the face components of Pc0+

4,3 . We need two discriminants discC and discS which
are defining equations of Zar(FC) and Zar(FS). discS is somewhat complicated polynomial.

discC(p0, p1, p3) := 27p4
0 + 4p0p

3
1 + 4p0p

3
3 − p2

1p
2
3 − 18p2

0p1p3 = Disc3(p0, p1, p3, p0),
dS(p0, p2, q, r)
:= (p0 − p2 − q)2(13p2

0 − 2p0p2 + p2
2 + 2p0q + 2p2q)2

(104p3
0 + 100p2

0p2 − 4p0p
2
2 + 36p2

0q + 36p0p2q − p0q
2 − p2q

2 + 8q3)
+ (17173p7

0 − 121p6
0p2 − 5639p5

0p
2
2 + 7651p4

0p
3
2 − 3489p3

0p
4
2 + 469p2

0p
5
2

− 45p0p
6
2 + p7

2 + 6250p6
0q + 10028p5

0p2q + 3142p4
0p

2
2q − 1368p3

0p
3
2q − 746p2

0p
4
2q

− 20p0p
5
2q − 6p6

2q + 898p5
0q

2 + 7230p4
0p2q

2 + 1748p3
0p

2
2q

2 − 1572p2
0p

3
2q

2

− 86p0p
4
2q

2 − 26p5
2q

2 + 2780p4
0q

3 − 368p3
0p2q

3 + 1448p2
0p

2
2q

3 − 496p0p
3
2q

3

+ 28p4
2q

3 + 518p3
0q

4 + 1018p2
0p2q

4 − 190p0p
2
2q

4 + 78p3
2q

4 + 164p2
0q

5

+ 168p0p2q
5 + 4p2

2q
5)r2

+ (2495p5
0 − 317p4

0p2 − 1886p3
0p

2
2 + 842p2

0p
3
2 − 81p0p

4
2 + 3p5

2 + 1768p4
0q

+ 4p3
0p2q − 988p2

0p
2
2q + 380p0p

3
2q − 12p4

2q + 291p3
0q

2 + 897p2
0p2q

2 − 463p0p
2
2q

2

+ 83p3
2q

2 + 226p2
0q

3 + 92p0p2q
3 − 38p2

2q
3 − p0q

4 − p2q
4)r4

+ (95p3
0 + 65p2

0p2 − 43p0p
2
2 + 3p3

2 + 98p2
0q − 20p0p2q − 6p2

2q − 4p0q
2)r6

+ (−3p0 + p2)r8,
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discS(p0, p1, p2, p3) :=
1
4
dS(p0, p2, p1 + p3, p1 − p3).

Since discC(p0, p1, p3) has an obstacle branch in the first quadrant p1/p0 > 0, p3/p0 > 0, we
put

dC(x, z) :=
{

discC(1, x, z) (if x < 0 or z < 0)
1 (if x ≥ 0 and z ≥ 0)

to avoid complexity. dC(x, z) ≥ 0 implies discC(1, x, z) ≥ 0 or ‘x ≥ 0 and z ≥ 0’. Thus,
dC(x, z) ≥ 0 defines a convex domain, but discC(1, x, z) ≥ 0 does not. The following η(x, y)
is a nice separator whose property is explained in Lemma 4.10.

η(x, y) := 61 + 62x + 56y + 32x2 + 30xy − 6y2

+ 9x3 + 4x2y − 6xy2 − 16y3 + x4 − 4x2y2 − 6xy3 + y4 − x3y2.

We also need two constants κ1, κ2. Let κ1 := 0.0129074031 · · · be a root of

817808203x6 − 546807084x5 + 129155640x4 − 13342016x3 + 556080x2 − 10176x + 64 = 0,

and κ2 := 0.0318925844 · · · be a root of

43042537x6 − 4514514x5 − 188769x4 − 38684x3 + 4119x2 − 114x + 1 = 0.

The aim of this section is to prove the following theorem.

Theorem 4.1. (I) Take a monic f = s0 + p1s1 + p2s2 + p3s3 ∈ H̆c0
4,3. Then, f(a) ≥ 0

for all a ∈ R4
+, if and only if one of the following holds:

(1) p2 = −1 and 8(p1 + p3) ≥ (p1 − p3)2.
(2) −1 < p2 ≤ 3, discS(1, p1, p2, p3) ≥ 0 and dC(p1, p3) ≥ 0.
(3) p2 > 3, κ1(p1 + p3) + κ2p2 ≥ 1, discS(1, p1, p2, p3) ≥ 0, and dC(p1, p3) ≥ 0.
(4) p2 > 3, κ1(p1 + p3) + κ2p2 < 1, η(p1 + p3, p2) > 0, discS(1, p1, p2, p3) ≥ 0, and

dC(p1, p3) ≥ 0.
(5) p2 > 3, κ1(p1 + p3) + κ2p2 < 1, η(p1 + p3, p2) ≤ 0, and dC(p1, p3) ≥ 0.

(II) Let’s denote f = p0s0 + p1s1 + p2s2 + p3s3. Then, all the discriminants of Pc0+
4,3 are

discS(p0, p1, p2, p3), discC(p0, p1, p3), discP1 = p0, and discP2 = p0 + p2.
(III) If f ∈ Hc0

4,3 satisfies f(0, s, t, 1) ≥ 0 for all s, t ∈ R+, then f ∈ Pc0
4,3.

This theorem will be proved after Lemma 4.8. By AM-GM inequality, we have

s0(a0, a1, a2, a3) =
1
3

3∑

i=0

(a3
i + a3

i+1 + a3
i+2 − 3aiai+1ai+2) ≥ 0,

s2(a0, a1, a2, a3) = (a0 − a1 + a2 − a3)(a0a2 − a1a3),

s0 − s2 =
1
3

3∑

i=0

(a3
i + a3

i + a3
i+2 − 3a2

i ai+2) ≥ 0,

s0 + 2s2 =
3∑

i=0

(a2
i ai+2 + a3

i+1 + aia
2
i+2 − 3a2

i ai+1ai+2) ≥ 0,

2s1 + s2 =
3∑

i=0

(a2
i ai+1 + a2

i+1ai+2 + a2
i+2ai − 3aiai+1ai+2) ≥ 0,

2s3 + s2 =
3∑

i=0

(aia
2
i+1 + ai+1a

2
i+2 + ai+2a

2
i − 3aiai+1ai+2) ≥ 0,
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s0 − s1 =
1
3

3∑

i=0

(a3
i + a3

i + a3
i+1 − 3a2

i ai+1) ≥ 0,

s0 − s3 =
1
3

3∑

i=0

(a3
i + a3

i+1 + a3
i+1 − 3aia

2
i+1) ≥ 0,

s1 + s3 = (a0 + a2)(a1 − a3)2 + (a1 + a3)(a0 − a2)2 ≥ 0.

Thus Xc0+
4,3 is a subset of a cube defined by −1/2 ≤ s1/s0 ≤ 1, −1/2 ≤ s2/s0 ≤ 1, −1/2 ≤

s3/s0 ≤ 1. Note that s1 and s3 are not PSD, for s1(1/100, 1/2, 1/10, 1) = −229/20000 < 0.
Φc0

4,3 : P3
+ · · · → Xc0+

4,3 splits as

Φc0
4,3 : P3

+
π−→ P3

+/(Z/4Z)
Ψc0

4,3−→ Xc0+
4,3 .

It is easy to see that Ψc0
4,3 : P3

+/(Z/4Z) · · · → Xc0+
4,3 is a birational map, but is not holomorphic

at a singular point π(1: 1: 1: 1). We shall provide more precise structure of Xc0+
4,3 . The

following es,t(a0, a1, a2, a3) ∈ Hc0
4,3 (s, t ∈ R) has a possibility to be an extremal element.

But there exists (s, t) such that es,t is not PSD.

Proposition 4.2. For (u: v:w) ∈ P2
+ −

{
(1: 0: 1)

}
, let

gh
0 (u, v, w) := −v

(
uwv2 − (u + w)(u2 + w2)v + uw(u− w)2

)
,

gh
1 (u, v, w) := uv4 − w(u + 2w)v3 − 2uw(u− w)v2 − u(2u3 + u2w − 3w3)v + w(u2 − w2)2,

gh
2 (u, v, w) := v

(
v4 + (2u2 − 3uw + 2w2)v2 − (u + w)(u2 + w2)v + (u− w)2(u2 − uw + w2)

)
,

gh
3 (u, v, w) := g1(w, v, u),

eh
u,v,w(a) :=

3∑

i=0

gh
i (u, v, w)si(a).

For simplicity, put gi(s, t) := gh
i (s, t, 1) and es,t(a) := eh

s,t,1(a).
(1) eh

w,v,u − eh
u,v,w = (u− w)(v2 − (u + w)2)((u− w)2 + 2(u + w)v + v2)(s1 − s3).

(2) eh
t,1,0 = teh

0,t,1 − (t2 − 1)(t2 + 1)2s2.
(3) Assume that s > 0, t > 0, t 6= s + 1, g0(s, t) > 0 and es,t ∈ Pc0+

4.3 . If f ∈ Pc0+
4.3 satisfies

f(0, s, t, 1) = 0, then there exists α ≥ 0 such that f = αes,t. Especially, es,t ∈ E(Pc0+
4,3 ).

(4) Assume that s = 0, t > 0, t 6= 1 and e0,t ∈ Pc0+
4.3 . If f ∈ Pc0+

4,3 satisfies f(0, 0, t, 1) = 0

and
∂

∂b
f(0, 0, t, 1) = 0, then there exists α ≥ 0 such that f = αes,t. Especially,

e0,t ∈ E(Pc0+
4,3 ).

(5) Assume that u > 0, v > 0, and eh
u,v,0 ∈ Pc0+

4.3 . If f ∈ Pc0+
4,3 satisfies f(0, u, v, 0) = 0

and
∂

∂d
f(0, u, v, 0) = 0, then there exists α ≥ 0 such that f = αeh

u,v,0. Especially,

eh
u,v,0 ∈ E(Pc0+

4,3 ).
(6) If t = s + 1, then

es,s+1(a, b, c, d) = (s + 1)(s2 + 1)2(a− b + c− d)2(a + b + c + d) (∗)
= (s + 1)(s2 + 1)2e0,1(a, b, c, d).

If f ∈ Pc0+
4,3 satisfies f(0, 0, 1, 1) = 0 and f(0, 1, 2, 1) = 0, then there exists α ≥ 0 such

that f = αe0,1. Especially, es,s+1 ∈ E(Pc0+
4,3 ).
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(7) If g0(s, t) < 0, then es,t /∈ E(Pc0+
4,3 ) and −es,t /∈ E(Pc0+

4,3 ).

Proof. Denote fa(a, b, c, d) =
∂

∂a
f(a, b, c, d) and so on.

(1) and (2) follows from direct calculation.
(3) Assume that f = p0s0 + p1s1 + p2s2 + p3s3 ∈ Pc0+

4.3 satisfies f(0, s, t, 1) = 0. Then
fb(0, s, t, 1) = 0 and fc(0, s, t, 1) = 0 holds. Let a0,j = sj(0, s, t, 1), a1,j = (sj)b(0, 0, t, 1),
a2,j = (sj)c(0, s, t, 1), and A = (ai,j). Then

A =




s3 + t3 − st + 1 t(s2 − s + t) s(1 + s− t) t(st− s + 1)
3s2 − t (2s− 1)t 2s− t + 1 t(t− 1)
3t2 − s s2 − s + 2t −s 2st− s + 1


 .

Let B be the square matrix add (1, 0, 0, 0) above A. Then detB = (t − s − 1)g0(s, t) 6= 0.
Note that es,t ∈ KerA. Thus, KerA = R · es,t.

(4), (5) Same with (3).
(6) (∗) follows from direct calculation. Assume that f ∈ Pc0+

4,3 satisfies f(0, 0, 1, 1) = 0
and f(0, 1, 2, 1) = 0. Then f(0, 0, 1, 1) = 0, fa(0, 0, 1, 1) = 0 and fa(0, 1, 2, 1) = 0. then
fc(0, 0, t, 1) = 0 holds. By the same method as (3), we have the conclusion.

(7) We may assume t 6= s + 1. If es,t ∈ E(Pc0+
4,3 ), then g0(s, t) = es,t(0, 0, 0, 1) ≥ 0. On

the other hand, es,t(0, 0, 1, 1) = (s + 1)(t− s− 1)2((s− 1)2 + t2) > 0. Thus −es,t /∈ E(Pc0+
4,3 ).

The condition that es,t ∈ E(Pc0+
4,3 ) will be determined at Theorem 4.13.

Lemma 4.3. Let

B0 :=
{
(0: s: t: 1) ∈ P3

+

∣∣ s > 0, t > 0
}
,

B0 :=
{
(0: s: t:u) ∈ P3

+

∣∣ (s: t:u) ∈ P2
+

}
,

E1 :=
{
(a0: a1: a2: a0 − a1 + a2) ∈ P3

+

∣∣ a1 ≤ a0 + a2

}
,

E2 :=
{
(a: b: a: b) ∈ P3

+

∣∣ a, b ∈ R+

}
,

fc0
4,3(x0, x1, x2, x3)

:= (x3
1 − x0x1x3 + x3

3)
2 − x2(x3

1 − x0x1x3 + x3
3)(x

2
0 + 3x2

1 − 4x1x3 + 3x2
3)

+ x2
2

(
x2

0(x
2
1 − x1x3 + x2

3) + 2x0x1x3(x1 + x3)

+ x4
1 − 7x3

1x3 + 9x2
1x

2
3 − 7x1x

3
3 + x4

3

)

+ x3
2

(
2x0x

2
1 − x0(4x2

1 + x1x3 + 2x2
3) + (x1 + x3)(x2

1 − 3x1x3 + x2
3)

)

+ x4
2(x

2
1 + x1x3 + x2

3).
Then, the following hold:
(1) BsΦc0

4,3 = {(1: 1: 1: 1)} and the exceptional sets of Φc0
4,3 are E1 and E2. Φc0

4,3(E1) =
(2: 1: 0: 1), and Φc0

4,3(E2) = P2.

(2) Zar(∂Xc0+
4,3 ) = VR(fc0

4,3).
(3) Φc0

4,3(B0) = ∂Xc0+
4,3 and S = Reg(Φc0

4,3(B0)).
(4) Let Lc0+

(0:s:t:1) be the local cone of Pc0+
4,3 at (0: s: t: 1). Take (0: s: t: 1) ∈ B0. If es,t is PSD,

then the local cone Lc0+
(0:s:t:1) is a half line with the base es,t, and es,t ∈ E(Pc0+

4,3 ). If es,t

is not PSD, then Lc0+
(0:s:t:1) = 0.
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Proof. (1) follows from Φc0
4,3(a: b: c: a−b+c) = (2: 1: 0: 1), and Φc0

4,3(a: b: a: b) = (1: 0: 1: 0).
(2), (3) The Jacobian of Φc0

4,3 is equal to

−(a− b + c− d)3((a− c)2 + (b− d)2)2(a + b + c + d)s0(a, b, c, d)2.

Note that V+(s0) = {(1: 1: 1: 1)}. On the other hand,

fc0
4,3

(
Φc0

4,3(a, b, c, d)
)

= abcd(a− b + c− d)4(a + b + c + d)2((a− c)2 + (b− d2)4 ≥ 0.

By Corollary 2.13 and (1), we have the conclusion.

(4) Let fi(x0, x1, x2, x3) :=
∂

∂xi
fc0
4,3(x0, x1, x2, x3) and

hi(s, t) := fi

(
Φc0

4,3(0, s, t, 1)
)
,

gc(s, t) := st(t− s− 1)2(s + t + 1)((s− 1)2 + t2)2.

Then hi(s, t) = gc(s, t)gi(s, t) (i = 0, 1, 2, 3).

It is easy to draw a graph of Xc0+
4,3 using Mathematica. But it may present incorrect

impression. It seems that Xc0+
4,3 is a convex set. But it is not true. The following observation

show us that Xc0+
4,3 is not convex near (1: 0: 0: 0). Cut ∂Xc0+

4,3 by the plane VR(x1−x3). Note
that

fc0
4,3(1, x, y, x) = x2(2x− 3y − 1)(2x3 + x2y − y3 − x2 + 2y2 − y).

The graph of VR(2x3 + x2y − y3 − x2 + 2y2 − y) is not convex near (x, y) = (0, 0). Thus
Xc0+

4,3 is not convex. This also implies that es,t /∈ Pc0+
4,3 for some (s, t) ∈ B0.

Lemma 4.4. Let (P1P2) :=
{
Φc0

4,3(0: t: 0: 1) ∈ P3
+

∣∣ 0 < t < 1
}
. Then the following

hold:
(1) Sing(Zar(∂Xc0+

4,3 )) ∩ (∂Xc0+
4,3 ) = C ∪ (P1P2) ∪ {P1, P2}. C and (P1P2) are nodal double

curves. P1 and P2 are normal crossing triple points.
(2) ∆3(Xc0+

4,3 ) =
{

Int(Xc0+
4,3 )

}
, ∆2(Xc0+

4,3 ) =
{
S

}
, ∆1(Xc0+

4,3 ) =
{
C, (P1P2)

}
, ∆0(Xc0+

4,3 )
=

{
P1, P2

}
.

Proof. Note that P2 = Φc0
4,3(E2), and

C =
{
(x0:x1: 0: x3) ∈ P3

+

∣∣ x3
1 − x0x1x3 + x3

3 = 0
}− {P1, P2}.

(1) is a result of basic but long calculation. Please observe the graph of Φc0
4,3(0, s, t, 1)

and fc0
4,3(1, x, y, z) = 0 using Mathematica.

(2) follows from (1).

Remember that ∂Pc0+
4,3 =

⋃

D∈∆(Xc0+
4,3 )

F(D). Let’s observe whether each F(D) is a face

components of Pc0+
4,3 or not .

Since Zar(Int(Xc0+
4,3 )) = P3

R, F(Int(Xc0+
4,3 )) is not a face component.

Zar
(
F((P1P2))

)
is two dimensional plane defined by p0 = p2 = 0. Thus, F((P1P2)) is

not a face component. Therefore, we have:

Lemmma 4.5. (1) ∂Pc0+
4,3 = FP1 ∪FP2 ∪FS ∪FC .
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(2) B0 is a test set of Pc0+
4,3 . In other words, if f ∈ Hc0

4,3 satisfies f(0, s, t, 1) = 0 for all

s ≥ 0, t ≥ 0, then f(a) ≥ 0 for all a ∈ R4
+.

Proof. (1) is already proved.
(2) By (1), we have Cls(Φc0

4,3(B0)) ⊃ ∂Xc0+
4,3 ⊃ E(Xc0+

4,3 ). By Theorem 2.10, we have the
conclusion.

Note that (III) of Theorem 4.1 follows from the above proposition.

Lemma 4.6. We regard as Hc0+
4,3 = R4 by identifying (p0, p1, p2, p3) ∈ R4 with

3∑

i=0

pisi ∈ Hc0+
4,3 . Then,

(1) Zar
(
FP1

)
= VR(p0). Thus FP1 =

{
f ∈ Pc0

4,3

∣∣ f is at infinity
}
.

(2) Zar
(
FP2

)
= VR(p0 + p2).

(3) discS

(
g0(s, t), g1(s, t), g2(s, t), g3(s, t)

)
= 0 for all s, t ∈ R.

(4) discS

(
g0(s, t), g3(s, t), g2(s, t), g1(s, t)

)
= 0 for all s, t ∈ R.

(5) Zar
(
FC

)
= VR(discC).

(6) Zar
(
FS

)
= VR(discS).

Proof. (1) and (2) are trivial.
(3) and (4) follow from direct calculation.
(5) follows from study of Pc+

3,3. See §3 of [3].
(6) follows from (3).

Now, we shall observe FP2 . In the definition of es,t, e1,0 is a zero polynomial, because

gi(1, 0) = 0 (i = 0, 1, 2, 3). Put gP2
i (c) := lim

h→0

gi(ch + 1, h)
4h2

. Then gP2
0 (c) = 1, gP2

1 (c) =

c(c− 2), gP2
2 (c) = −1, gP2

3 (c) = c(c + 2).

Lemma 4.7. For c ∈ R, let

eP2
c := s0 + c(c− 2)s1 − s2 + c(c + 2)s3,

and eP2∞ := s1 + s3.

(1) ∂FP2 ∩ H̆c0
4,3 =

{
eP2
c

∣∣ c ∈ P1
R
}
. Moreover, eP2

c ∈ FP2 ∩FS , eP2∞ ∈ FP2 ∩FS ∩FP1 .
(2) ∂FP2 ⊂ FS .
(3) FP2 ∩FS = V

(
p0 + p2, 8p0(p1 + p3)− (p1 − p3)2

)
.

(4) eP2
c ∈ E(Pc0+

4,3 ) for all c ∈ P1
R.

Proof. Let c2(u, v) := (u−1)2+v(u+1) and c1(u, v) := 2(u−1)v(v−u−1). c2(u, v) ≥ 0
for u ≥ 0, v ≥ 0. Then,

eP2
c (0, u, v, 1) = vc2(u, v)

(
c +

c1(u, v)
2vc2(u, v)

)2

+
(u + 1)((u− 1)2 + v2)2

c2(u, v)
≥ 0.

Thus, fP2
c is PSD for c ∈ R. We have already proved that fP2∞ = s1 + s3 is PSD. Note that

discS(p0, p1,−p0, p3) = 2p0

(
(p0 − p1)2 + (p0 − p3)2

)(
8p0(p1 + p3)− (p1 − p3)2

)3
.
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(1) Since eP2
c = lim

h→0
ech+1,h/4h2, we have eP2

c ∈ FS . It is easy to see that R+ · eP2∞ =

FP2 ∩FC ∩FP1 , We shall determine (FP2 ∩FC)−FP1 . Let

V̆C :=
{
(1, p1,−1, p2) ∈ Ĕc0

4,3

∣∣ 8(p1 + p3)− (p1 − p3)2 = 0
}
.

Since
{
(1, c(c− 2), −1, c(c + 2))

∣∣ c ∈ R}
agree with V̆C .

(2) Since R+ · V̆C ∪ R+ · eP2∞ is a conic closed convex cone, it must agree with FC , and
∂FC is generated by eP2

c (c ∈ P1
R).

(3) follows from (1) and (2).
(4) Put DP2 :=

{
(p0: p1: p2: p3) ∈ P3

R
∣∣ p0 + p2 ≥ 0, 8p0(p1 + p3) = (p1 − p3)2

}
. Then

FP2 = R+ ·DP2 , and eP2
c ∈ ∂FP2 . Any point of ∂DP2 is an extremal point of DP2 .

To characterized eP2
c , we need an infinitesimal local cone. Let π:X → A = P2

+ be the
blowing up at (1: 0: 1), and put eb

c(x, y, z) := eP2
c (xz, yz + 1, z, 1)/z2. Then eb

c(x, y, 0) =
2(cx + y − t)2. This zero locus VX(cx + y − t, z) characterizes eP2

c .
Next we shall study FS ∩ FC . Remember that discC is the edge discriminant of Xc+

3,3

and Xc0+
3,3 . Let

DC :=
{
(x, y, z) ∈ H̆c0+

4,3

∣∣ y ≥ −1 and dC(x, z) ≥ 0
}
.

Then DC is a closed convex set such that P̆c0+
4,3 ⊂ DC , and

(
∂P̆c0+

4,3

)∩ Int(DC) ⊂ VR(discS)
by Lemma 4.6. We need the following polynomial to describe the cusp loci of VR(discS).

fcusp
S (x, y) = 260403739669 + 153581431744x + 102255553008x2 + 5758906656x3

+ 2375407488x4 − 2980119168x5 + 472233216x6 − 115722240x7

+ 17307648x8 − 438272x9 + 4096x10 + 89440948796y + 32061417248xy

+ 8138124864x2y − 17528885472x3y − 2067065472x4y − 828572544x5y

+ 1188607488x6y − 112318464x7y − 15593472x8y − 126976x9y + 8192x10y

− 223071977286y2 − 16231383328xy2 − 12833341936x2y2 + 40377065344x3y2

+ 5505244544x4y2 + 4819181440x5y2 − 264563968x6y2 + 218927104x7y2

+ 9482240x8y2 + 176128x9y2 + 4096x10y2 + 30713189004y3 + 8960225536xy3

+ 17703049984x2y3 − 2170474624x3y3 − 7085133440x4y3 − 4728214912x5y3

− 1856392192x6y3 − 112496640x7y3 − 3928064x8y3 − 135168x9y3

+ 61229381323y4 − 32671427200xy4 − 16135419808x2y4 − 19363454784x3y4

+ 2347438208x4y4 + 668450944x5y4 + 1133005568x6y4 + 47364096x7y4

+ 1464320x8y4 − 40004520712y5 + 14114790976xy5 − 921252992x2y5

+ 9081775296x3y5 + 71177344x4y5 + 679918976x5y5 − 112298496x6y5

− 6821888x7y5 + 10688483692y6 − 1398548800xy6 + 3457102112x2y6

− 1135819904x3y6 + 55287936x4y6 − 134577536x5y6 − 18625280x6y6

− 870429832y7 + 226903552xy7 − 733186304x2y7 − 48610432x3y7

− 35363712x4y7 − 12108928x5y7 − 108565637y8 − 133149760xy8

+ 1725104x2y8 + 6646560x3y8 − 2811392x4y8 + 4147404y9 + 9240992xy9

+ 5649472x2y9 − 26336x3y9 + 2233722y10 + 1416544xy10 + 84944x2y10

+ 121340y11 + 16896xy11 + 517y12.
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Lemma 4.8. Consider on H̆c0
4,3 : (1, x, y, z) ∼= R3. Then

Sing
(
VR(discS(1, x, y, z))

) ∩Pc0+
4,3 = {Q0} ∪ Ls ∪ Ccusp

1 ∪ Ccusp
2 ∪ Ccusp

3 ∪ Ccusp
4 ⊂ H̆c0

4,3,

where Q0, Ls and Ccusp
i are as the follows:

(1) Q0 is a point defined by (x, y, z) = (−1, 3,−1). This lies on ∂P̆c0+
4,3 .

(2) Ls is the half line defined by x = z = (y−1)/2, y ≥ −1. Note that Ls∩∂Pc0+
4,3 = {Q0}.

(3) The hyperbolic curve Cs on the plane VR(x − z) defined by x = z = −(y2 − 2y +
13)/(4y + 4) is a singular locus of of VR(discS(1, x, y, z)). But Cs ∩ ∂Pc0+

4,3 = {Q0}.
(4) Let x = αi(y) be all the four real roots of fcusp

S (x, y) = 0 when we regard y to be a
constant where y ≥ 3 and α1(y) ≤ α2(y) ≤ α3(y) ≤ α4(y). Note that α1(3) = α2(3) =
α3(3) = α4(3) = 1. Then, the following four branches are cusps of S.

Ccusp
1 =

{
(1:α1(y): y:α4(y)) ∈ H̆c0

4,3

∣∣ y > 3
}
,

Ccusp
2 =

{
(1:α2(y): y:α3(y)) ∈ H̆c0

4,3

∣∣ y > 3
}
,

Ccusp
3 =

{
(1:α3(y): y:α2(y)) ∈ H̆c0

4,3

∣∣ y > 3
}
,

Ccusp
4 =

{
(1:α4(y): y:α1(y)) ∈ H̆c0

4,3

∣∣ y > 3
}
.

Proof. Let f(x, y, z) := discS(1, x, y, z) and fx :=
∂f

∂x
and so on. Sing

(
VR(discS(1,

x, y, z))
)

can be obtained by solve the system of equations f(x, y, z) = fx(x, y, z) = fy(x,
y, z) = fz(x, y, z) = 0. But it is next to impossible to proceed this calculation. Instead
of it, we eliminate z from fx(x, y, z) = 0, fy(x, y, z) = 0, and fz(x, y, z) = 0. During
this elimination process, we obtain some factors which include Sing

(
VR(discS(1, x, y, z))

)
.

2x + y − 1, 4(x + 1)2 + (y − 3)2, y2 + 4x(y + 1)− 2y + 13 and fcusp
S (x, y) are such factors.

Note that

discS(1, x, y, x) = (2x + y − 1)2(y2 + 4xy + 4x− 2y + 13)2

(16x3 − x2y + 18xy − x2 − y2 + 18x + 25y + 26).

Proof of Theorem 4.1. We take the section of P̆c0+
4,3 by the hyperplane

Hr :=
{
(1:x: y: z) ∈ Hc0

4,3

∣∣ y = r
}
.

We regard Hr as (x, z)-plane. Put

Dr :=
{
(x, z) ∈ Hr

∣∣ (1:x: r: z) ∈ Pc0+
4,3

}
,

DC := DC ∩Hr =
{
(x, z) ∈ Hr

∣∣ dC(x, z) ≥ 0
}
,

VC := ∂DC =
{
(x, z) ∈ Hr

∣∣ dC(x, z) = 0
}
,

V r
S :=

{
(x, z) ∈ Hr

∣∣ discS(1, x, r, z) = 0
}− (Cs ∪ Ls) ∩Hr.

(O-1) If r < −1, then Dr = ∅, by Lemma 4.6(2).
(O-2) If r = −1, then the condition of (1) of Theorem 4.1 determines the set P̆c0+

4,3 ∩H−1,
because of Lemma 4.7.
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Fig.4.1 : The case −1 < r < 3
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Fig.4.2 : The case r = 3

fS
3 = 0

x + z = −2

(I) When −1 < r < 3, V r
S is as Fig.4.1. Two points Cs ∩Hr and Ls ∩Hr are all the

isolated singularities of VR(discS) ∩H3. V r
S is a smooth curve in DC and enclose a convex

set Pc0+
4,3 ∩Hr. Thus,

Dr :=
{
(x, z) ∈ R2

∣∣ discS(1, x, r, z) ≥ 0 and dC(x, z) ≥ 0
}
.

Thus, the conditions of (2) of Theorem 4.1 determines P̆c0+
4,3 ∩Hr.

(II) Consider the case r = 3. Let

fS
3 (x, z) := x6 − 4x5z + 7x4z2 − 8x3z3 + 7x2z4 − 4xz5 + z6

− 174x5 − 342x4z − 508x3z2 − 508x2z3 − 342xz4 − 174z5

− 414x4 − 712x3z − 1332x2z2 − 712xz3 − 414z4

− 800x3 − 4320x2z − 4320xz2 − 800z3

− 6592x2 − 16512xz − 6592z2 − 16384x− 16384z − 11776.

Then discS(1, x, 3, z) = −2(x + z + 2)2fS
3 (x, z). As Fig 4.2, VR(fS

3 ) tangents VC at three
points P tan

3,1 , P tan
3,4 and P tan

3,2 = P tan
3,3 (these symbols will be explained in (III)). Moreover

VR(fS
3 ) ⊂ DC . Thus,

D3 :=
{
(x, z) ∈ R2

∣∣ discS(1, x, 3, z) ≥ 0 and dC(x, z) ≥ 0
}
,

and the conditions of (2) of Theorem 4.1 determines P̆c0+
4,3 ∩H3.

Note that VR(fS
3 ) ∩ VR(z + 11.851831 · · ·) = ∅, and VR(fS

3 ) ∩ VR(z − z0) is two points
for z0 > −11.851831 · · ·.

(III) Consider the case r > 3. Then, V r
S has just four cusps P cusp

r,i := Ccusp
i ∩ Hr =(

αi(r), α5−i(r)
)

(i = 1, 2, 3, 4). Since V r
S is symmetric with respect to the line VR(x− z), it

is enough to consider the part z ≥ x. As Fig. 4.3, we divide the part z > α4(y) of V r
S into

V r,a
S and V r,b

S . Let V r,c
S be the smooth interval between P cusp

r,2 and P cusp
r,3 of V r

S .
We observe FS ∩FC ∩ H̆c0

4,3. Let

Lx :=
{
(0: 0: w: 1) ∈ P3

+

∣∣ w ∈ [0,∞]
}
,

Ly :=
{
(0:w: 0: 1) ∈ P3

+

∣∣ w ∈ [0,∞]
}
,

Lz :=
{
(0:x: y: 0) ∈ P3

+

∣∣ (x: y) ∈ P1
+

}
.
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Note that ∂ ClsP3+(B0) = Lx ∪ Ly ∪ Lz.

Define a rational map GS : B0 · · · → P(Hc0
4,3) by

GS(0, x, y, 1) :=
(
g0(x, y): g1(x, y): g2(x, y): g3(x, y)

)
.

Note that (0: 1: 0: 1) ∈ Bs G. Since gi(s, t) = fi

(
Φc0

4,3(0, s, t, 1)
)
/gc(s, t) (see the proof of

Lemma 4.3), we can extend G to GS : ∂P3
+ · · · → P(Hc0

4,3) by GS(x: y: 1: 0) = GS(y: 1: 0:x) =
GS(1: 0: x: y) = GS(0:x: y: 1) := GS(0, x, y, 1).

Since g0(w, 0) = 0, GS(Ly) ∩ H̆c0
4,3 = ∅. Since GS(0:x: y: 0) = GS(0: 0: x/y: 1), we have

GS(Lz) = GS(Lx). Since

discC

(
g0(0, w), g1(0, w), g3(0, w)

)
= 0,

we have GS(Lx) ⊂ VR(discC) ∩ VR(discS). Put Ctan
x := GS(Lx).

Similarly, we define a rational map G′ : B0 · · · → P(Hc0
4,3) by

G′(0:x: y: 1) :=
(
g0(x, y) : g3(x, y) : g2(x, y) : g1(x, y)

)
,

and let Ctan
z := G′(Lx). Then Ctan

x ∪ Ctan
z ⊂ VR(discC) ∩ VR(discS).

Put H≥3 :=
{
(1:x: r: z) ∈ H̆c0

4,3

∣∣ r ≥ 3
}
. We regard H≥3 ⊂ H̆c0

4,3 ⊂ P(Hc0
4,3). We shall

determine Ctan
x ∩ H≥3. Let δ := 0.2955977425 · · · be the real root of t3 + t2 + 3t − 1 = 0.

Then, all the real roots of g2(0, t)/g0(0, t) = 3 are t = 1, δ. We put
Ctan

1 :=
{
G′(0: 0: w: 1) ∈ P(Hc0

4,3)
∣∣ 0 < w ≤ δ

} ⊂ Ctan
z , P tan

r,1 := Ctan
1 ∩Hr ∈ P̆c0+

4,3 ,
Ctan

2 :=
{
GS(0: 0: w: 1) ∈ P(Hc0

4,3)
∣∣ w ≥ 1

} ⊂ Ctan
x , P tan

r,2 := Ctan
2 ∩Hr ∈ P̆c0+

4,3 ,
Ctan

3 :=
{
G′(0: 0: w: 1) ∈ P(Hc0

4,3)
∣∣ w ≥ 1

} ⊂ Ctan
z , P tan

r,3 := Ctan
3 ∩Hr ∈ P̆c0+

4,3 ,
Ctan

4 :=
{
GS(0: 0: w: 1) ∈ P(Hc0

4,3)
∣∣ 0 < w ≤ δ

} ⊂ Ctan
x , P tan

r,4 := Ctan
4 ∩Hr ∈ P̆c0+

4,3 .
Then Ctan

x ∩H≥3 = Ctan
1 ∪ Ctan

3 and Ctan
z ∩H≥3 = Ctan

2 ∪ Ctan
4 . Note that FS ∩FC ∩{

GS(0: 0: w: 1) ∈ P(Hc0
4,3)

∣∣ δ < w < 1
}

= ∅.

Lemma 4.9. Ctan
1 ∪ Ctan

2 ∪ Ctan
3 ∪ Ctan

4 ⊂ Zar(FS ∩FC) ∩H≥3.

Proof. Clear.

Put Ccusp := ClsH̆c0
4,3

(Ccusp
1 ∪ Ccusp

2 ∪ Ccusp
3 ∪ Ccusp

4 ). Let’s determine Ctan
x ∩ Ccusp.

Since Ctan
x = GS(Lx) ⊂ VR(discC) ∩ VR(discS), and

GS(0: 0: w: 1) =
(

1 :
1− 2w3

w2
:

(w2 + 1)2 − w

w
:

w3 − 2
w

)
,

we put GS
x (w) := (1− 2w3)/w2, GS

y (w) := ((w2 + 1)2 − w)/w and GS
z (w) := (w3 − 2)/w =

GS
x (1/w).

Lemma 4.10. η(x, y) = 61 + 62x + 56y + 32x2 + 30xy − 6y2 + 9x3 + 4x2y − 6xy2 −
16y3 + x4 − 4x2y2 − 6xy3 + y4 − x3y2 has the following properties:
(1) If (1:x: y: z) ∈ Ctan

x ∪ Ctan
z , then η(x + z, y) = 0.

(2) Let r > 3. On a plane Hr, the zero locus η(x + z, r) = 0 is the union of two lines. One
is the line P tan

r,1 P tan
r,4 , and the other is the line P tan

r,2 P tan
r,3 . η(x + z, r) < 0 between these

two lines, and η(x + z, r) > 0 outside.

Proof. (1) follows from η
(
GS

x (w) + GS
z (w), GS

y (w)
)

= 0.
(2) η(x, r) = 0 has just two real roots for r > 3, and η(y − 3, y) < 0 for y < 3.
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Note that

fcusp
S

(
GS

x (w), GS
y (w)

)
=

(w − 1)4(w2 + 1)4(w4 − 6w2 − 8w + 1)2f38(w)
w22

,

here f38(w) is a polynomial of degree 38 whose real roots are two negative numbers w =
−8.590880 · · ·, 2.4445756 · · ·. Let τ1 := 0.1150 · · · and τ2 := 2.9343 · · · be the real roots of
w4 − 6w2 − 8w + 1 = 0, and

r1 :=
g2(0, τ1)
g0(0, τ1)

= 7.9207039574 · · · , r2 :=
g2(0, τ2)
g0(0, τ2)

= 30.474537321 · · · .

be the real roots of r4 − 28r3 − 90r2 − 92r + 16353 = 0. Then, all positive the roots
of fcusp

S

(
GS

x (w), GS
y (w)

)
= 0 are w = 1, τ1, τ2. In the case w = 1, GS(0: 0: w: 1) =

(1:−1: 3:−1) = Q0. Thus, Ctan
x ∩ Ccusp consists of three points Q0, P tan

r1,1 = P cusp
r1,1 =

GS(0: 0: τ1: 1), and P tan
r2,2 = P cusp

r2,2 = GS(0: 0: τ2: 1). Similarly, Ctan
z ∩ Ccusp consists of three

points Q0, P tan
r1,4 = P cusp

r1,4 = G′(0: 0: τ1: 1), and P tan
r2,3 = P cusp

r2,3 = G′(0: 0: τ2: 1).

Lemma 4.11. In H̆c0
4,3

∼= R3 : (x, y, z), κ1(x + z) + κ2y = 1 defines the plane which
passes through P tan

r1,1, P tan
r2,2, P tan

r2,3 and P tan
r1,4.

Proof. Note that P tan
r1,1 = P cusp

r1,1 = (α1(r1), r1, α4(r1)) and so on.

α2(r1) + α3(r1) =
g1(0, τ1) + g3(0, τ1)

g0(0, τ1)
= GS

x (τ1) + GS
z (τ1),

α1(r2) + α4(r2) =
g1(0, τ2) + g3(0, τ2)

g0(0, τ2)
= GS

x (τ2) + GS
z (τ2).

Solve κ1(GS
x (w) + GS

z (w)) + κ2G
S
y (w) = 1 for w = τ1 and τ2. Then, we obtain

κ1 :=
s2t2 − t3 + 2t2 − t

s4 − 2s3t− 2st3 + t4 − 4s2t + 5st2 − 2t3 + 2s2 − 2st− s + 1
= 0.0129074031 · · · ,

κ2 :=
−st2 + 2t2 + s− 2t

s4 − 2s3t− 2st3 + t4 − 4s2t + 5st2 − 2t3 + 2s2 − 2st− s + 1
= 0.0318925844 · · · ,

where s = τ1 + τ2, t = τ1τ2. Let γ, δ be all the imaginal roots w4 − 6w2 − 8w + 1 = 0, and
put s2 := γ + δ, t2 := γδ. Then s + s2 = 0, tt2 = 1, t + t2 + ss2 = −6, ts2 + st2 = 8. When
we eliminate s, t, s1, t1 from these relations, we have

817808203κ6
1 − 546807084κ5

1 + 129155640κ4
1 − 13342016κ3

1 + 556080κ2
1 − 10176κ1 + 64 = 0,

43042537κ6
2 − 4514514κ5

2 − 188769κ4
2 − 38684κ3

2 + 4119κ2
2 − 114κ2 + 1 = 0.

Now, we shall complete the proof of Theorem 4.1. To prove (3), (4), (5) of Theorem
4.1, we put

D(3)
r :=

{
(x, z) ∈ Hr

∣∣ κ1(x + z) + κ2r ≥ 1, discS(1, x, r, z) ≥ 0, dC(x, z) ≥ 0
}
,

D(4)
r :=

{
(x, z) ∈ Hr

∣∣∣∣
κ1(x + z) + κ2r < 1, η(x + z, r) > 0,
discS(1, x, r, z) ≥ 0, dC(x, z) ≥ 0

}
,

D(5)
r :=

{
(x, z) ∈ Hr

∣∣ κ1(x + z) + κ2r < 1, η(x + z, r) ≤ 0, dC(x, z) ≥ 0
}
.
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(III-1) If 3 < r < r1, then P cusp
r,1 =

(
α1(r), α4(r)

) ∈ Int(DC), and V r,a
S tangents to VC

at P tan
r,1 , as Fig. 4.3. This implies that P tan

r,1 ∈ (∂FC)∩ (∂FS). We divide the curve segment
V r,a

S at the point P tan
r,1 , and denote the upper part by

V r,1
S :=

{
(x, z) ∈ Hr

∣∣ discS(x, r, z) = 0, dC(x, z) ≥ 0, z ≥ z(P tan
r,1 )

}
,

where z(P ) is the z-coordinate of the point P ∈ Hr. Then V r,1
S ⊂ FS . Every P ∈ V r,a

S −V r,1
S

is obtained as P = G(0: s: t: 1) for a certain (s, t) ∈ C2 −B0.
Let V r,2

S be the symmetric set of V r,1
S with respect to the line x = z on Hr.

Similarly,
(
α2(r), α3(r)

) ∈ Int(DC), and V r,c
S tangents to VC at P tan

r,2 , as Fig. 4.4. Let

V r,3
S :=

{
(x, z) ∈ Hr

∣∣ discS(x, r, z) = 0, dC(x, z) ≥ 0, z(P tan
r,3 ) ≤ z ≤ z(P tan

r,2 )
}

be the interval of V r,c
S between P tan

r,2 and P tan
r,3 . By Lemma 4.10,

V r,1
S ∪ V r,2

S ∪ V r,3
S =

{
(1:x: r: z) ∈ ∂Pc0+

4,3

∣∣∣∣
discS(1, x, r, z) = 0, dC(x, z) ≥ 0,
η(x + z, r) ≥ 0

}
.

So, Dr = D
(3)
r ∪D

(4)
r ∪D

(5)
r .

(III-2) If r = r1, then P tan
r1,1 =

(
α1(r1), α4(r1)

)
, P tan

r1,4 =
(
α4(r1), α1(r1)

) ∈ (∂FC) ∩
(∂FS). The line defined by κ1(x + z) + κ2r1 = 1 agrees with the line P tan

r1,1P
tan
r1,4. Others are

similar as (III)-1.

(III-3) Consider the case r1 < r < r2. About V r,3
S the situation is same as (III-1).

The situation of V r,1
S and V r,2

S changes. If r > r1, then
(
α1(r), α4(r)

)
/∈ DC . and

P tan
r,1 /∈ DC as Fig. 4.5. In this case, VC and V r,a

S intersect at a point Qa
r transversally. So,

let
V r,1

S :=
{
(x, z) ∈ Hr

∣∣ discS(x, r, z) = 0, dC(x, z) ≥ 0, z ≥ z(Qa
r)

}
,
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be the interval of V r,a
S upper than Qa

r . Let V r,2
S be the symmetric set of V r,1

S with respect
to VR(x− z). Then,

V r,1
S ∪ V r,2

S =
{

(1:x: r: z) ∈ ∂Pc0+
4,3

∣∣∣∣
discS(1, x, r, z) = 0, dC(x, z) ≥ 0,
κ1(x + z) + κ2r ≥ 1

}
,

V r,3
S =

{
(1:x: r: z) ∈ ∂Pc0+

4,3

∣∣∣∣
discS(1, x, r, z) = 0, dC(x, z) ≥ 0,
η(x + z, r) ≥ 0, κ1(x + z) + κ2r < 1

}
.

So, Dr = D
(3)
r ∪D

(4)
r ∪D

(5)
r .

rP cusp
r,1 = (α1(r), α4(r))

rP tan
r,1

r Qa
r
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V r,b
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VC

V r,b
S
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Fig.4.5 : The case r > r1
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Fig.4.6 : The case r > r2

(III-4) If r = r2, then P tan
r2,2 =

(
α2(r2), α3(r2)

)
, P tan

r2,3 =
(
α2(r3), α3(r2)

) ∈ (∂FC) ∩
(∂FS). Others are similar as (III-3).

(III-5) If r > r2, then
(
α2(r), α3(r)

)
/∈ DC , and P tan

r,2 , P tan
r,3 /∈ DC as Fig.4.6. In this

case, VC and V r,c
S intersect at two points Qc1

r , Qc2
r transversally. So, let

V r,3
S :=

{
(x, z) ∈ Hr

∣∣ discS(x, r, z) = 0, dC(x, z) ≥ 0, z(Qc2
r ) ≤ z ≤ z(Qc3

r )
}

be the interval of V r,c
S between Qc1

r and Qc2
r . Then

V r,1
S ∪ V r,2

S ∪ V r,3
S =

{
(1:x: r: z) ∈ ∂Pc0+

4,3

∣∣ discS(1, x, r, z) = 0, dC(x, z) ≥ 0
}
.

If r > r2, then κ1(x + z) + κ2r ≥ 1 holds for any (x, z) ∈ DC . Thus Dr = D
(3)
r in this case.

By (III-1)—(III-5) and Lemma 4.11, we conclude that the conditions of (3), (4), (5) of
Theorem 4.1 determine P̆c0+

4,3 when r > 3.

Proposition 4.12. (1) s1 + s3 + cs2 ∈ Pc0+
4,3 , if and only if 0 ≤ c ≤ 16. Moreover

s1 + s3 + 16s2 = e1,4/64 and s1 + s2 = eP2∞ .
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(2) Let ξ1 := 0.0308472031 · · · and ξ2 := 7.631998798 · · · be real roots of t4 − 3t3 − 27t2 −
64t + 2 = 0. Then s1 + cs2 and s3 + cs2 are PSD, if and only if ξ1 ≤ c ≤ ξ2.

(3) Let µ1 := 0.2882309962 · · ·, µ4 := 1.4587325322 · · · be real roots of µ4 + µ3 − 2µ2 −
3µ + 1 = 0, ν1 := 0.1070225045 · · ·, ν4 := 5.2319384324 · · · be real roots of ν4 − 7ν3 +
13ν2 − 20ν + 2 = 0, and ν2 := 0.3713081034 · · ·, ν3 := 3.586633132 · · · be real roots of
ν4−4ν3 +3ν2−6ν +2 = 0. Moreover, put µ2 := 1/µ4 and µ3 := 1/µ1. Then s1 + ξ1s2,
s3 + ξ1s2, s3 + ξ2s2 and s1 + ξ2s2 are positive multiples of eµ1,ν1 , eµ2,ν2 , eµ3,ν3 and eµ4,ν4

respectively.
(4) FP1 is given as the following. Normalize f ∈ FP1 as f = xs1 + (1 − x)s3 + ys3, and

correspond this f to the point (x, y) ∈ R2. Let

D(P1) :=
{
(x, y) ∈ R2

∣∣ xs1 + (1− x)s3 + ys3 ∈ FP1

}
,

V u
S :=

{
(x, y) ∈ R2

∣∣ 0 ≤ x ≤ 1, 4 ≤ y ≤ 8, discS(0, x, y, 1− x) = 0
}
,

V l
S :=

{
(x, y) ∈ R2

∣∣ 0 ≤ x ≤ 1, 0 < y ≤ 4, discS(0, x, y, 1− x) = 0
} ∪ {(1/2, 0)}.

Then, D(P1) is a convex domain enclosed by V u
S , V l

S and lines x = 0, x = 1.

Proof. (1) Let ft := s1 + s3 + ts2, w(u) := u + 1/u, vt(u) :=
u

2(u + 1)
(
t + 2 − w(u)

)
,

and rt(u) := −w(u)2 + 2(3t + 2)w(u)− (t− 2)2. Then

ft(0, u, v, 1) = (u + 1)(v − vt(u))2 +
u2rt(u)
4(u + 1)

.

Note that w(u) ≥ 2.
Consider the case w(u) > t + 2. Then vt(u) < 0 and ft(0, u, v, 1) is monotonically

increasing with respect to v in v ≥ 0. Thus ft(0, u, v, 1) ≥ ft(0, u, 0, 1) = tu(u + 1) ≥ 0.
Consider the case 2 ≤ w(u) ≤ t+2. Then rt(u) ≥ rt(1) = t(16−t). Thus, ft(0, u, v, 1) ≥

0 if 0 ≤ t ≤ 16. If t < 0 or t > 16, then vt(2) > 0 and ft(0, 1, vt(1), 1) = rt(1)/8 =
t(16− t)/8 < 0.

Since f16(0, 1, v, 1) = 2(v − 4)2 and g1(1, 4) = 64, we have f16 = e1,4/64.
(2) Let ft := s1+ts2, vt(u) := u(t+1−u)/2, and rt(u) := −u3+(2t+2)u2−(t−1)2u+4t.

Then ft(0, u, v, 1) = (v−vt(u))2+(u/4)rt(u). If u > t+1, then ft(0, u, v, 1) ≥ ft(0, u, 0, 1) =
tu(u + 1) ≥ 0.

Assume that 0 ≤ u ≤ t+1. Observe the cubic function rt(u). The roots of (d/du)rt(u) =
0 are u± := (2(t + 1) ±√t4 + 14t + 1)/3. Note that 0 ≤ u− < t + 1 < u+. Thus min ft =
min rt = rt(u−). If the cubic equation rt(u) = 0 has a double root at u = u−, then Disc3(−1,
2t+2, −(t−1)2, 4) = 0. Since Disc3(−1, 2t+2, −(t−1)2, 4) = −16t(t4−3t3−27t2−64t+2),
s1+ts2 is PSD, if and only if ξ1 ≤ t ≤ ξ2. Since discS(0, 1, t, 0) = −t2(t4−3t3−27t2−64t+2),
ft ∈ FS if t = ξ1 and ξ2.

Since discS(0, x, y, z) = discS(0, z, y, x), s3 + ts2 is PDS, s1 + ts2 is PSD, if and only if
ξ1 ≤ t ≤ ξ2.

Since s3(a, b, c, d) + ts2(a, b, c, d) = s1(b, a, d, c) + ts2(b, a, d, c), we have the same result
for s3 + ts2.

(3) Consider the case ft := s1 + ts2 with t = ξ1, ξ2. Eliminate t from rt(u) = −u3 +
(2t + 2)u2 − (t− 1)2u + 4t = 0 and t4 − 3t3 − 27t2 − 64t + 2 = 0, we obtain

u(u− 1)2(u4 + u3 − 2u2 − 3u + 1)2(u4 − 16u3 + 48u2 − 384u + 512) = 0.

The root u relating ξ1, ξ2 must be appear as double roots, because rξi
(u) = 0 has u as a

double root. Thus, we obtain µ1 and µ4. Similarly, we obtain νi and other µi.
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(4) For f = p0s0 + p1s1 + p2s2 + p3s3 ∈ Hc0
4,3, disc(P1) = p0 and disc(P2) = p0 + p2.

By Lemma 4.5, ∂FP1 ⊂ FP2 ∪ FS ∪ FC . disc(P2) = 0 corresponds to y = 0. Thus, D(P1)
must be included in the upper half space y ≥ 0. Since discC(0, x, (1 − x)) = −x2(1 − x)2

and (1/2, 1) ∈ D(P1), D(P1) is included in the stlipe 0 ≤ x ≤ 1. V u
S and V l

S are curves as
Fig 4.7. Thus, we have the conclusion.
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e

Let

Dh
e :=

{
(u: v:w) ∈ P2

+

∣∣ eh
u,v,w ∈ E(Pc0+

4,3 )
}

=
{
(u: v:w) ∈ P2

+

∣∣ eh
u,v,w ∈ Pc0+

4,3

}
,

dCh
e (u, v, w) :=

discC

(
gh
0 (u, v, v), gh

1 (u, v, w), gh
3 (u, v, w)

)

u2w2(u + w − v)2((u− w)2 + v2)2
,

dC
e (s, t) := dCh

e (s, t, 1).

dCh
e (u, v, w) is a homogeneous polynomial of degree 10. Let Lw := V+(w) ⊂ P2

+ be the
infinity line segment. For (u: v:w) ∈ P2

+ − Lw, let s := u/w, t := v/w and regard P2
+ − Lw

to be the the first quadrant of the (s, t)-plane R2
+. The point (s, t) = (1, 0) /∈ Dh

e because
e1,0 = 0. For completion of Dh

G, it is better to put eP2∞ = s1 + s3 at (s, t) = (1, 0). In the
quadrant s ≥ 0 and t ≥ 0, the curve VC := VR(dC

e (s, t)) has two connected components V l
C

and V u
C . Similarly, VG := VR(g0(s, t)) has two connected components V l

G and V u
G . V l

C and
V l

G are included in t < s + 1, and V u
C , V u

G are included in t > s + 1.
V l

C ∩ V l
G =

{
(µ1, ν1), (µ2, ν2)

}
, and V u

C ∩ V u
G =

{
(µ3, ν3), (µ4, ν4)

}
. Divide V l

C and
V l

G by the points (µ1, ν1) and (µ2, ν2), and define V l,i
C and V l,i

G (i = 0, 1, 2) as Fig. 4.8.
Similarly, we divide V u

C and V u
G by the points (µ3, ν3) and (µ4, ν4) and define V u,i

C ang V u,i
G

(i = 0, 1, 2) as Fig. 4.8. The segment V l,1
G corresponds to V l

S , and V u,1
G corresponds to V u

S .

Theorem 4.13.

Dh
e =

{
(u: v:w) ∈ P2

+

∣∣ gh
0 (u, v, w) ≥ 0, v > 0 and one of the following (1) or (2) holds.

}
.
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(1) dCh
e (u, v, w) ≥ 0.

(2) gh
1 (u, v, w) ≥ 0 and gh

3 (u, v, w) ≥ 0.

Proof. We already proved that if eh
u,v,w is PSD, then eh

u,v,w ∈ E(Pc0+
4,3 ). By Proposition

4.2, gh
0 (u, v, w) ≥ 0 is required.

(i) Consider the case gh
0 (u, v, w) > 0.

Let pi = gh
i (u, v, w)/gh

0 (u, v, w) (i = 1, 2, 3). eh
u,v,w is PSD, if and only if (p1,

p2, p3) satisfy the condition of Theorem 4.1. If eh
u,v,w is PSD, then eh

u,v,w ∈ FS and
discS(1, p1, p2, p3) = 0. Conditions on η(p1 + p3, p2) and κ1(p1 + p3) + κ2p2 − 1 does not
have special sence in this case. Thus, eh

u,v,w is PSD, if and only if dC(p1, p3) ≥ 0. That is,
discC(1, p1, p3) ≥ 0 or ‘p1 ≥ 0 and p3 ≥ 0’. discC(1, p1, p3) ≥ 0 is equivalent to u ≥ 0, w ≥ 0
and dCh

e (u, v, w) ≥ 0. Thus, we have the conclusion.
(ii) Consider the case gh

0 (u, v, w) = 0.
In this case, V l

S and V u
S of Proposition 4.12 appears in ∂Dh

e . By Proposition 4.12,
V l

G ∪ V u
G is determined by g0(s, t) = 0, g1(s, t) ≥ 0 and g3(s, t) ≥ 0.

By the avobe theorem, e0,t is PSD, if and only if τ1 ≤ t ≤ τ2. Similarly, eh
t,1,0 =

teh
0,t,1 − (t2 − 1)(t2 + 1)2s2 is PSD, if and only if 1/τ2 ≤ t ≤ 1/τ1.

We shall observe ∂Dh
e precisely. FS ∩ FP1 and FS ∩ FP2 are determined already. We

observe the part of ∂Dh
e corresponding to FS ∩FC .

Let Ll
C be the line segment defined by s = 0 and τ1 ≤ t ≤ τ2, and put V 1

SC :=
V l,0

C ∪ Ll
C ∪ V u,0

C . Since V 1
SC ⊂ V (discC) ∩ ∂Dh

e , if (s, t) ∈ V 1
SC , there exists ρ ∈ P1

R such
that es,t(0, 0, ρ, 1) = 0. We denote this ρ by ρ(s, t) = ρ(u, v, w). Note that ρ(0, τ1) = τ1,
ρ(µ1, ν1) = 0. If (s, t) ∈ V l,0

C , ρ(s, t) is monotonically decreasing from τ1 to 0 with respect
to s. Similarly, ρ(0, τ2) = τ2, ρ(µ3, ν3) = +∞, and of (s, t) ∈ V u,0

C , ρ(s, t) is monotonically
increasing from τ2 to +∞ with respect to s. If (s, t) ∈ Ll

C , then ρ(s, t) = t. So, each ρ ∈ [0,
+∞], there exists unique (s, t) ∈ V 1

SC such that ρ(s, t) = ρ. That is, es,t(0, 0, u, 1) = 0.
Note that (s, t) = (0, τ1) corresponds to P tan

r1,4 = P cusp
r1,4 , and (s, t) = (0, τ2) corresponds to

P tan
r2,2 = P cusp

r2,2 .
When w = 0, let Lu

C be the interval of Lw between (1: τ1: 0) and (1: τ2: 0). Note that
V l,2

C ∩ Lw = (1: τ1: 0) and V u,2
C ∩ Lw = (1: τ2: 0). Put V 2

SC := V u,2
C ∪ Lu

C ∪ V l,2
C . Note that

ρ(µ4, ν4) = 0, ρ(1: t: 0) = 1/t, and ρ(µ3, ν3) = +∞. So, each ρ ∈ [0, +∞], there exists
unique (u: v:w) ∈ V 2

SC such that ρ(u: v:w) = ρ.
Ll

C corresponts to Ctan
x , and Lr

C corresponts to Ctan
z . P tan

r,1 moves on the interval of Lu
C

defined by 1/τ2 ≤ v/u ≤ 1. Qa
r moves on V l,2

C . P tan
r,2 moves on the interval of Ll

C defined by
1 ≤ t ≤ τ2. Qc1

r moves on V u,0
C .

If (s, t) ∈ V l,0
C ∪ V l,2

C ∪ V u,0
C ∪ V 2,2

C and ρ = ρ(s, t), then s and ρ satisfy the following
relation:

(ρ3 + 1)2(ρ4 − 8ρ3 − 6ρ2 + 1)s4

+ (3ρ + 1)(−ρ9 − 3ρ8 − 2ρ7 − 6ρ6 − 14ρ5 + 6ρ4 − 2ρ3 − 6ρ2 − 5ρ + 1)s3

− 2(ρ10 + 12ρ8 + 26ρ7 − ρ6 + 4ρ5 − ρ4 + 26ρ3 + 12ρ2 + 1)s2

+ (ρ + 3)(ρ9 − 5ρ8 − 6ρ7 − 2ρ6 + 6ρ5 − 14ρ4 − 6ρ3 − 2ρ2 − 3ρ− 1)s
+ (ρ3 + 1)2(ρ4 − 6ρ2 − 8ρ + 1) = 0.

Especially, we have the following:
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Proposition 4.14. For t ∈ [0, +∞]. let LC
t ⊂ FC be the local cone of Pc0+

4,3 at

(0: 0: t: 1) ∈ P3
+. Take (ui: vi:wi) ∈ Li

SC such that ρ(ui: vi:wi) = 1 (i = 1, 2). Then

LC
t = R+ · eh

u1,v1,w1
+ R+ · eh

u2,v2,w2
.

Theorem 4.15. All the elements of E(Pc0+
4,3 ) is the positive multiple of eh

u,v,w ((u: v:w)
∈ Dh

e ) or eP2
t (t ∈ P1

R).

Proof of Proposition 1.11. Let e1,. . ., e20 be all the monomials in H4,3. Assume that
(s: t: 1) ∈ Dh

e , s > 0, t > 0 and t 6= s+1. Put u :=
√

s, v :=
√

t and Es,t(a, b, c, d) := es,t(a2,
b2, c2, d2). VR(Es,t) contains at least 27 isolated points. Among VR(Es,t), we choose the
following 20 points: a1 = (1: 1: 1: 1), a2 = (−1: 1: 1: 1), a3 = (1:−1: 1: 1), a4 = (1: 1:−1: 1),
a5 = (1: 1: 1:−1), a6 = (1: 1:−1:−1), a7 = (1:−1: 1:−1), a8 = (1:−1:−1: 1), a9 =
(0:u: v: 1), a10 = (1: 0:u: v), a11 = (v: 1: 0:u), a12 = (u: v: 1: 0), a13 = (0:u: v:−1), a14 =
(−1: 0: u: v), a15 = (v:−1: 0: u), a16 = (u: v:−1: 0), a17 = (0: u:−v: 1), a18 = (1: 0:u:−v),
a19 = (−v: 1: 0:u), a20 = (u:−v: 1: 0). Let ai,j := ej(ai) and A := (ai,j). Then

detA = ±1048576s2t2(t− s− 1)4((s− 1)2 + t2)4 6= 0.

Thus, there exists no g ∈ H4,3−{0} such that g(ai) = 0 for all 1 ≤ i ≤ 20. Thus Es,t /∈ Σ4,6.

It seems that if (s, t) ∈ V l,0
C ∪ V l,1

G ∪ V l,2
C ∪ V u,0

C ∪ V u,1
G ∪ V u,2

C − (Ll
C ∪ Lu

C), then
es,t ∈ E(P+

4,3). If (s, t) ∈ Int(Dh
e )∪Ll

C ∪Lu
C , then es,t /∈ E(P+

4,3). This suggests that E(P+
4,3)

is not so simple.
If (s, t) ∈ V l,0

C ∪ V l,2
C ∪ V u,0

C ∪ V u,2
C − (Ll

C ∪ Lu
C) − {

(µi, νi)
∣∣ i = 1, 2, 3, 4

}
, then

es,t(a2, b2, c2, d2) has 35 isolated zeros, because es,t(0, 0, r, 1) = 0 by r = ρ(s, t) > 0, t 6= 1.
So, es,t(a2, b2, c2, d2) will be an extremal element of P4,6 which is irreducible.

4.2. Structure of Pc+
4,3

We have not complete any of (I1), (I2), (I3) for Pc+
4,3. But, we shall give (I4) and some

information about Xc+
4,3.

We choose s0 := S3−S1,1,1, s1 := S2,1,0−S1,1,1, s2 := S2,0,1−S1,1,1, s3 := S1,2,0−S1,1,1,
s4 := S1,1,1 as a base of Hc

4,3, and define Φc
4,3 : P3

+ −→ P4
+ by Φc

4,3(a) =
(
s0(a) : s1(a) :

s2(a) : s3(a) : s4(a)
)
. Put Xc+

4,3 := Φc
4,3(P3

+). Ψc0
4,3 : P3

+/(Z/4Z) · · · → Xc0+
4,3 split as

Ψc0
4,3 : P3

+/(Z/4Z)
Ψc

4,3−→ Xc+
4,3

pr−→ Xc0+
4,3 .

Proposition 4.16. (1) Zar(Xc+
4,3) is the hypersurface of P4

R : (t0: · · · : t4) = P((Hc
4,3)

∨)
defined by

fc
4,3(x0, x1, x2, x3, x4)

:= x3
1 − x0x1x3 + x3

3 + x2
1x2 + x1x

2
2 + x2

2x3 + x2x
2
3 − x0x1x2 − x0x2x3 − x1x2x3

+ x4

(
x2

0 + 5x2
1 + x2

2 + 5x2
3 − 2x0x1 − 2x0x2 − 2x0x3 + 2x1x2 − 6x1x3 + 2x2x3

)

This cubic hypersurface has an isolated singularity at Φc
4,3(1: 1: 1: 1) = (0: 0: 0: 0: 1).

(2) Zar(Xc+
4,3) =

{
x ∈ P4

R
∣∣ fc

4,3(x) = 0, fc0
4,3(x) ≥ 0

}
.
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(3) Ψc0
4,3 : P3

+/(Z/4Z) −→ Xc0+
4,3 is an isomorphism.

Proof. (1) follows from fc
4,3(s0, s1, s2, s3, s4) = 0.

(2) Define pr : Xc+
4,3 · · · → Xc0+

4,3 by pr(x0: · · · :x4) = (x0: · · · :x3). This is a birational
map. By Lemma 4.3, we have the conclusion.

(3) It is easy to see that Ψc0
4,3 : P3

R/(Z/4Z) −→ Zar(Xc+
4,3) is an isomorphism. By (2),

we have the conclusion.

Proposition 4.17. Xc+
4,3 does not have the main component.

Proof. Assume that Xc+
4,3 has the main component. Note that E(Pc0+

4,3 ) = E(Pc+
4,3) ∩

Hc0+
4,3 . Let f be an element of the main component such that f ∈ E(Pc+

4,3)−E(Pc0+
4,3 ). Then,

there exists a = (a: b: c: 1) ∈ Int(P3
+) such that f(a) = 0. (a, b, c) 6= (1, 1, 1), since f 6∈ Pc0+

4,3 .
Put b := (b: c: 1: a) ∈ Int(P3

+). Note that a 6= b. Then the line ab is a bitangent line of the
cubic surface VC(f) ∈ P3

C. But a cubic surface has no bitangent line. A contradiction.

Proof of Theorem 1.10. Let Xc+
4,3 := X(P3

+, Hc
4,3),

B0 :=
{
(0: s: t: 1) ∈ P3

+

∣∣ s, t ∈ R+

}
,

and Ω := {(1: 1: 1: 1)} ∪ B0. By Theorem 2.10, it is enough to show E(Xc+
4,3) ⊂ Φc

4,3(Ω).
Take any x ∈ E(Xc+

4,3). Then, there exists D ∈ ∆(Xc+
4,3) such that x ∈ D and that FD is

a face component. By the above proposition, D ⊂ ∂Xc+
4,3 ∪ Sing(Xc+

4,3). If x ∈ ∂Xc+
4,3, then

x ∈ Φc
4,3(B0). If x ∈ Sing(Xc+

4,3), then x = Φc
4,3(1: 1: 1: 1) by Proposition 4.16.

For test condition, we can prove the following by the same idea.

Proposition 4.18. Assume that f(x1,. . ., xn) ∈ Hn,3, and there exists a ∈ Int(Pn−1
+ )

such that f(a) = 0 and
∂

∂xi
f(a) = 0 for all i = 1,. . ., n. Then f ∈ P+

n,3 if and only if

f(b) ≥ 0 for all b ∈ ∂Pn−1
+ .

Proof. Assume that f(c) < 0 for a certain c ∈ Int(Pn−1
+ ). We may assume that f take

a minimal value at c. Put g(t) := f((1 − t)a + tc). Then, a cubic polynomial g(t) takes
minimal values at t = 0 and t = 1. A contradiction.

Section 5. Philosophy of Semialgebraic Variety.

5.1. Real algebraic quasi-variety.

Till §4, we used the notion of (quasi-) semialgebraic varieties without exact definition.
In this section, we shall discuss how its definition should be, at least for theory of PDS
cones. Before to give it, we must discuss what a real algebraic variety is.

Usually, we say (X, OX) is an algebraic variety over R when (X, OX) is an integral
separated scheme of finite type over R. X(R) denotes the set of R-rational points, and
XC := X×SpecR SpecC. By this definition, X and XC are irreducible and reduced. To treat
possibly reducible or non-reduced varieties, we shall call a separated scheme of finite type
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over Spec(R) to be an algebraic quasi-variety. This notion is not convenient for algebraic
inequalities. For example, there exists infinitely many algebraic varieties X over R such that
X(R) = R2. X may not be affine even if X(R) = R2.

The definition of a real algebraic variety is given in §3.2 in [8]. According to this defini-
tion, every real algebraic variety is reduced but may be reducible (i.e. not irreducible). To
keep consistency with complex algebraic geometry, we shall add a restriction that real alge-
braic varieties must be irreducible and separated. To treat possibly non-reduced varieties,
we shall give alternative definition of real algebraic quasi-varieties as the following:

Definition 5.1.(Real algebraic quasi-variety) (I) A locally ringed space (X, RX) is
called a real algebraic quasi-variety, if there exists a separated scheme (Y , OY ) of finite type
over SpecR which satisfies the following:
(1) There exists an injective morphism ι: (X, RX) −→ (Y , OY ) as locally ringed spaces,

and ι induces a homeomorphism X → Y (R) as topological spaces with respect to Zariski
topology and Euclidean topology.

(2) Take any affine open subset V ⊂ Y . Let nP be the maximal ideal of OY (V ) corre-
sponding to a closed point P ∈ Y . For an arbitral non-empty subset U ⊂ V ∩ ι(X), we
put

SU :=
⋂

P∈U

(
OY (V )− nP

)
.

If U is an Euclidean open set, then ι∗ : S−1
U OY (V ) −→ RX(ι−1(U)) is an isomorphism

of R-algebra. Thus, each maximal ideal m ⊂ RX(ι−1(V )) corresponds to a point
P ∈ ι−1(V ) ⊂ X.

(3) Take an arbitral affine open subset V ⊂ Y . Then
{
f ∈ OY (V )

∣∣ f(P ) = 0 for all P ∈ V (R)
}

is a nilpotent ideal of OY (V ).
In this case, Y is said to be a R-scheme which represents X. If we can choose Y such

that YC is irreducible and reduced, then we shall call X to be a real algebraic variety (See
Notation 0.1 of [18]).

U ⊂ X is called an affine open subset of X, if there exists an affine open subset UY ⊂ Y
such that U = ι−1(UY (R)). Zariski open (resp. closed) subsets are defied similarly. The
Euclidean topology of X is the topology induced from the analytic topology of YC. Y (R) is
also denoted as YC(R). When V ⊂ Y is an affine open subset and B ⊂ V (R) is a subset
such that ClsY (R)(Int(B)) = ClsY (R)(B), we put

SB :=
⋂

P∈B

(
OY (V )− nP

)
,

and RX(ι−1(B)) := ι∗
(
S−1

B OY (V )
)
. By this definition, (X, RX) can be also regarded as a

locally ringed space with respect to the Zariski topology and the Euclidean topology. We
usually omit to write ι. For example, we write X = Y (R).

Note that if (X, RX) is a (possibly reducible) separated real algebraic variety in the
sense of [8], there exists a reduced scheme (Y , OY ) which satisfies the above conditions.
Contrary, if (X, RX) is a reduced real algebraic quasi-variety as Definition 5.1, then (X,
RX) is a real algebraic variety in the sense of [8]. Definition 5.1 may not be so clear, the
author wishes someone will give more nice definition.
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5.2. Semialgebraic quasi-variety.

Definition 5.2.(Semialgebraic quasi-variety) A locally ringed space (A, RA) is called
semialgebraic quasi-variety, if there exists a real algebraic quasi-variety (X, RX) and a finite
affine open covering {Vi}r

i=1 of X which satisfies the following:
(1) There exists an injective morphism ι: (A, RA) −→ (X, RX) as locally ringed spaces,

and ι induces a homeomorphism A → ι(A) as Euclidean spaces. Moreover, ι(A) is a
semialgebraic subset of X, i.e. ι(A)∩Vi is a semialgebraic subset of Vi for each i = 1,. . .,
r.

(2) ZarX(A) = X.
(3) Take an arbitral i ∈ {1, 2,. . ., r}, and take any Euclidean open subset U ⊂ ι−1(Vi). Put

Ri := RVi
(Vi). For a point P ∈ ι(U), let mP be the maximal ideal of Ri corresponding

to P , and let
SU :=

⋂

P∈U

(
Ri −mP

) ⊂ Ri.

Then ι∗ : S−1
U Ri −→ RA(U) is an isomorphism of R-algebra.

Moreover, if X is a real algebraic variety, then A is said to be an semialgebraic variety.
In this case, the field of fractions Q(RA(Ui)) is called the field of rational functions, and is
denoted by Rat(A) := Q

(
RA(Ui)

)
.

The Zariski topology and the Euclidean topology on A are defined naturally. A semi-
algebraic quasi-variety A is called irreducible if it is irreducible with respect to the Zariski
topology. A is said to be reduced if RA,P has no nilpotent elements except 0 for every
P ∈ A. dimA is defined by dimA = max

P∈A
Krull dimRA,P . A is called connected if it is

connected with respect to Euclidean topology. Note that A may not be connected even if
A is irreducible. A is called affine, if we can choose X to be isomorphic to a closed Zariski
subset of Rn for a certain n.

Notions about singularities of A are defined using RA,P . Note that if Y is a R-scheme
which represents X, then RA,P

∼= OY,P . We denote

Sing(A) :=
{
P ∈ A

∣∣ RA,P is not a regular local ring
}
,

Reg(A) := Int(A)− Sing(A).

A regular map or holomorphic map (resp. isomorphism) between semialgebraic quasi-
varieties is defined as a morphism (resp. isomorphism) of locally ringed space.

We can choose a real algebraic quasi-variety X and a separated scheme Y of finite type
over R so that YC is complete and Y represents X. Then, we say X is a real envelope of A,
and YC is a complex envelope of A.

X and YC are not unique for A, but it is easy to see that:

Proposition 5.3. Let A be a semialgebraic quasi-variety, YC and Y ′
C be complex

envelopes of A. Then YC and Y ′
C are birational equivalent. If A is a semialgebraic variety,

then Rat(A)⊗R C = Rat(YC).

This follows from Proposition 5.10 given later.
By this proposition, if ν(YC) is a certain birational invariant of complex algebraic va-

rieties, then we can define ν(X) := ν(YC) to be an invariant of X. Especially, when A is
non-singular semialgebraic variety, we can choose Y to be non-singular projective, and we
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can define hi(A) := dimCHi(YC, OYC) and Pm(A) := dimCH0(YC, OYC(mKYC)) for m ≥ 0.
Using Pm(A), we can define the Kodaira dimension κ(A),

Remark 5.4. (1) Reg(A) 6= ∅ if A is reduced.
(2) Reg(A) is not always dense in A with respect to the Euclidean topology. For

example, consider the case that A has an isolated singularity as a connected component.
(3) If P ∈ Reg(A) ∩ Int(A) and dimA = n, then there exists an Euclidean open

neighborhood P ∈ U ⊂ A such that U is homeomorphic to an open subset of Rn.
(4) By our definition, an isolated singular locus of A is included in Int(A). But Sing(A)

sometimes acts as if it is a boundary. So it will be safe to discuss Int(A) ∩ Reg(A).

In complex algebraic geometry, a subscheme is a closed subscheme of an open subscheme.
But to define semialgebraic subvarieties, we must be careful. For example, any semialgebraic
subset B of a real algebraic variety A, must be able to be treated as semialgebraic quasi-
subvariety of A.

Definition 5.5.(Image of a regular map) Let A, B be semialgebraic quasi-varieties,
and ϕ:A → B be a regular map. Let C := ϕ(B). By Tarski-Seidenberg theorem, C is a
semialgebraic subset of B. We define RC as the following:

We may assume A and B are affine, since definition of RC is local. Let RA := RA(A),
RB := RB(B), and ϕ∗:RB → RA be the homomorphism induced by ϕ. We put R :=
RB/ Kerϕ∗. Note that R defines ZarB(C). For a point P ∈ C, there exists the unique
maximal ideal mP ⊂ R corresponding to P . Put S :=

⋂

P∈C

(R − mP ), and RC := S−1R.

Note that RC is a RB-module. The structure sheaf of C is defined by RC := R̃C which is
the coherent RB-module defined by RC .

(C, RC) is called the image of ϕ, and simply denoted by C = ϕ(A).

Definition 5.6.(Semialgebraic quasi-subvariety) Let A, B be semialgebraic quasi-
varieties. A morphism ϕ : (B, RB) −→ (A, RA) is called an immersion, if ϕ induces
an isomorphism B −→ ϕ(B).

If B is a semialgebraic subset of A, and the inclusion map B → A is an immersion,
then B is called a semialgebraic quasi-subvariety of A.

If A is a semialgebraic quasi-variety, and B ⊂ A be a semialgebraic subset. Then, there
exists a unique sheaf of rings RB such that (B, RB) is a semialgebraic quasi-subvariety of
(A, RA) and (B, RB) is reduced. RB is called the reduced structure of B ⊂ A.

Assume that A, B, C are non-singular semialgebraic varieties such that A = B ∪ C,
and P ∈ B ∩ C. It may happen that RB,P 6∼= RC,P . It is easy to see that RA,P agree with
one of RB,P and RC,P .

Definition 5.7.(Fibre product) Let A, B, C be semialgebraic quasi-varieties, and
f :A → C, g:B → C be regular maps. The fiber product A×C B is a semialgebraic set

A×C B =
{
(a, b) ∈ A×B

∣∣ f(a) = g(b)
}

with a structure sheaf RA ⊗RC
RB .
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Definition 5.8.(Inverse image) Let A, B be semialgebraic quasi-varieties, and ϕ:A →
B be a regular map. Let C ⊂ B be a semialgebraic quasi-subvariety. The inverse image
ϕ−1(C) is defined as the fiber product ϕ−1(C) := A×B C.

Definition 5.9.(Birational map) Let A, B be semialgebraic quasi-varieties. If there
exists Zariski open subsets U ⊂ A and W ⊂ B such that ZarA(U) = A, ZarB(W ) = B
and there exists a regular map ϕ:U → W , then we say that there exists a rational map
ϕ:A · · · → B. Moreover, if ϕ:U → W is an isomorphism, we say that ϕ:A · · · → B is a
birational map, and A and B are birational equivalent.

Proposition 5.10. Let A, B be semialgebraic quasi-varieties, and let X, Y be complex
envelopes of A, B.
(1) If there exists a rational map ϕ:A · · · → B, then there exists a rational map Φ: XC · · · →

YC such that Φ|A = ϕ.
(2) In (1), if ϕ is a birational map, then Φ is a birational map.

Proof. (1) We may assume ϕ is a regular map. Take a point P ∈ Int(A) such that
Q := ϕ(P ) ∈ Int(B), and take an affine open subset W ⊂ Y such that Q ⊂ W .

We can choose f1,. . ., fr ∈ RY,Q such that we can regard fi ∈ OY (W ) and OY (W ) =
C[f1, . . . , fr]. Put gj := ϕ∗(fj) ∈ RA,P . We can find an affine open subset U ⊂ XC such
that g1,. . ., gr are holomorphic (regular) on U , and that U ∩X is dense in X and U ∩A is
dense in A. Then, ψ∗:RB → RA induces Ψ∗:OY (W ) −→ OX(U). Ψ∗ induces a rational
map Φ: X · · · → Y .

(2) is easy.

5.3. Some properties of semialgebraic quasi-varieties.

A notion of semialgebraic quasi-varieties brings some merits to Real Algebraic Geome-
try.

Theorem 5.11. Every semialgebraic quasi-variety is affine. In other words, if A is a
semialgebraic quasi-variety, then there exists n ∈ N and an immersion ι:A → Rn.

Proof. Let A be a semialgebraic quasi-variety. We can take a real envelope X of A.
Take an affine open covering {V1,. . ., Vr} of X. Fix a 1 ≤ j ≤ r. We may assume Vj is a
closed subset of Rn. Let (x1,. . ., xn) be the coordinate system of Rn, and si := 1/(x2

i + 1),
ti := xi/(x2

i + 1). For P ∈ X − Vj , we put si(P ) = 0 and ti(P ) = 0. Then si and
ti are regular functions on X. The set of functions Fj :=

{
si, ti

∣∣ 1 ≤ i ≤ n
}

defines
a map Φj :X −→ R2n. This Φj is a regular map as semialgebraic quasi-varieties, and
Φj |Vj

:Vj −→ R2n is an immersion. Note that Φj(X) is a semialgebraic quasi-variety but is
not always algebraic quasi-variety. Put F := F1∪· · ·∪Fr and N := #F . F defines a regular
map Φ: X → RN , and F is an immersion as semialgebraic quasi-varieties.

Remark 5.12. A real algebraic variety is an affine semialgebraic variety, but is not
always a real affine variety. For example, R2 − {(0, 0)} is not a real affine variety.

Corollary 5.13. Let A be a semialgebraic quasi-variety (or a real algebraic quasi-

variety) and put RA := RA(A). Then, RA is the sheaf obtained as R̃A.
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Note that RA is a Noetherian ring, but is not finitely generated over R if dimA ≥ 1.
Each maximal ideal of RA corresponds to a certain point of A.

Corollary 5.14. Let A be a semialgebraic quasi-variety (or a real algebraic quasi-
variety) and F be a quasi-coherent RA-module. Then, Hi(A, F) = 0 for all i > 0.

Proof. There exists an immersion ι:A → Rn. As Definition 5.5, there exists a closed real
algebraic quasi-subvariety X ⊂ Rn such that X is real envelope of A. Let RX := RX(X) and
RA := RA(A). We can present as RA = S−1

A RX by a certain multiplicatively closed set SA.
Since RA is an RX -module, F is a quasi-coherent RX -module. Thus, F is a quasi-coherent
RRm -module. Thus we have

Hi(A, F) ∼= Hi
(
Rm, F

)
= 0

(see [16] Chap.III, Theorem 3.5).

By the way, birational geometries of complex and real algebraic varieties are very differ-
ent. In a complete complex algebraic variety, exceptional subsets are special subsets. This
is not true for complete real algebraic varieties.

Theorem 5.15. Let A be a semialgebraic quasi-variety, E ⊂ A be a closed semialge-
braic subset such that E = ZarA(E) $ A. Then there exists a semialgebraic quasi-variety
B and a regular surjective morphism ϕ:A → B such that P := ϕ(E) is a point and that
ϕ|A−E : (A−E) −→ (B − P ) is an isomorphism, i.e. ϕ is a contraction of E to a point P .

Proof. We may assume A ⊂ Rn. Let f1,. . ., fr be defining polynomials of ZarRn(E) in
R[x1,. . ., xn]. Consider a map Φ:Rn → Rrn defined by linear system with the base

{
xifj

∣∣
1 ≤ i ≤ n, 1 ≤ j ≤ r

}
. Φ is a regular map. Put B := Φ(A) and ϕ := Φ|A:A → B. Then, B

and ϕ satisfy the conclusion of the Proposition.
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