Errata and Comments of Discriminants of Cyclic Homogeneous Inequalities of Three Variables

Tetsuya Ando

Version: 2020.12.13.

•p.385. Line 8 from the bottom.

Error: and $\operatorname{disc}_{3}^{c+} \geq 0$ determine the PSD cone. *Correction*: and $\operatorname{disc}_{4}^{c0} \geq 0$ determine the PSD cone.

•p.385. Theorm 0.2 (2).

Comment: Let $D_3(c_1, c_2, c_3)$ be the discriminant of the cubic equation $x^3 + c_1 x^2 + c_2 x + c_3 = 0$. Then $4p^3 + 4q^3 + 27 - p^2q^2 - 18pq = -D_3(p, q, 1)$.

•p.386. Theorem 0.3.

Comment: Let $D_4(c_1, c_2, c_3, c_4)$ be the discriminant of the quartic equation $g(x) := x^4 + c_1 x^3 + c_2 x^2 + c_3 x + c_4 = 0$. Then $\varphi(p, q, r) = D_4(p, r, q, 1)$.

Using this fact, we can give an equivalent condition for that $g(x) \ge 0$ for all $x \in \mathbb{R}$ (resp. for all $x \ge 0$).

•p.387. Theorem 0.4.

Comment: $d_5(p,q,r)$ is the longest irreducible factor of the discriminant of the cubic equation $f(x,1,1)/(x-1)^2 = 0$. In other word,

$$d_5(p,q,r) = \frac{27}{4}D_3(2+2p,3+4p+2q+r,2+2p+2q).$$

•p.390. **Definition 1.7.**

I want to cannge the definition of signed linear system as the following.

Definition 1.7. (Signed linear system) Let A be a semialgebraic quasi-variety, \mathfrak{R}_A^{an} be the sheaf the germs of real analytic functions on A. Assume that there exists an invertible \mathfrak{R}_A -sheaf \mathfrak{I} and an invertible \mathfrak{R}_A^{an} -sheaf \mathfrak{I} such that $\mathfrak{I} \otimes_{\mathfrak{R}_A} \mathfrak{R}_A^{an} = \mathfrak{I} \otimes_{\mathfrak{R}_A^{an}} \mathfrak{I}$. For any point $a \in A$, we assume that we can take an affine open subset $a \in U \subset A$ such that $\mathfrak{I}|_U = \mathfrak{R}_A|_U \cdot e_U^2$ by a certain $e_U \in H^0(U, \mathfrak{I})$. Then, for $f \in H^0(A, \mathfrak{H})$, there exists $g_U \in H^0(U, \mathfrak{R}_A)$ such that $f|_U = g_U e_U^2$. We define $\operatorname{sign}(f(a)) \in \{0, \pm 1\}$ by $\operatorname{sign}(f(a)) = \operatorname{sign}(g_U(a))$. A finite dimensional subspace $\mathfrak{H} \subset H^0(A, \mathfrak{I})$ is called a signed linear system on A.

For example, when $A = \mathbb{P}_{+}^{n}$, $\mathcal{H} = \mathcal{H}_{n+1,d}$ and $U = \{(x_{0}:\cdots:x_{n}) \in \mathbb{P}_{+}^{n} \mid x_{0} \neq 0\}$, we can take \mathfrak{I} so that $\mathfrak{I}|_{U} = \mathcal{R}_{A}|_{U} \cdot \sqrt{x_{0}^{d}}^{2}$. So, \mathcal{H} is a signed linear system.

•p.393. Proposition 1.16.

The statement and the proof of this proposition are too rough. Please replace by:

Proposition 1.16. (Boundary Theorem) Let A be a compact semialgebraic quasivariety, and \mathcal{H} be a signed linear system on A. Assume that $\mathcal{P} := \mathcal{P}(A, \mathcal{H}) \subset \mathcal{H}$ is non-degenerate, and dim $\mathcal{P} \geq 2$. Let $f \in \mathcal{P}$.

- (1) If f(a) = 0 for a certain $a \in A Bs \mathcal{H}$, then $f \in \partial \mathcal{P}$.
- (2) If $f \in \partial \mathcal{P}$, then there exists $a \in A$ such that f(a) = 0.

Proof. (1) We can reduce to the case A is irreducible, and $\mathcal{H} \subset \operatorname{Rat}(A)$, since $\mathcal{P}(A_1 \cup A_2, \mathcal{H}) = \mathcal{P}(A_1, \mathcal{H}) \cap \mathcal{P}(A_2, \mathcal{H})$. Since $a \notin \operatorname{Bs} \mathcal{H}$, there exists $g \in \mathcal{P}$ such that g(a) > 0. Then for all $\varepsilon > 0$, $f(a) - \varepsilon g(a) < 0$. This means $f - \varepsilon g \notin \mathcal{P}$. Thus $f \in \partial \mathcal{P}$.

(2) Let $\{s_0, \ldots, s_N\}$ be a base of \mathcal{H} such that $s_0, \ldots, s_N \in \mathcal{P}$, and define $\Phi_{\mathcal{H}}: A \cdots \to X \subset \mathbb{P}^N_{\mathbb{R}}$ by s_0, \ldots, s_N . We may assume that A = X. Put

$$W_{i} := \{ (X_{0}: \dots : X_{N}) \in \mathbb{P}_{\mathbb{R}}^{N} \mid X_{0}^{2} + \dots + X_{N}^{2} \leq 3X_{i}^{2} \}.$$

Then $W_0 \cup \cdots \cup W_N = \mathbb{P}^N_{\mathbb{R}}$.

Assume that $f \in \mathbf{P}$ satisfies f(a) > 0 for all $a \in A = X$. Take $g \in \text{Int}(\mathbf{P})$. We can regard $f_i := f/X_i$ and $g_i := g/X_i$ as holomorphic functions on W_i . Since W_i is compact, there exists $\varepsilon_i > 0$ such that $f_i(a) \pm \varepsilon_i g_i(a) > 0$ for all $a \in X \cap W_i$. Put $\varepsilon := \min\{\varepsilon_0, \ldots, \varepsilon_N\}$. Then $f \pm \varepsilon g \in \mathbf{P}$. Thus $f \notin \partial \mathbf{P}$.

•p.397. Proposition 1.27.

Error: (1) If $\mathbf{P}_x \neq 0$, then dim $\mathbf{P}_x = N - r$. Correction: (1) dim $\mathbf{P}_x \leq N - r$.

In the proof, let $\mathcal{L} := \{ f \in \mathcal{H} \mid T_{D,x} \subset H_f \}$. As the origibal proof, dim $\mathcal{L} = \dim \mathcal{H} - (r+1) = N - r$. Since $\mathcal{P}_x = \mathcal{P} \cap \mathcal{L}$, we have dim $\mathcal{P}_x \leq N - r$.

This proposition is used in some places. But only the fact dim $\mathcal{P}_x \leq N - r$ is used in this article.

•p.399. Proposition 1.36.

Error: Let $A = \mathbb{P}^n_{\mathbb{R}}$ or $A = \mathbb{P}_+$, Correction: Let $A = \mathbb{P}^n_{\mathbb{R}}$ or $A = \mathbb{P}^n_+$,

•p.403. Proposition 2.10.

Comments: disc_d^{c+} agrees with the discriminant of the equation $x^d + p_0 x^{d-1} + \cdots + p_{d-1}x + 1$ under a suitable base of \mathcal{H}_d^{c0} . Please see Theorem 6.11 in this paper.

•p.406. line 23.

Error: Note that if they are not 0, then dim $\mathcal{L}_{0,s}^{c+} = 2$, and dim $\mathcal{L}_{0,s}^{c0+} = 1$ by Proposition 2.7(1).

Correction: Note that if they are not 0, then $\dim \mathcal{L}_{0,s}^{c+} \leq 2$, and $\dim \mathcal{L}_{0,s}^{c0+} = 1$ by Proposition 2.7(1).

•p.411. line 8. (Line 2 after the proof of Proposition 4.1.)

Error: Then dim $\mathcal{L}_{s,t}^c = 2$ and dim $\mathcal{L}_{s,t}^{c0} = 1$ for any $(s, t) \in \mathbb{P}^2_{\mathbb{R}}$ by Proposition 2.7(1).

Correction: Then dim $\mathcal{L}_{s,t}^c \leq 2$ and dim $\mathcal{L}_{s,t}^{c0} = 1$ for any $(s, t) \in \mathbb{P}^2_{\mathbb{R}}$ by Proposition 2.7(1).

•p.410. The first line of 4.1.

Error: Hilbert proved that every element in $\mathcal{P}_4 := \mathcal{P}(\mathbb{P}_{\mathbb{R}}, \mathcal{H}_4)$ can *Correction*: Hilbert proved that every element in $\mathcal{P}_4 := \mathcal{P}(\mathbb{P}_{\mathbb{R}}^2, \mathcal{H}_4)$ can

•p.411. line 14.

Comment: $\mathfrak{g}_{p,q}^X(a,b,c)$ is not irreducible in $\mathbb{C}[a,b,c]$ since the curve defined by $\mathfrak{g}_{p,q}^X=0$ in \mathbb{P}^2_C has 4 nodes. There must be a conic $h \in \mathbb{C}[a, b, c]$ such that $\mathfrak{g}^X_{p,q} = h\overline{h}$. For example,

$$\begin{aligned} \mathfrak{g}_{1,2}^{A}(x,y,z) &= S_4 - 3T_{3,1} + 8S_{2,2} - 3US_1 \\ &= (x^2 + \omega y^2 + \omega^2 z^2 + 3\omega^2 xy + 3yz + 3\omega zx) \\ &\times (x^2 + \omega^2 y^2 + \omega z^2 + 3\omega xy + 3yz + 3\omega^2 zx) \end{aligned}$$

where $\omega := (-1 + \sqrt{-3})/2$. $\mathfrak{g}_{p,q}^X(a, b, c)$ is not extremal in \mathfrak{P}_4 .

•p.413. Proof of **Theorem 4.4.** line 4-5.

Improvement:

$$\mathfrak{h}_s(a,b,c) = ab(a-sb-c+sc)^2 + bc(b-sc-a+sa)^2 + ca(c-sa-b+sb)^2 \ge 0$$

•p.417. Proof of **Theorem 4.7.** line 1.

Error: dim $\mathcal{L}_{s,t}^c = N - 2 = 2$ if $(s, t) \neq (1, 1)$. Correction: dim $\mathcal{L}_{s,t}^c = N - 2 \leq 2$ if $(s, t) \neq (1, 1)$.

•p.421. Proof of Theorem 4.11.

Comment: Let $d_4(p, r, v)$ be the discriminant of the quartic equation f(x, 1, 1) = 0. Then 1 (

$$\operatorname{disc}_{4}^{c}(1, p, p, r, v) := \frac{d_{4}(p, r, v)}{16(1 + 2p + r + v)}$$

 $\operatorname{disc}_{4}^{c}(1, p, p, r, v)$ consists of 44 terms. When we choose $t_{0} := S_{1}^{4}, t_{1} := S_{1}^{2}S_{1,1}, t_{2} := S_{1,1}^{2}$ $t_3 := US_1$ as a base of $\mathfrak{H}^s_{3,4}$, and present $f = \sum_{i=0}^{3} q_i t_i$, $\operatorname{disc}^c_4(1, p, p, r, v)$ become shorter. It

consists of only 14 terms:

$$\begin{aligned} d_4^s(q_0, q_1, q_2, q_3) =& 27q_1^4q_2 - 216q_0q_1^2q_2^2 + 432q_0^2q_2^3 + 36q_1^3q_2q_3 - 144q_0q_1q_2^2q_3 + 16q_1^2q_2^2q_3 \\ &- 64q_0q_2^3q_3 + q_1^3q_3^2 - 36q_0q_1q_2q_3^2 + 8q_1^2q_2q_3^2 - 48q_0q_2^2q_3^2 + q_1^2q_3^3 \\ &- 12q_0q_2q_3^3 - q_0q_3^4. \end{aligned}$$

Note that $\operatorname{disc}_{4}^{c}(1, p, p, r, v) = d_{4}^{s}(-4 + p, 2 - 2p + r, 3 - 3p - 3r + v).$

•p.422. Proof of **Proposition 4.12.** (2) *Comment*: It is better to choose $\mathfrak{g}_{t,1}^A$ $(t \ge 0)$ in stead of $\mathfrak{g}_{p,p}^X$ $(p \in \mathbb{R})$, since $\mathfrak{g}_{t\,1}^{A}(a,b,c) = s_0 - (t+1)s_1 + (t^2 + 2t)s_2.$

•p.425. Proposition 5.1.

Comment: In this article, the author referred [13]. This proposition is also a corollary of Theorem 1.1 of [23].

•p.428. Theorem 5.6. line 2 from the bottom.

Error: $d_5(p,q,r) = \operatorname{disc}(C_2), 4q - (p+1)^2 - 4 = \operatorname{disc}(C_1).$ Correction: $d_5(p,q,r) = \operatorname{disc}(C_1), 4q - (p+1)^2 - 4 = \operatorname{disc}(C_2).$

•p.429. Corollary 5.7.

Original Corollary 5.7 is incorrect. It must be replaced by the following:

Lemma 5.6b. (1) Let $I \subset A$. If $0 \neq f \in \mathcal{P}_I$ and dim $\mathcal{P}_I = 1$, then f is an extremal element of \mathfrak{P} .

(2) Let $a_1, \ldots, a_r \in A$. If dim $(\mathfrak{P}_{a_1} \cap \cdots \cap \mathfrak{P}_{a_r}) = 1$ and $f \in \mathfrak{P}$ satisfies $f(a_1) = \cdots =$ $f(a_r) = 0$, then f is an extremal element of \mathfrak{P} .

Proof. (1) Assume that $f = \alpha g + \beta h$ $(g, h \in \mathfrak{P}, \alpha, \beta \in \mathbb{R}_+)$. Take $a \in I$. Since $0 = f(a) = \alpha g(a) + \beta h(a), g(a) \ge 0$ and $h(a) \ge 0$, we have g(a) = h(a) = 0. Thus g, $h \in \mathfrak{P}_I = \mathbb{R} \cdot f$. Thus f is an extremal element of \mathfrak{P} .

(2) Let $I = \{a_1, ..., a_r\}$, and apply (1).

Corollary 5.7. Let

$$\begin{split} f_p^A(a,b,c) &:= s_0 + ps_1 - (p+1)s_2 + p^2 s_3, \\ \ell(t) &:= 2 - t^2 + t\sqrt{(t-1)(t+2)}, \\ s_m(t) &:= (1/2)(\ell(t) - \sqrt{\ell(t)^2 - 4}, \\ f_t^B(a,b,c) &:= s_0 + (1 - 2\ell(t))s_1 + (t^3 + 2t^2 - 2 - 2(t^2 - 1)\ell(t))s_2 \\ &- ((t+1)^2(2t+3) - 4(t+1)^2\ell(t))s_3, \\ g_t(a,b,c) &:= s_1 + (t^2 - 1)s_2 - 2(t+1)^2s_3. \end{split}$$

- (1) For all $t \ge 0$, g_t is an extrelal element of \mathcal{P}_5^{s0+} , and $g_t \in \mathcal{L}_{t,1}^{s0+} \cap \mathcal{L}_{0,0}^{s0+}$. (2) Let $t \ge 2$, and put $s := s_m(t)$. Then $0 < s \le 1$, and $f_t^B \in \mathcal{L}_{t,1}^{s0+} \cap \mathcal{L}_{0,s}^{s0+}$. f_t^B is an extrelal element of \mathcal{P}_5^{s0+} .
- (3) Let $0 \le t \le 2$, and put p := -t 1. Then $f_p^A \in \mathcal{L}_{t,1}^{s0+} \cap \mathcal{L}_{0,1}^{s0+}$, and f_p^A is an extremal element of \mathcal{P}_5^{s0+} .
- (4) All the extremal elements of \mathcal{P}_5^{s0+} are positive multiples of f_p^A (-3 $\leq p \leq -1$), f_t^B $(t \ge 2), g_t \ (t \ge 0), s_2 - 2s_3 \text{ and } s_3.$

Proof. (1) $f \in \mathcal{L}_{0,0}^{s0+}$ implies the cofficient of s_0 in f is equal to zero. Since,

$$g_t(s, 1, 1) = 2(s - 1)^2(s - t)^2,$$

$$g_t(0, s, 1) = s(s + 1)((s - 1)^2 + t^2s),$$

we have $g_t \in \mathcal{L}_{t,1}^{s0+}$ by Proposition 5.1.

(2) It is easy exercise to veryfy that $s_m(t)$ varies (0, 1] when $t \ge 2$. Since

$$f_t^B(s,1,1) = (s-t)^2(s-1)^2(s+2(t-\sqrt{(t-1)(t+2)})^2),$$

$$f_t^B(0,s,1) = (s+1)(s^2 - (2-t^2 + t\sqrt{(t-1)(t+2)})s+1)^2,$$

we have $f_t^B \in \mathcal{L}_{t,1}^{s0+} \cap \mathcal{L}_{0,s}^{s0+}$. (3) follow from

$$f_p^A(t,1,1) = t(t-1)^2(t+p+1)^2,$$

$$f_p(0,t,1) = (t+1)(t-1)^2(t^2+(p+1)t+1).$$

 $J_p(0,t,1) = (t+1)(t-1)^{-}(t^{-} + (p+1)t+1).$ (4) All the extremal elements of $\mathcal{L}_{0,0}^{s0+}$ are positive multiples of g_t $(0 \ge 0)$ and $g_{\infty} := s_2$. $\mathcal{L}_{0,s}^{s0+} \cap \mathcal{L}_{0,0}^{s0+} = \mathbb{R}_+ \cdot s_3$. Thus we obtain (4).

•p.430. Lemme 5.8. line 2.

Error: Note that dim $\mathcal{L}_s^{c0+} = 6 - 2 = 4$ by Proposition 2.7(1). Correction: Note that dim $\mathcal{L}_s^{c0+} = 6 - 2 \leq 4$ by Proposition 2.7(1).

•p.431. Theorem 5.9.

Comment: Let $D_n(c_1,\ldots,c_n)$ be the discriminant of $f(x) = x^n + \sum_{i=1}^n c_i x^{n-i}$. Then, $\operatorname{disc}_{5}^{c+}(x, y, z, w) = D_{5}(x, z, w, y).$

•p.434 line 14.

Error: Assume that $g_0(S+2, 2S) \leq 0$. Correction: Assume that $g_0(S+2, 2S+1) \leq 0$.

•p.437 line 8. Lemma 6.7.

Error: Note that dim $\mathcal{L}_s^{c0+} = 9 - 2 = 7$ by Proposition 2.7(1). Correction: Note that dim $\mathcal{L}_s^{c0+} = 9 - 2 \leq 7$ by Proposition 2.7(1).

•p.437-439. Theorem 6.8.

Comment: Let $D_n(c_1, \ldots, c_n)$ be the discriminant of $f(x) = x^n + \sum_{i=1}^n c_i x^{n-i}$. Then,

 $\operatorname{disc}_{6}^{c+}(x, y, z, w, u) = D_{6}(x, z, u, w, y)$. In general,

Theorem 6.11. Take the base of \mathcal{H}_{n}^{c} so that $s_{0} = S_{n}, s_{1} = S_{n-1,1}, s_{2} = S_{n-2,2}, \ldots$ $s_{n-1} = S_{1,n-1}, \ldots$ Here, if $i \ge n$, then s_i is a multiple of U. We represent $f \in \mathcal{H}_n^c$ as $f = \sum p_i s_i$. Then, the edge discriminant of \mathcal{P}_n^{c+} agrees with $D_n(p_1, \ldots, p_{n-1}, 1)$.

Proof. Take $f \in \mathcal{L}_{0,t}^{c+} \subset \mathcal{E}_n^{c+}$, where t > 0. Then f(0,t,1) = 0. Since $f(0,x,1) \ge 0$ for all x > 0, the equation f(0, x, 1) = 0 has a multiple root at x = t. Thus, the discriminant of f is equal to 0. Since $S_{i,n-1}(0,x,1) = x^i$ $(1 \le i \le n-1), S_n(0,x,1) = x^n + 1$ and U(0, x, 1) = 0, we have $f(0, x, 1) = x^n + p_1 x^{n-1} + \dots + p_{n-1} x + 1$.

Since D_n and disc $_n^{c+}$ are irreducible, we have the conclusion.

Additional Results.

•p.425.

After the end of $\S4$, the followin new result may be added. This will be published somewhere else.

4.6. The PSD cones \mathcal{P}_4^{s+} .

We choose $s_0 := S_4 - US_1$, $s_1 := T_{3,1} - 2US_1$, $s_2 := S_{2,2} - US_1$, $s_3 := US_1$ as a base of \mathcal{H}_4^s .

Theorem 4.15. Take
$$f(a_0, a_1, a_2) := s_0 + \sum_{i=1}^3 p_i s_i = S_4 + p_1 T_{3,1} + p_2 S_{2,2} + (p_3 - 1 - 2p_1 - 2p_1 - 2p_1 - 2p_1)$$

 $p_2 US_1 \in \mathfrak{H}_4^s$. Let $d_4(p_1, p_2, p_3)$ be the discriminant of the quartic equation f(x, 1, 1) = 0, and take it's irreducible factor $\operatorname{disc}_{4}^{s}(p_{1}, p_{2}, p_{3}) := d_{4}(p_{1}, p_{2}, p_{3})/(16(1+2p_{1}+p_{2}+p_{3})))$. Then, $f(a_0, a_1, a_2) \ge 0$ for all $a_0, a_1, a_2 \in \mathbb{R}_+$ if and only if one of the (1)-(7) holds. (1) $p_3 = 0, p_1 \le -1 \text{ and } p_2 \ge p_1^2 - 1.$

- (2) $0 \le p_3 \le 3, -1-p_3 \le p_1$ and $p_2 \ge -2-2p_1$.
- (3) $0 < p_3 \le 3, p_1 \le -1 p_3, \operatorname{disc}_4^s(p_1, p_2, p_3) \ge 0$ and $p_2 \ge p_1^2 (p_3 + 2\sqrt{3p_3} + 1).$
- (4) $3 \le p_3, -4 \le p_1 \text{ and } p_2 \ge -2 2p_1.$ (5) $3 \le p_3, -2\sqrt{p_3/3} 2 \le p_1 \le -4 \text{ and } p_2 \ge (8 + p_1^2)/4.$

(6) $3 \le p_3 \le 27$, $p_1 \le -2\sqrt{p_3/3} - 2$, $\operatorname{disc}_4^s(p_1, p_2, p_3) \ge 0$ and $p_2 \ge p_1^2 - (p_3 + 2\sqrt{3p_3} + 1)$.

(7) $27 < p_3, p_1 \le -2\sqrt{p_3/3} - 2, \operatorname{disc}_4^s(p_1, p_2, p_3) \ge 0$ and $p_2 \ge (8 + p_1^2)/4$.

This theorem will be proved at the end of this subsection. $\Phi := \Phi_{\mathcal{H}_4^s} : \mathbb{P}^2_+ \to X := X(A, \mathbb{P}^2)$ \mathfrak{H}_4^s is decomposed as $\Phi: \mathbb{P}^2_+ \xrightarrow{\pi} \mathbb{P}^2_+ /\mathfrak{S}_3 \xrightarrow{\Psi} X$. By Propisition 2.13, 2.14 and §4.5, we conclude that $\Psi: \mathbb{P}^2_+ /\mathfrak{S}_3 \longrightarrow X$ is an isomorphism. Let

$$\begin{split} L^b_{F+} &:= \big\{ (s:1:1) \in \mathbb{P}^2_{\mathbb{R}} \mid 0 < s < 1 \text{ or } 1 < s < \infty \big\}, \\ L^0_{F+} &:= \big\{ (0:s:1) \in \mathbb{P}^2_{\mathbb{R}} \mid 0 < s < 1 \big\}. \end{split}$$

By Propisition 2.14, we have the following:

Proposition 4.16. $\Delta^2(X) = \{X^\circ\}, \ \Delta^1(X) = \{\Phi(L^b_{F+})\}, \ \Phi(L^0_{F+})\}, \ \Delta^0(X) = \{\Phi(0: X) \in \{\Phi(0: X)\}, \ \Delta^0(X) = \{\Phi(0: X) \in \{\Phi(0: X)\}, \ \Delta^0(X) \in \{\Phi(0: X)\}, \ \Delta^0(X), \ \Delta^0(X), \ \Delta^0(X), \ \Delta^0(X) \in \{\Phi(0: X)\}, \ \Delta^0(X), \ \Delta^0(X)$ $0:1), \Phi(0:1:1), \Phi(1:1:1)\}.$

Put $C^b := \Phi(L^b_{F+}), \ C^0 := \Phi(L^0_{F+}), \ P_1 := \Phi(0:0:1) = (1:0:0:0), \ P_2 := \Phi(0:1:0), \ P_2 := \Phi$ 1) = (2:2:1:0) and $P_3 := \Phi(1:1:1) = (0:0:0:1)$. By Remark 1.21 (3), disc $(P_1) = x_0$, $\operatorname{disc}(P_2) = 2x_0 + 2x_1 + x_2$ and $\operatorname{disc}(P_3) = x_3$. Thus $\mathfrak{F}(P_1)$ is at infinity, and $\mathfrak{F}(P_3) = \mathfrak{P}_4^{s_0+1}$. Thus, $\mathfrak{F}(C^b)$ and $\mathfrak{F}(C^0)$ are essential for $\partial \mathfrak{P}_4^{s0+}$.

On \mathfrak{H}_{4}^{s} , \mathfrak{g} becone very simple:

$$\begin{split} \mathfrak{g}_{t}(a,b,c) &:= \mathfrak{g}_{t,1}^{A}(a,b,c) = s_{0} - (t+1)s_{1} + (t^{2}+2t)s_{2}, \\ \mathfrak{e}_{k}^{X}(a,b,c) &:= \left(S_{2} - \mathfrak{l}\mathfrak{k}\mathfrak{S}_{\mathfrak{l},\mathfrak{l}}\right)^{2} = \mathfrak{s}_{\mathfrak{o}} - \frac{2}{\mathfrak{k}}\mathfrak{s}_{\mathfrak{l}} + \frac{2\mathfrak{k}^{2} + \mathfrak{l}}{\mathfrak{k}^{2}}\mathfrak{s}_{\mathfrak{l}} + \mathfrak{z}\left(\frac{\mathfrak{l}}{\mathfrak{k}} - \mathfrak{l}\right)^{2}\mathfrak{s}_{\mathfrak{z}}, \\ \mathfrak{k}(s,t) &= \frac{S_{1,1}(s,t,1)}{S_{2}(s,t,1)} \in [0,1], \quad \mathfrak{e}_{s,t}^{A}(a,b,c) := \mathfrak{e}_{\mathfrak{k}(s,t)}^{X}(a,b,c), \end{split}$$

where $s \in [0, \infty]$ and $k \in [0, 1]$. By the next Proposition 4.17 (1), $\mathcal{F}(X^{\circ})$ is not a face component. Since $\mathfrak{g}_s(s, 1, 1) = 0$ and $\mathfrak{e}_{s,1}^A(s, 1, 1) = 0$, we have $\mathfrak{g}_s, \mathfrak{e}_{s,1}^A \in \mathcal{F}(C^b)$. Since $\mathfrak{e}_{0,s}^A(0, s, 1) = 0$ and $US_1(0, s, 1) = 0$, we have $\mathfrak{e}_{0,s}^A, US_1 \in \mathcal{F}(C^0)$.

Proposition 4.17. Let $\mathcal{L}_{s,t}^{s+}$ be the local cone of \mathcal{P}_4^{s+} at $(s:t:1) \in A = \mathbb{P}_+^2$.

- (1) If $0 < s \neq 1$, $0 < t \neq 1$ and $s \neq t$, then $\mathcal{L}_{s,t}^{s+} = \mathbb{R} \cdot \mathfrak{e}_{s,t}^{A}$.
- (2) If $0 < t \neq 1$ then $\mathcal{L}_{t,1}^{s+} = \mathbb{R} \cdot \mathfrak{g}_t + \mathbb{R} \cdot \mathfrak{e}_{t,1}^A$.
- (3) If $0 < t \neq 1$ then $\mathcal{L}_{0,t}^{s+} = \mathbb{R} \cdot \mathfrak{e}_{0,t}^{A} + \mathbb{R} \cdot US_1$.
- (4) $\mathcal{L}_{0,1}^{s+} = \mathbb{R} \cdot (S_4 + US_1 2S_{2,2}) + \mathbb{R} \cdot \mathfrak{e}_{0,1}^A + \mathbb{R} \cdot (T_{3,1} 2S_{2,2}) + \mathbb{R} \cdot US_1.$

Proof. (1) When $0 < s \neq 1$, $t \neq 1$, and $s \neq t$, dim $\mathcal{L}_{s,t}^{s+} \leq 3-2 = 1$. On the other hand, $\mathfrak{e}_{s,t}^{A} \in \mathcal{L}_{s,t}^{s+}$. Thus, (1) holds.

(2) Assume that $0 < t \neq 1$. dim $\mathcal{L}_{t,1}^{s+} \leq 3 - 1 = 2$. Since $\mathfrak{g}_t, \mathfrak{e}_{t,1}^A \in \mathcal{L}_{t,1}^{s+}$, any $f \in \mathcal{L}_{t,1}^{s+}$ can be expressed as $f = \alpha \mathfrak{g}_t + \beta \mathfrak{e}_{t,1}^A$ by certain $\alpha, \beta \in \mathbb{R}$. Note that $\mathfrak{g}_t(1,1,1) = 0$. Since $t \neq 1$, $\mathfrak{e}_{t,1}^A(1,1,1) > 0$. Since $0 \leq f(1,1,1) = \beta \mathfrak{e}_{t,1}^A(1,1,1)$, we have $\beta \geq 0$. On the other hand, there exists $a' = (s', t', 1) \in \mathbb{P}^2_+$ such that $\mathfrak{e}_{s',t'}^A = \mathfrak{e}_{s,1}^A$ and $\pi(a') \in \operatorname{Int}(\mathbb{P}^2_+/\mathfrak{S}_3)$. Then $\mathfrak{g}_s(s',t',1) > 0$. Since $0 \leq f(s',t',1) = \alpha \mathfrak{f}_t^A(s',t',1)$, we have $\alpha \geq 0$.

(3) Assume that $0 < t \neq 1$. dim $\mathcal{L}_{0,t}^{s+} \leq 3 - 1 = 2$. Since $\mathfrak{e}_{0,t}^A$, $US_1 \in \mathcal{L}_{0,t}^{s+}$, any $f \in \mathcal{L}_{0,t}^{s+}$ can be expressed as $f = \alpha \mathfrak{e}_{0,t}^A + \beta US_1$ by certain $\alpha, \beta \in \mathbb{R}$. Since $0 \geq f(0,0,1) = \alpha \mathfrak{e}_{0,t}^A$ and $\mathfrak{e}_{0,t}^A > 0$, we have $\alpha > 0$. There exists $a' = (s', t', 1) \in \mathbb{P}^2_+$ such that $\mathfrak{e}_{s',t'}^A = \mathfrak{e}_{0,t}^A$ and $\pi(a') \in \operatorname{Int}(\mathbb{P}^2_+/\mathfrak{S}_3)$. Since $0 \leq f(s',t',1) = \beta s't'(s'+t'+1)$, we have $\beta \geq 0$.

(4) Note that $\mathcal{L}_{0,1}^{s+} = \mathcal{F}(P_2) \subset V(2x_0 + 2x_1 + x_2)$. By Proposition 1.33, $\partial \mathcal{L}_{0,1}^{s+} \subset \mathcal{F}(P_2) \cap \left(V(x_0) \cup V(x_4) \cup \mathcal{F}(C^b) \cup \mathcal{F}(C^0)\right)$. $\mathcal{F}(P_2) \cap \mathcal{F}(C^b) = \lim_{t \to 0} \mathcal{L}_{t,1}^{s+} = \mathbb{R} \cdot \mathfrak{g}_0 + \mathbb{R} \cdot \mathfrak{e}_{0,1}^A = \mathbb{R} \cdot (S_4 + US_1 - 2S_{2,2}) + \mathbb{R} \cdot \mathfrak{e}_{0,1}^A$. $\mathcal{F}(P_2) \cap \mathcal{F}(C^0) = \lim_{t \to 1} \mathcal{L}_{0,t}^{s+} = \mathbb{R} \cdot \mathfrak{e}_{0,1}^A + \mathbb{R} \cdot US_1$. By Theorem 0.3, we have $\mathcal{F}(P_2) \cap V(x_3) = \mathbb{R} \cdot \mathfrak{g}_0 + \mathbb{R} \cdot (T_{3,1} - 2S_{2,2})$. Now, it is east to see that $\mathcal{F}(P_2) \cap V(x_0) = \mathbb{R} \cdot US_1 + \mathbb{R} \cdot (T_{3,1} - 2S_{2,2})$. Thus, we have (4).

Corollary 4.18. All the extremal elements of \mathfrak{P}_4^{s+} are positive multiple of following polynomials: \mathfrak{e}_k^X ($0 < k \le 1$), \mathfrak{g}_s ($s \ge 0$), $s_0 - 2s_2 = S_4 + US_1 - 2S_{2,2}$, $s_1 - 2s_2 = T_{3,1} - 2S_{2,2}$ and $s_3 = US_1$.

Corollary 4.19. For $f := s_0 + \sum_{i=1}^3 p_i s_i$, $\operatorname{disc}(C^b) = \operatorname{disc}_4^s(p_1, p_2, p_3)$ and $\operatorname{disc}(C^0) = 4p_2 - 8 - p_1^2$.

Proof. Since disc^s₄ is irredusible, and \mathfrak{g}_t , $\mathfrak{e}^A_{t,1} \in \text{disc}^s_4$ for all $t \in \mathbb{R}$, we have disc $(C^b) = \text{disc}^s_4$. Since US_1 , $\mathfrak{e}^A_{0,t} \in V(4p_2 - 8 - p_1^2)$ for all $t \in \mathbb{R}$, we have disc $(C^0) = 4p_2 - 8 - p_1^2$. \Box

Note that $\mathfrak{e}_k^X \in \mathfrak{F}(C^0) \cap \mathfrak{F}(C^b)$ if and only if $0 \leq k \leq 1/2$. When $1/2 < k \leq 1$, $\mathfrak{e}_k^X \in \mathfrak{F}(C^b) - \mathfrak{F}(C^0)$.

Proof of Theorem 4.15. Put $\boldsymbol{\mathcal{P}} := \boldsymbol{\mathcal{P}}_4^{s+}$.

(I) We use the same symbols with the proof of Theorem 4.11. There we denote $x := p_1$, $y := p_2$ and $z := p_3$. Fix a constant v > 0, and let H_v be the plane z = v in $\check{\mathcal{H}}_4^s$. Let $T_v := \mathfrak{P}_4^s \cap H_v$, $F_v := \mathfrak{F}_4^s \cap H_v$, and let C_v be the curve defined by $\operatorname{disc}_4^s(x, y, v) = 0$ on H_v . Note that $F_v \subset C_v$. Moreover, let C be the curve defined by $4y - 8 - x^2 = 0$ on H_v , and let L be the line defined by 2 + 2x + y = 0 on H_v . C_v^b , C, L represent the zero loci of $\operatorname{disc}(C^b)$, $\operatorname{disc}(C^0)$, $\operatorname{disc}(P2)$ respectively. When v = 0, (1) follows from Theorem 0.3.

(II) Put $L(x \ge c) := \{(x, y) \in L \mid x \ge c\}$. If $x \ge 0$, The point $(x, -2x - 2) \in L$ corresponds to $(S_4 + US_1 - 2S_{2,2}) + x(T_{3,1} - 2S_{2,2}) + vUS_1 \in \partial \mathcal{P}$. Thus $L(x \ge 0) \subset \partial \mathcal{P}$. Note that L tangents to C_v at (x, y) = (-v - 1, 2v) with the multiplicity 2, and

Note that L tangents to C_v at (x, y) = (-v - 1, 2v) with the multiplicity 2, and L tangent to C at (-4, 6). When $0 \le v \le 3$, the point (-v - 1, 2v) corresponds to $\frac{v+1}{4}\mathfrak{e}_{1/2}^X + \frac{3-v}{4}(S_4 + US_1 - 2S_{2,2}) + \frac{v+1}{4}US_1 \in \partial \mathfrak{P}$. Thus $L(x \ge -v - 1) \subset \partial \mathfrak{P}$. When $v \ge 3$, the point (-4, 6) corresponds to $\mathfrak{e}_{1/2}^X + (v-3)US_1 \in \partial \mathfrak{P}$. Thus $L(x \ge -4) \subset \partial \mathfrak{P}$. This implies (2) and (4).

(III) When v > 0, the curve C_v has a node at

$$P_v: (x,y) = \left(-2\sqrt{\frac{v}{3}} - 2, \frac{v + 2\sqrt{3v} + 9}{3}\right).$$

 P_v corresponds to extremal polynomials \mathfrak{e}_k^X , where $k = \frac{1}{\sqrt{v/3}+1}$, $v = 3(k-1)^2/k^2$ $(0 \le k \le 1)$. Moreover P_v , $Q_v \in C \cap C_v$.

When $v \ge 3$, we put $C[P_v, -4] := \{(x, y) \in C \mid -2\sqrt{v/3} - 2 \le x \le -4\}$. Consider $f := \mathfrak{e}_k^X + (v - 3(1/k - 1)^2)US_1 \in C$. f corresponds to $(x, y) = (-2/k, 1/k^2 + 2) \in C$. Since $0 \le k \le 1/2$, we have $x \le -4$. $v - 3(1/k - 1)^2 \ge 0$ is equivalent to $x = -2/k \ge -2(\sqrt{v/3} + 1)$. Thus $C[P_v, -4] \subset \partial \mathbf{P}$, if $v \ge 3$. This implies (6).

(IV) We consider the cases (3), (6) and (7). Put

$$C'_{v} := \begin{cases} \{(x,y) \in C_{v} \mid x \leq -1-v, \ y \geq x^{2} - (v + 2\sqrt{3v} + 1)\} & (0 < v \leq 3) \\ \{(x,y) \in C_{v} \mid x \leq -2\sqrt{v/3} - 2, \ y \geq x^{2} - (v + 2\sqrt{3v} + 1)\} & (2 \leq v \leq 27) \\ \{(x,y) \in C_{v} \mid x \leq -2\sqrt{v/3} - 2, \ y \geq (8 + x^{2})/4\} & (v \geq 27) \end{cases}$$

Theorem 0.3 implies there exists a $f \in \mathfrak{H}_4^s$ of the form $f = \alpha \mathfrak{e}_{t,1}^A + (1-\alpha)\mathfrak{g}_t^A$ ($\exists \alpha \in [0, 1]$, $\exists t \in \mathbb{R}$). The x-coordinate of f is equal to $\alpha \frac{-2(t^2+2)}{2t+1} + (1-\alpha)(-t-1)$. Since this is negative on C'_v , we have $t \ge 0$. Thus $C'_v \in \partial \mathfrak{P}$.