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Abstract. Let J3 4 be the vector space of homogeneous three variable polynomials of
degree d, and T;;d be the set of all elements f € Hs 4 such that f(z,y,z) > 0 for all z > 0,
y > 0, z > 0. In this article we determine all extremal elements of fP;r’S. We prove that if
fe ?;3 is an irreducible extremal element, then the zero locus Vi (f) in PZ is a rational
curve whose unique singularity is an acnode in the interior of Pi or a cusp on an edge of
Pi. We also prove that if f € T;;S is an extremal element, then f(x2,y?, 22) is an extremal
element of P36, where P34 is the set of all the elements f € Hs 4 such that f(z,y,2z) >0
for all z, y, z € R.

§1. Introduction.
In this article, we determine all the extremal elements of the convex cone f]’;?), where
basic symbols are defined as the following;:
Pi::{(aﬁo:---:xn)eﬂ”ﬁﬂxo>0 anO},
Hopag :=Rlzy,..., 20 = {f € Rlzy,...,x4) ‘ f is homogeneous and deg f = d} U {0},
Prd = {fef]—(nd | flz1,...,zy) >0 for all (x1:---:xy) EIPH%_I},
Pro={feHnal| flxr,...,2n) >0 forall (z1:---:2,) € PT'Y,
Ynd = {f €Pna ‘ f is a sum of squares of some elements from f]-Cn,d/Q}.

Let P be a closed convex cone, and JH be the vector space spanned by P. An element
0 # f € P is said to be extremal if g, h € P and f = g+ h, implies that g and h are divisible
by f. Let

E(P):={f €P| [ is an extremal element of P}.
An element f € E(P) is said to be exposed if there exists a hyperplane H C 3 such that
HﬁfP:R+-f,WhereR+ = {aeR‘a>0} For f € H,, 4 and K =R or C, we denote

—{xl 1T, E]P’”l‘fxl,...,xn):()}.
A set Ve(f) NP Lig denoted by Vi (f). We will see that the extremal ray Ry - f of T;’g is

determined by V (f) with additional information of infinitely near points.
Before we state our main result, i.e., Theorem 1.5, we present some elements of 8(9’?{73).

For example, fo(z, y, 2) = 2%y + y%2 + 2%z — 3ayz € 8(9’;{,3) (see Proposition 3.26 or [5,
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Corollary 3.3]). The Schur’s inequality type polynomial fi(z, y, 2) = 2% + y> + 2% + 3zyz —
22y —y?z — 222 — xy? —y2? — z2? and zyz are also elements of 8(3’;3) (see Corollary 3.27).
If fe 8(3’;3) is a symmetric polynomial, then f = af; or f = azyz (Ja > 0. See also [5,
Theorem 3.8]). On the other hand, AM-GM inequality type polynomial
23+ + 28— Bryz = fi(w,y, 2) + o, y, 2) + foly, 2, 2)
is not extremal in ?;3.
Theorem 1.1, 1.2, 1.4 below describe three new families of elements of 8(?;{’3).

Theorem 1.1. Assume thatp >0,¢q>0,r>0,pg—p+1>0,q9gr—qg+1>0 and
rp—r+1>0. Then:
(1) There exists an irreducible polynomial 4, € 8(3’;;3) which satisfies

fpar (1,1, 1) = §pgr (0,0, 1) = fpgr(1,0,9) = fpgr(r,1,0) = 0.
(2) Ifp > 0,q >0, r >0, then every f € fP;3 satisfying f(1,1,1) = f(0,p,1) = f(1,0,q) =
f(r,1,0) = 0 is of the form f = afp,, for some o € R.
For the explicit expression of f,4, see Definition 3.16.
Theorem 1.2. For p, g € R, let
Opq(T,y,2) == 22+ ?xtz + Pty — 2w — 2py2? — (PP + ¢ — 4p — 4q + 3)ayz
+(1-p+q)(1-p—qz’y+ (1 +p—q)(1-p— gy’
Ifp>0,g>0andp+q <1, then gy, € 8(9’;3) and
Opq(1,1,1) = gp4(0,1,p) = gp¢(1,0,9) = gpq(1,0,0) = gpy(0,1,0) = 0.
Conversely, if p > 0, ¢ > 0, p+q < 1 and f € fP;;?) satisfies f(1,1,1) = f(1,0,p) =
£(0,1,¢9) = f(1,0,0) = f(0,1,0) = 0, then there exists a € R such that f = agyq.
Remark 1.3. f,,, was discovered in [1, Theorem 3.1]. A special type of g,, was
discovered in [15]. Let
M (z,y, 2) == (1 =23 (2*y? + 2%y*) + t* (2?22 + y*2?)
— (3 = 8t% 4 2tM)a?y? 2 — 263 (2% + y?) 2t + 2O
be the polynomial of (1.8) or (6.17) in [15]. Then Mi(z, y, 2) = gs2 2(2?, 32, 2?).

Note that Ve(fpqr) and Ve(gpe) have a node at (1:1:1) € PA. There are extremal
clements f € E(P3 3) such that Ve (f) has a cusp.

Theorem 1.4. Let
bpg (2,1, 2) == 22% + 3(p — )2*y — 6pgzy® + ¢°Bp + q)y® + 3(q — p)a®z — bpqa2
+ (p° +36p*q — 6pg® — 2¢°)y*z + (—2p” — 6p°q + 3pa® + ¢° )y
+p*(p+39)2° + 12pqayz.
Assume that p > 0, ¢ > 0 and (p, q) # (0, 0). Then b,, € 8(?;3) and hpe(p, 0, 1) = hpe(q,

1, 0) = 0. Moreover, V(f) has a cusp at (0:1:1). Conversely, for f € fP;;S, it Ve(f) has a
cusp at (0:1:1) and f(p,0,1) = f(g,1,0) =0, then there exists « € R such that f = ab,,.

Our main theorem is the characterization of the elements from 8(9’{;3):

Theorem 1.5. Let f(z,y,2) € 8(3’;;3). Then, f(z,y,z) is a positive multiple of one
of the following polynomials:



(1) fpgr(x, y/a, z/b) wherea >0,b>0,p>0,¢>0,7r>0,pg—p+1>0,gr—qg+1>0
andrp—r—+1>0.

(2) fprq(zx, 2/b, y/a) wherea >0,b>0,p>0,¢>0,r>0,pg—qg+1>0,gr—r+1>0,
rp—p+1>0 and pgr = 0.

(3) gpq(x, y/a, z/b) or gpq(y/a, 2/b, x) or g,q(2/b, x, y/a) wherea >0,b>0,p>0,q >0
and p+q < 1.

(4) bpg(z, y/a, z) or by, z/a, x) or bpy(z, x/a, y) where a > 0, p > 0, ¢ > 0 and (p,
q) # (0, 0).

(5) x(az+by+cz)? or y(ax + by +cz)? or z(ax + by + cz)? where a, b, c € R, (a, b, ¢) # (0,
0, 0) and dim (Vr(az + by + cz) NP2) =1

(6) The monomial xyz.
Conversely, all polynomials in (1)-(6) belongs to &(P3 ).

This theorem will be proved in §3.6.

Hilbert proved that P, 4 = ¥, 4 if and only if n < 2 or d = 2 or (n, d) = (3, 4).
Moreover, every element of E(P3 4) is a square of a quadratic polynomial [11]. We shall give
an alternative proof of this fact at Theorem 4.1.

The first part of the following theorem is proved in [3, Remark 8], and the second part
follows from [15, Theorem 7.2],

Theorem 1.6. If f € P3¢ is an exposed extremal element which is not the square of a
cubic polynomial, then Vc(f) is an irreducible rational curve which has 10 acnodes Pi,. . .,
Piy, and Vg(f) = {P1,..., Pio}. On the other hand, if f € P3¢ and Vc(f) is an irreducible
curve which has 10 acnodes in P%, then f € E(P3).

In spite of this general theorem, only a few concrete elements of £(P3 ) ware known
(see [14]). But as a corollary of Theorem 1.5, we obtain the following:

Theorem 1.7. If f(z,y,2) € 8(9’;3), then f(z%,y?% 2%) € E(P3).

The convex cone P3¢ is studied in [5, 6, 7, 8, 14, 15], and the convex cone P§ ¢ :=
P36 N R[22, y?, 2?] is studied in [9]. Since fP;;P) = P35 ¢ by the correspondence f(x,y,z) —
f(x%,y?,2%), our results characterize E(PS5 6), and prove the following (see Corollary 3.25):

Corollary 1.8. E(P55) C E(P3).

Here, we sketch our idea of proof of Theorem 1.5. To classify f € 8(3’;3), we observe
the complex cubic curve C¢ := Vi (f) C P2 and the real cubic curve Cg := Vi (f) C PZ.

If C¢ is reducible, classification is easy (Proposition 3.1—3.4).

Consider the case C¢ is irreducible. Then C¢ is a rational curve with a singular point
Py (Lemma 3.5). If Py is a node, it lies inside of P2 (Lemma 3.6—3.11). After a suitable
projective transformation, we may assume Py = (1:1:1). If Py is a cusp, it lies on an edge
of a triangle JP% and it is not a vertex (Lemma 3.10, 3.6). In this case, we may assume
Py =(0:1:1). In the both cases, Cr — { Py} contacts to 81?’1 at some points Pi,..., P,.

We shall study a general theory of infinitely near zeros in §2. As a monic polynomial in
one variable is determined by its roots when we count the multiplicity exactly, an extremal
ray Ry - f is essentially determined by V. (f) when we consider infinitely near zeros. By
Theorem 2.11, f € 8(?;{’3) satisfies

Ry -f=PoNPin--NP,
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where P; is a local cone or an infinitesimal local cone of fP;r’3 at P; (see Definition 2.9). P;
has informationis on infinitely near points of P;. This condition also gives a lower bound
of 7. On the other hand, at most two P; can exist on an edge of the triangle dP2. If two
points P;, P; exist on an edge, one of them must be a vertex. Thus r < 4. Our classification
essentially depends on this result.

In §3.3, we study the case that Py = (0:1:1) is a cusp. In this case, we can easily prove
f = cbpq using Theorem 1.5(see Theorem 3.13).

In §3.4, we study the case that Py = (1:1:1) is a node. In this case, there are several
types of configurations of Pi,..., P.. After studying each case using Theorem 1.1 and 1.2,
we conclude that f can be represented by fuqr Or gpq-

The idea of infinitely near zeros is also useful to reform Theorem 1.6. If f € E(P3¢) —
Y3 6 is not always exposed, Vr(f) consists of just 10 points including infinitely near points.
Theorem 2.11 states that extremal elements of PSD cones P, 24 or T:’ 4 are determined
by their equality conditions including infinitely near points. In [15], properties of f €
E(P36) — g6 with #Vr(f) <9 are studied using the idea of ‘divisor’ instead of ‘infinitely
near points’. When we treat Vg (f) as a divisor, a notion of multiplicity is included in it, and
works well for (n, 2d) = (3, 6). But it will not determine f € E(P,, 2q) for large d. Notion
of ‘infinitely near points’ gives more complete condition.

We also mention that the R-scheme structure of P is not unique. We can blow up P%
at conjugate imaginal points. So, we must be careful to treat ‘divisors’ on PZ. There also
infinitely many real projective surfaces X such that ]P’?F C X. This is inconvenient to treat
blowing ups. We often need to get rid of information outside of P2, and there shoud be a
unique structure sheaf Rpi . So, in this article, we use the notion of semialgebraic variety.

§2. Infinitely near zeros.

One of the key idea to prove Theorem 1.5 is to introduce the notion of infinitely near
zeros. Max Noether introduced the notion of infinitely near points on algebraic surfaces.
The notion of infinitely near zeros of inequalities is similar one. We need blowing ups to treat
infinitely near zeros. So, we should generalize some notions. The notion of semialgebraic
varieties is introduced in [1], and the precise properties of semialgebraic variety are explained
in [2, §5]. But we don’t need deep understanding for semialgebraic varieties in this article.
We present here minimum definitions.

Definition 2.1.(Semialgebraic variety) A locally ringed space (A4, R4) is called semi-
algebraic variety, if there exists a real algebraic variety (X, Rx) in the sence of [4] which
satisfies the following:

(1) The ring Rx (X) is an integral domain such that Krull dim Rx (X) = dim X. We denote
Rat(X) := Q(Rx (X)) (the field of fractions).

(2) There exists an injective morphism ¢: (4, R4) — (X, Rx) as locally ringed spaces,
and ¢ induces a homeomorphism A — ((A) with respect to the Euclidean topology.
Moreover, t(A) is a semialgebraic subset of X such that Zarx(c(4)) = X, i.e. the
Zariski closure of ((A) in X agrees with X.

(3) The induced map tp: Rx ,(p) — Ra,p is an isomorphism for every P € A, and

RA(U) = () tp(Rx.u(p)) C " Rat(X)
PeU
for any non-empty Euclidean open subset U C A.
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The above definition is based on the fact that Ry is genereted by its global section
(see [2, Corollary 5.13]). On a senialgebraic variety A, we use the Euclidean topology and
the Zariski topology induced from X. Many terminologies for semialgebraic varieties can be
defined by the similar way as complex algebraic varieties.

Definition 2.2.(Signed linear system) Let (A, R4) be a semialgebraic variety, and €%
be the sheaf of germs of real contineous functions on A.
(1) Let J be an invertible R 4-sheaf. J is called a signed invertible sheaf on A if
(i) there exists €%-invertible sheaf J such that I @x, €% =7 ®en d, and
(i) there exists e € J(A) such that e? € IJ(A) and J(A) = R4 (A) - €%
Then, for f € H(A, J), there exists g € H°(A, R4) such that f = ge?. We define
sign(f(P)) € {0, £1} by sign(f(P)) = sign(g(P)) for P € A.
(2) Let J be a signed invertible R 4-sheaf. A finite dimensional vector subspace H C HY(A,
3J) is called a signed linear system on A. For f € H, we say fis PSDon A if f(P) >0
for all P € A.

Example 2.3. Let A=P" ' CPp™' = X and e := \/Ed. Then Ra(d) = Ry - €2,
Thus R4(d) is a signed invertible R 4-sheaf, and 3, 4 C H°(A, R4(d)) is a signed lenear
system on P,

Similarly, J(,, 24 is a signed linear systen on Pﬁ_l.

Proposition 2.4. Let (A, R4) and (B, Rp) be semialgebraic varieties and p: B — A
be a morphism. If 3 is is a signed linear system on A, then ¢*H = {o*(f) = fo ¢ ‘
fe fo} is a signed linear system on B.

Proof. Let 3, J and e be same as in Definition 2.2. Then JIp := ¢*J ®,x, Rp,
dB = ©*d Qe CY% and ep := p*(e) satisfy conditions so that ¢*3 is a signed linear
system on B. 0

Definition 2.5.(PSD cone) Let (A, R4) be a semialgebraic variety, and 3 be a signed
linear sytem on A. The cone

P=PA H):={feH|fisPSDon A}
is called the PSD cone on A in H.

We can represent fPZd = ?(Pﬁfl, H,.q), and Py, 04 = T(Pﬁfl, Ho24)-

Definition 2.6. Let A be a non-singular semialgebraic variety, 3 be a signed linear
system on A, and P = P(A, H) be a PSD cone.

(1) Take P € A and f € 3. Assume that f can be represented as f = ge? as Definition
2.2. If we take a suitable open subset U C A and an analytic coordinate system (x1,. . .,
xn) on U whose origin is P, we can regard g|y € JAQAJ» = R[z1,..., ,]]. Let m be
the maximal ideal of fle p corresponding to the point P. The multiplicity of f at P is
defined as

multp f := sup {d >0 ‘ glu € md}.

(2) For x € A, we put

mult, P := min mult, h.
heP—{0}
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Assume that dimP > 2, where dim P implies the dimension of P as a semialgebraic
variety which agree with the dimension as a convex cone or as a manifold. For 0 # f € P,
we put
2p(P):={P € A| multp f > multp P}.
(3) Take a point P € A and put

Pp = {g eP ’ multp g > multp ?}.
If Pp # {0}, then Pp is called the local cone of P at P.

When we consider a vector subspace Hp = {g e H | multp g > multp ZP}, then
Pp =DP(A, Hp). Thus Pp is a semialgebraic closed convex cone.

Proposition 2.7. Let A, P be same as in Definition 2.6 where dim P > 2.
(1) There exists hy € P such that mult, hg = mult, P for all x € A.
(2) Assume that 0 # f € P, and f = g+ h, where g, h € P and a € A. Then g, h € P,,.

Proof. (1) For a € A, there exists h, € P such that mult, h, = mult, P. Note that
mult, ¢ and mult, P are upper semicontinuous functions on z € A with respect to Zariski
topology (see [10, IT Exercise 5.8]). For any point a € A, there exists an open neighborhood
a €U C Aand h € P such that mult, h = mult, P for all x € U. Since mult, h, > mult, P,
hi/h is holomorphic on U and is upper semicontinuous. Thus mult, h, — mult, P € Z is
also a Zariski upper semicontinuous functions on x € A, and whose minimum value is equal
to 0. Thus U, = {w e A ‘ multy, h, = multxf}’}. is a Zariski open subset of A. Since A
is quasi-compact with respect to Zariski topology, we can choose ai,..., a, € A such that
Ugy U---UU,, =A. Let hg = hg, +---+ hg,.. Then

mult, hg = ) gzlg . multy Ay, = mult, P

for all z € A.

(2) Take a general hg € Int(P) such that mult, hg = mult, P for all x € A, where the
word ‘general’ is used in the sense [13, §7.9 a]. Then f; := f/hg, g1 := g/ho and hy := h/hg
are holomorphic functions on A (i.e. f1, g1, h1 € H°(A, R4), for f1, g1, hy have no poles on
A by (1). Moreover, f1, g1 and hy are PSD on A. Since 0 = f1(a) = g1(a) + hi(a), g1(a) >0
and hy(a) > 0, we have g1(a) = hy(a) = 0. Thus mult, g > mult, P and mult, h > mult, P.
This implies g, h € P,,. (]

Proposition 2.8. Let A, P be same as in Definition 2.6 with dim P > 2. Moreover, we
assume that A is compact with respect to the Euclidean topology. Take f € E(P). Then,
(1) % (P) £ 0.

(2) Ifa € Z¢(P), then E(P,) =P, NE(P).

Proof. (1) Assume that Z¢(P) = (. Then, f € P satisfies mult, f = mult, P for
all x € A. Moreover, a general hy € Int(P) — Ry - f satisfy mult, hg = mult, P for all

x € A. We can regard g := f/hy as a holomorphic function on A. Since A is compact,
€= ingg(x) > 0. Then h:= f —echg € P —R, - f. Thus f = h+ ehy is not extremal in P.
e

(2) EP.) D P, N E(P) is trivial. We shall show E(P,) C E(P). Take g € E(P,).
Assume that g = hy + hs for hy, ho € P —Ry - g. Then hy, ho € P, by Proposition 2.7. So,
g ¢ E(P,). A contradiction. Thus g € E(P), and E(P,) C E(P). O
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Note that when Q C P is a sub PSD cone, £(Q) = QN E(P) does not hold in general.
We have many counter examples.

The following definition is an anlogue of a resolution of the base locus of a linear system
by a sequence of blowing ups. Words and symbols are based on algebraic geometry.

Definition 2.9.(infinitesimal local cone) Let A be a non-singular semialgebraic variety
which is compact with respect to the Euclidean topology. Let P = P(A, H) be a PSD cone
with dimP > 2. Fix f € E(P). Then Z(P) # 0.

(1) Take a € Z¢(P). Assume that dimP, > 2. Put Ay := A, ap := a, fo := f and
Loy :=P,. Then fy € E(Ly) by Proposition 2.8.

Inductively, we shall define A;, a;, £L; for i > 0, and ¢;: A; — A;_1 for ¢ > 1. Now fix
i € N, and assume that A;, a; and £ are defined for all 0 < j < i. Put @j =100 ¢
A; — A whenever 91,. .., ¢; will be defined. In this process, we assume that v;(a;) = a;_1,

fi= @;(f) = foy; € &(L;) and a; € Zy, (L;) for 0 < j < i. Consider
Li={geli ‘ mult,, , g > multe, , L;_1}.
We divide into two cases.

(1-i) The case 0 # L] G L;_1 and f;_1 € L.

Then, let A; := A;_1, ¥;: A; — A;_1 be the identity map, a; := a;_1 and we put
L; = L). Note that a; € Zy,(L;). Now we repeat the process increasing i.

(1-ii) The case L, =0or L, =L, 1 or fi_1 ¢ L.

Then, let ¥;: A; — A;_1 be the blowing up of A;_1 at the point a;_1 € A;—1. H; :=
@jf}f is a signed linear system on A; and @:? = {g o, | g € fP} satisfies @jfp = P(A;,
f}c@) Note that dim w?Li—l = dimLi_l Z 2.

(1-ii-a) Consider the case that we can find a; € Zy, (¢ £;_1) such that 1;(a;) = a;—1
where f; := @jf Let £, be the local cone of ¥fL; 1 at the point a;. Note that f; € E(L;),
because E(L;) = L; N E(Y;L;_1). Then, we repeat the process increasing i.

(1-ii-b) Termination of the process.

Since dim P > dim Ly > dim L > - -, there exists | € N such that {a € Zy,,, (¢¥]1L)
! Yry1(a) = al} = (). Then, we stop to repeat the process. We say a1, as,. .., a; is a sequence
of zeros of f infinitely near to a. Each a; (1 <1i <) is called a zero of f infinitely near to
a in P. The convex cone ;(£L;) is called an infinitesimal local cone of P at a; or at a with
respect to f.

Assume that f(a) =0 and f has only finitely many zeros by,. .., by infinitely near to a
in P. Then, we define length, f := N +1. If dim P, = 1 or there exists no a; € Zy: s (7 Pa)
such that 11 (a1) = a, then we put length, f := 1. If f(a) # 0, then we put length, f := 0.

Lemma 2.10. Let A, P and f € E(P) be as in Definition 2.9. Assume that a,
b e Zs(P) with a # b. Let Q := Py, and assume that dimQ > 2. If L is a local cone
or an infinitesimal local cone of Q at a point a € A, then there exists a local cone or an
infinitesimal local cone £ of P at a such that LNQ = L.

Proof. 1If £ is an infinitesimal local cone of Q, we take a sequences {A;}._, {a;}\_,
{¢;}l_, and {L;}._, as in Definition 2.9, such that Ly = Q,, ¥;(L;) = £, Ag = A and
fo=1.



In the case that £ = Q, is a local cone of Q, we put [ = 0 at the above sequences.

Put £y := P,. We need to find convex cones £, on A; such that £, N wz Q=L
and that £, is a local cone or an infinitesimal local cone of Y:L;_1. To construct L,
we may need to refine the sequences. In the process of the refinement, we always put
AY = Al = .. —A’“ (ogig),andw{:id:Ag+1_>Agf (0<j <k, 0<i<l)and
Yl =i AY Fo<i<l).

(1) If 1 <4 <1 and L;_; is already defined so that £; ; ﬂ@*Q = L,_1, we put
LY = (W—lfi—l)ai

It is easy to see that L9 N %*Q DL,

(2) If LY N; Q= L;, then we put £; := LY k; :== 0, and we don’t need a refinement.

(3) Consider the case £2 NY; Q 2 L.

This can happen only if mult,, L7 < mult,, £;. Let Al := A; and ¢} = id: A} —
A?. Put L% = (Lg)ai. Since mult,, £; < mult,, f;, we have f; € L% ; L?. Note that
mult, £0 < mult,, £} < multy, £; < multy, fi. Thus, £ N Q D L.

(4) IfLIn %*Q = L;, then we put £; := L}, k; := 1, and we stop this refinement.

(5)If LNy, Q 2 L, Put L7 := (L])a,. Repeat this process till LNy, Q= L,
Then we put L, := Lf’

When i =1, we put £ := ¢;(L;). Then LNQ = L. 0

Theorem 2.11. Let A, P and f € E(P) be as in Definition 2.9. Assume that dim P > 2.
Then, there exists points Py,. .., P. € A (not always distinct), and local cones or infinitesimal
local cones Pq,. .., P,. C P with respect to f which satisfy
(1) Pin---NP.=R; - f.

(2) P; is the local cone P p, or an infinitesimal local cone of P at P; € A with respect to f
fori=1,...,r.

Proof. We prove by induction on dim®P. Take ¢ € Z;(P), and put Q := P.. Since
dimQ < dim®P, there exists points Pi,..., P. € A, and local cones or infinitesimal local
cones Q1. .., Q. of Q which satisfy Q;N---NQ, =R, - f, and that Q; is the local cone Qp,
or an infinitesimal local cone of Q at P;. Then there exists a local cone or an infinitesimal
local cone P; of P at P; such that P; N Q = Q; by the above lemma. Thus

P.APN---NP.=0N---NQ, =R, - f.

If there exists 1 < ¢ < r such that P; C P, we have Py N--- NP, =R, - f. Otherwise, put
Pi:=cand P11 :=P.. ThenP1N---NP.11 =R, - f. O

Definition 2.12. Let A be a non-singular semialgebraic variety which is compact with
respect to the Euclidean topology. Let P = P(A, H) be a PSD cone. Take a € A and put
Lo:=P,, Ag = A, ao = a. Assume that dim Lq > 2.

Let {A;}_,, {al Lo, {wi}t, {Li}_, be the sequence such that :

(1) ;: Ay — A;_1 is the blowing up of A;_; at the point a;_; € A;_1 or the identity map
(2) Yi(ai) = ai1 (1 <i<I).

(3) L; is the local cone of ¢} L,;_;1 at the point a; € A; (1 <i <1I).

(4) dimL; >2for 1 <i<land dim&L; > 1.



Put ¢, ;= 0-- 09 : Ay — A (1 <i <1). Then ¢,(£;) is called an infinitesimal
local cone of P at a.

Proposition 2.13. Let A be a non-singular compact semialgebraic variety. P be a PSD
coneon A, and f € P. Assume that dimP > 2, and there exists local cones or infinitesimal

local cones Pq,..., P, C P such that Py N---NP, =R, - f. Then, f € E(P).

Proof. Assume that there exists g, h € P — R, - f such that f =g+ h. Fix 1 <k <r.

(1) We shall prove that g, h € Py.

(1-1) If Py, is a local cone, (1) follow from Proposition 2.7.

(1-ii) Consider the case that P is an infinitesimal local cone of P at a. Take sequences
{AY o, {ait o, {0}y, {Li}, With 0, (L) :*ka as in the abore definition. Formally,
put ¢, = id: Ag — Ao. Put fi := ¢, (f), ¢i == ¢, (9) and h; := 1, (h) (0 < i <1). Then
fi = gi + h; € £;. We shall show that g;, h; € £; by induction on 1.

If ¢ = 0, we have gg, hg € P, = Lo by Proposition 2.7.

Assume that ¢+ > 1 and g;—1, h;—1 € L;_1. L; is the local cone of ¥;L;_; at the point
a; € A;. Thus, we have g;, h; € L;, by Proposition 2.7.

(2) By (1), we have g, h€e Py n--- NP, =R, - f. Thus, f € E(P). O

Let f € Hs4, g € Hs and P € PA. Take a local coordinate system (z, y) on an affine
open subset U C P2 whose origin is P. We consider f, g € C[[z, y]] and we denote the
local intersection number of Vi(f) and Vi(g) at P by Ip(f,g) := dimc C[[z,y]]/(f,g). The
intersection number of V¢ (f) and Vi(g) is denoted by I(f,g).

Example 2.14. Consider the case A = P2 and P = T;d (d > 2). We denote the
homogeneous coordinate system of A by (xg:x1: x2).

(1) Consider Pp when P = (l:p:q) € PZ. Put = := (1 — pxo)/z0 and y := (x5 —
qro)/wo. Take an arbitrary f € Pp. Then f(z,y) = az? + 2bxy + cy? + (higher terms)

b
P and put ¢t := z/y. Then fi := ¥;(f) = y?(at® + 2bt + ¢ + ---) and multg f1 > 2 for all
Q € ¢ (P). In this case

Pp={f(x,y) €P | f(P) = fo(P) = fy(P) =0}
= {F(z0,x1,22) € P | F(P) = F,,(P) = F,,(P) =0}
where f, = 0f(z,y)/0x, F,, = OF (xg, x1,22)/0z¢ and so on.

If Cy is a positive definite matrix, Then multg fi = 2 for all Q@ € ¥y L(P), and
Z¢(YiPp) = 0. Then lengthp f = 1.

(2) Assume that d > 4 and the leading term of f(z, y) is equal to 2% + y*. Then
f1 =y (P +y*+ ) and Z(¢;Pp) consists of a single point Py defined by (¢, y) = (0, 0). Let
tho: Ay — Ap be the blowing up at P; and put t5 := x/t. Then fo := 5 f1 = y*(t3+1+---).
Thus lengthp, f = 2. Let Pp, be the infinitesimal local cone of P at P,. Then

:PP1 = {g(:v,y) eP | g(P) = .ga:(P) = gy(P) = gyy(P) = gmy(P) = gyyy(P) = 0}-

(3) Let d :== 3, P = (1:p:0) € P2 (p > 0), z := (x1 — pxo) /w0 and y := z2/xo. Note
that y > 0 on A. Take a general f € Pp. Then the leading term of f is equal to ay + bx?

such that Cy := <a i) is positive semidefinite. Let ¢1: A7 — A be the blowing up at
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with @ > 0, b > 0. Let ¢;: Ay — A be the blowing up at P and put ¢t := y/x. Then
fi=vi(f) = xz(at + bx + - --). In this case

Pp = {f x y eP ‘ f }
—{F%’g,xl,(lﬁg E?‘F ( ) }

Fix f € Pp. Then Z¢(¢iPp) = 0. Thus lengthpf =1

(4) Let P = (1:0:0) € P2, x := x1/x0 and y := x3/x0. Note that x > 0 and y > 0
on A. Assume that f € Pp, Ip(f, x) = 1 and Ip(f, y) = m. Then f(z, y) = ax +
by™ + (higher terms) with a > 0, b > 0. Let ¢1: A; — A be the blowing up at P, and put
t1 :=x/y. Then f; = y(at; +by™ 1 +---). Let P; € A; be the point defied by (¢1, y) = (0,
0).

Similarly, let ©;: A; — A;_1 be the blowing up at P;, and put t; :==t;_1/y. Let P; € A;
be the point defied by (¢;, y) = (0, 0). Then f; = y*(at; +by™ " +---) (i < m). It is easy
to see that lengthp, f = m. If m =1, then

Pp = {g(z.y) € P | g(P) =0}
= {F(.’L‘o,xl,$2) e?P | F(P) = 0}

If m =2, then
p = {g(z,y) € P | g(P) = g,(P) = 0}
= {F(wo,21,22) € P | F(P) = F,,(P) = 0}.
If m = 3, then
Pp, = {g(x,y) € P | g(P) = gy(P) = gyy(P) = 0}

= {F(w0,21,22) € P | F(P) = Fp,(P) = Fyp,0,(P) =0},
where Pp, be the infinitesimal local cone of P at P;. Thus lengthp f =m.

(5) Let P = (1:p:0) € P2 (p > 0), @ := (z1 — pxo)/x0 and y := z2/xo. Assume that
fe 8(9’;3) has the leading term ((y—1)+ax)?+b(z+c(y—1))3 (b # 0). Let’s determine all
zeros of f infinitely near to P. Put v := (y— 1) + az and v := x + c( 1). Let ¢1: 4; — A
be the blowing up at P and put t := v/u. Then f; = u?((t?> +u)+---). Let P, € A; be the
point defined by (u, t) = (0, 0). Since multp, fi =3 > 2 = multp1 (1/11 3 3)pl, we need to
blow up t9: Ay — Ay at P;. Put s := u/t. Then fo = u?t((t +s) +---). Let P, € Ay be
the point defined by (u, s) = (0, 0). Then multp, fo =4>3 = multp2 (g P 3. $3)p,. There
exists no more zero of f infinitely near to P. In this case,

Pp = {F(J)o,l‘l,xg) cP ‘ F(P) = le(P) = 0},

Pp, = {9(u,v) € P | g(P) = gu(P) = g,(P) = 0}
= {F(zo,21,22) € P | F(P) = F,,(P) = F,,,(P) = 0.},
Py, = {g(u,v) eP ‘ 9(P) = gu(P) = gu(P) = guu(P) = guv(P) = 0}
= {F(z0,21,22) € P | F(P) = Fy,(P) = Fy,(P) = Fyy, (P) = F,,(P) = 0}.
Thus lengthp f = 3.

Remark 2.15. (1) Let F(zo, x1, 22) € Hs,m and P ¢ Ve(xg). Put z = x1/x0,
Yy :=z2/x9 and f(z, y) := F(1, z, y). Since fo(z, y) = Fy, (1, , y), we have

fm(P) =0 <= Fxl(P) = 0.
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Assume that F(P) =0 and P = (1:p:0) with p # 0. Since zoF,, + 1 Fy, + z2F,, = mF,
we have

fo(P)=0<<= F,,(P)=0<= F,,(P)=0,
Assume that F'(P) = Fy,(P) =0 and P = (1:0:0). Since z0Fyz, + ©1F5, 0, + z2Fy
(m—1)F,,, x0Fyozo + 1 Fpgz, + ©2Fpyn, = (m — 1)F,,, we have

fex(P) =0 <= F;,,,(P) =0 = Fy,s,(P) =0, Fyy 0, (P) = 0.
(2) Let a # b € A. As is well known of a property of vector spaces,

dim(H, NHp) = dim H, + dim Hp — dim IH.

In the case of convex cones,
dim(P, NP) < dim P, + dim P, — dim P

is true, but < cannot be replaced by = in general. So, we must be careful to compute

dim (P1N---NP,).

122

Definition 2.16. For an irreducible curve C' = V(f) with f € Hs 4, we say C has a
(simple) node at P if two analytic branches of C' intersect at P transversally. We say C has
an acnode at P, if P is a simple node of V¢ (f) and P is an isolated point of Vk(f). In other
words, an acnode is a real node whose tangents are non-real complex conjugates.

Note that if f € P(A, H), f(P) = 0, f is irreducible, and V¢(f) has a node at
P € Int(A), then P is an acnode of Vi (f). Theorem 1.1 can be restated as the following
using the notion of infinitely near zeros.

Theorem 2.17. Assume that f € P3¢ is not a square of a cubic polynomial. Then,
J € E(P3¢) if and only if f has just 10 zeros on P2 including all the infinitely near zeros.

Proof. Assume that f € E(P3) is not a square of cubic polynomial. Then f is a limit
of a sequence {f,} of exposed extremal elements in P3¢ (see [6]). Each f, has distinct 10
zeros. Any infinitely near zero of f is a limit of a squence of a certain zero of f,,. Thus, f
also has just 10 zeros including all infinitely near zeros.

Assume that f has 10 zeros Py ,. .., Pig including infinitely near zeros. Then f cannot be
a product of a quadratic and a quartic, since their intersection consists of 8 points. Similarly,
f cannot be a product of two cubics, since their intersection consists of 9 points. Thus f is
irreducible. Let ¢: X — }P’(QC be a proper birational morphism such that we can regard Py,. . .,
Py are distinct points in X in Noether’s sense. As is well known in algebraic geometry,
there exists a unique irreducible sextic curve C' C P2 such that the strict transform of C' to
X has nodes at Pi,..., Pyg. Thus C = V¢(f) and f is extremal. 0

Using the ideas in [6, 7], we also obtain the following theorem.

Theorem 2.18. Assume d > 3, and f € E(P3 9q) is irreducible. Let N be the numbers
of zeros of f in P% including all the infinitely near zeros. Then

W§N§(2d—1)(d—1)-

2
Proof. Let Pi,..., Py be all the zeros of f on P% including infinitely near zeros. There
exists local cones or infinitesimal local cones L1,..., £, C P34 such that L, N---NL, =

R, - f. We may assume that » = N and L, corresponds to P;.
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If N < (d+1)(d+2)/2, then there exists g € Hs 4 such that Pi,..., Py € Vk(g) in the
sense of Noether. Then ¢g> € £1N---N L, = R, - f. This implies g = ¢f (Ic € Ry), and
f is reducible. Thus N > (d +1)(d +2)/2.

Let C = Ve(f) C P Then po(C) > 3 pu(P)u(P) = 1)/2 + g(C") > N + g(C"),
where p,(C) = (2d — 1)(2d — 2)/2 is the arithmetic (or virtual) genus, g(C’) is the genus
of the normalization C’ of C, and v(P;) is the multiplicity of C' at P;. Thus, we have
N <(2d-1)(d-1). O

§3. Extremal elements of fP;;S.

In §3 and §4, we usually use the symbol (xg: z1: x2) to denote the standard homogeneous
coordinate system of P2, P% or PZ. We sometime rewrite (zo:z1:22) by (z:y:2). But we
also often use (z, y) to denote a local coordinate system when there is no fear of confusion.

3.1. Reducible elements of £(P3 ;).
Let X := {cx ‘ c>0}U{ey | ec>0}U{cz | c>0} CHs;.

Proposition 3.1. If f € X, g € H3 4 and fg € S(T;dﬂ), then g € E(T;id). Con-
versely, if f € X and g € 8(3’;61), then fg € 8(?;d+1).

Proof. Assume that fg € 8<T§L,d+1) and g = hy + hg for certain hy, hy € fP;d —{0}.
Since fg is extremal, there exists c1, co € Ry such that fh; = c¢1fg and fho = co fg. Thus,
hi1 = c1g and hg = cog. That is, g is extremal.

Conversely, we assume f € X, g € 8(?;{(1), and fg = hy + ho for certain hy, hy €
ﬂ’;ﬁdﬂ — {0}. Note that Vi (h1 + h2) C Vi(h1) N Vi(hs2), because hy > 0 and hy > 0
on P2. Thus Vi(f) C Vi(h1 + ha) C Vi(h1) N Vi(he). Since dimVi(f) = 1, we have
Ve(f) € Ve(hy) (i = 1, 2). Since f is irreducible, h; and hy must be multiples of f.
Let hy = fg1 and he = fg2 (91, g2 € Hs,q). Since hy, hy € fP;,th — {0}, we have g1,
g2 € T;d — {0}. Since g = g1 + g2 is extremal, there exists c1, co € Ry such that g3 = c19
and go = cog. Thus, fg is extremal. 0

Proposition 3.2. If f € 8(3’5{2), then one of the following statements holds.

(1) f = f1f2 where f1, fo € X.
(2) There exists f1 € Hsy such that f = [ and Ve(f1) NInt(P) # 0.

( ])Droof. Since f is extremal, there exists P € P% such that f(P) = 0 by Proposition
2.8(1).

(i) Assume that P € Int(P3) and Vi (f) = {P}. By the classification of quadratic
curves, this occurs only in the case f = g7 + g3 where g1, g2 € H3 1. In this case Vg(g;) and
Vk(g2) are distinct lines which intersect at P. Thus, f is not extremal.

(ii) Assume that P € Int(P%) and V. (f) 2 {P}. Then, there exists Q € P4 such that
f(Q)=0and P # Q. Since f is PSD, V,.(f) cannot be a real conic. Thus V,(f) must be
a line passing through P and Q). Thus (2) occurs.

(iii) Assume that Ve(f) NInt(P%) = 0 and P € OP%. We may assume P = (a:0:1)
where a > 0.

It is easy to see that dim(?;z)p > dim fP;z —2=4. Since f € (fP;;S)p is extremal,
there exists @ € 9P such that f(Q) = 0.
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If Q = (b:0:1) (a # b, b > 0), then, f = cy? (¢ > 0). If Q = (0:b:1) (b > 0), then,
f=cxy (3c>0). If @ = (1:0:0) (b > 0), then, f = cyz (e > 0). ]

Proposition 3.3. Let f € 8(9’;3). If f is reducible, then one the following statements
holds.
(1) f=fifafs and f1, fa2, f3 € X.
(2) f=h1E fr €X, fa € Hszq and Ve(f2) NInt(P2) # 0.

Conversely, if f € Hs 3 satisfies (1) or (2), then f € E(P3 ).

Proof. (i) Since f is reducible, we can write as f = f1g, where f; = ax + by + ¢z (a, b,
ceR)and g € Hsp.

(i-1) Consider the case Vi(f1) NInt(P%) = 0. We may assume that f; > 0 on P2. Then
a>0,6>0,¢c>0 andgEfPiT Assume that ¢ > 0 and b > 0. Then f = axg + byg + czg
and axg, byg, czg € T§3. Thus f is not extremal. This implies f; € X. We may assume
f1 = z. Since f is extremal in 3’;3, g must be extremal in ?;2 by Proposition 3.1. Then,
we have the conclusion by Proposition 3.2.

(i-2) Consider the case Vr(f1) NInt(P2) # (. Then f must be divisible by f, because
f>0o0nP2. So, f = fifs where fo € Hs ;1 with Ve(f2) NInt(P5) = 0. If we put (f2, f7)
as new (f1, g), we can apply (i-1).

(ii) We prove the converse part. For ¢ > 0, the forms cx
in ﬂ’;g. Thus if f satisfies (1), then f is extremal.

Consider the case f satisfies (2). Assume that f = g1 + g2 where g1, g2 € fP?t?). Then
Vi(f1) € Vi(g1) N Vi(g2). Since dimVi(f1) = 1 and f; is irreducible, there exists hy,
hy € ?;2 such that g1 = fih1, g2 = fihe. Since Vi (f3) C Vi (h1) N Vi (hs), there exits ¢y,
ca € Ry such that hy = ¢, f2, hy = cof2. Thus f € 8(3’{;3). 0

3, cx?y, cryz are also extremal

Proposition 3.4. If f € Hs3 is irreducible in R[z,y,z|, then f is irreducible in
Clzx,y, 2].

Proof. Assume that f is divisible by f; € C[z,y, 2] with f1 ¢ R[z,y,2]. Let f1 be the
complex conjugate of f1. Then, f is divisible by fi. Thus f = f1 f1 f2. Since f1 f1 € Rlz,y, 2],
we have fy € Rlz, vy, z]. (]

3.2. Basic lemmata for irreducible elements of E(fP:;S).

In §3.2 — §4, we use the symbols P, = P,, := (1:0:0), P, = P,, := (0:1:0), P, =
P, = (0:0:1) e R:, L, = Ly, := V() —{Py,, P.}, Ly = Ly, .= Vi (y) — {P., P.}, and
L,=L,, =Vi(z)—{P,, Py}. For an irreducible complex algebraic curve C, we denote

Sing(C):={PeC ’ P is a singular point of C'},
Reg(C):={PeC | P is a non-singular point of C'}.

Lemma 3.5. Assume that f € E(P3 ) is irreducible. Then, Ve (f) is a rational curve
on P2 whose unique singular point lies on ]Pﬁ.

Proof. Assume that Sing(Ve(f)) NP3 = 0. Then f(P) > 0 for all P € Int(PP%). Let
D; == {(zo:x1:22) € PL | 23 + 2% + 23 < 522}
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(i =0, 1, 2). Note that P2 = Dy U Dy UDs,. On Dy, we put x := x1/z¢, y := &2/, and
fO(l"y) = f(]-uxuy) Let
D .= {(m,y)€R2‘x2+y2§4,$2y20} C Dy.

(1) We shall prove that there exists ¢op > 0 such that fo(z,y) > cozy for all (x,y) € D.

Note that if fo(a,0) = 0 for a certain a > 0, then x-axis is a tangent to Ve (fo) at (a,
0). Since any cubic curve has no bitangent line, there exists at most one ag > 0 such that
fo(ao, O) =0.

(1-1) Assume that fo(z,0) > 0 for all 0 < z < 2. Then there exists no (z, y) € D
such that fo(z, y) = 0. Thus m := min {fo(z,y) | (z,y) € D} > 0. Put g := m/4, then
fo(z,y) > coxy for all (x,y) € D.

(1-2) Assume that fo(a,0) = 0 for a certain 0 < a < 2. There exist c¢1,. .., cs € R such
that

fola,y) = cry + ea(a — a)® + 2¢3(z — a)y + cay® + g(x — a,y)
where g(s,t) = c55° + cgs?t + cyst? + cgt3. Since fo(a,y) > 0 for all y > 0, we have ¢; > 0.
If ¢; = 0, then (a, 0) is a singular point of Vi(f). Thus ¢; > 0. Then, there exists an
open neighborhood (a, 0) € U, C D such that fo(x,y) > (c1/4)y for all (z, y) € U,. Then
folz,y) > (c1/8)xy for all (z, y) € U,. So, we put my(a) := c1/8.

Let V := {a € [0, 2] | fo(a, 0) = 0} C {0, ao}, U := gUa, and my = gg‘r}ml(a).
Then fo(z, y) > mozxy for all (z, y) € U. Note that

mg :=min { fo(z,y) | (z,y) € Cls(D - U)} > 0.
So, put ¢o := min{ms, mg/4}. Then fo(z,y) > coxy for all (x,y) € D.
By (1), there exists ¢ > 0 such that F(xg,x1,22) > cxorize for all (zg:z1:x29) €

IF’%L. So, f(xg,x1,22) — cxox1T2 € ?;3 and f is not extremal. A contradiction. Thus
Sing(Ve(f)) N2 0.

Since V(f) is a cubic curve, p,(C) = 1. Since Sing(Ve(f)) NP% # 0, Ve(f) has just one
singular point P and V¢(f) is a rational curve, by Riemann genus formula. Thus, P € IP’%F.

O

Lemma 3.6. Assume that f € 8(?5{3) is irreducible, and P is the unique singular
point of V(f). Then P ¢ {P,, P,, P.}.

Proof. Assume that P € {Px, pP,, Pz}. We may assume P = P,. We use the same
notation as in the proof of the previous lemma. Then P = (0, 0) € D C Dy C IP%_. Then
folz,y) = g2(x,y) + g3(x,y) where gq(x,y) is a homogeneous polynomial of degree d. Then
flxo,x1,22) = g2(x1,22)x0 + g3(x1,22). Considering the cases xg = 0 and xg — 400, we
conclude that go(x1,22) € fP;2 and g3(z1,22) € fP;?). If g3 = 0, then f = zggs is not
irreducible. So, g3 # 0. If go = 0, the cubic g3(z1, z2) is reducible in C[z1, x3]. Thus,
g3 # 0. Therefore, f is not extremal. 0

Lemma 3.7. Assume that f € 8(?:;3) is irreducible. Then Ip,(f, )+ Ip,(f, x) < 3.
IfFV(f)N Ly #0, then #(Vi(f)NLy) =1 and Ip,(f, ) + Ip, (f, x) < 1.

Proof. Assume that f € 8(?5;3) is irreducible. Then Ip, (f, ) + Ip (f, ) < I(f, )
degf =3 If Q € V—‘r(f) mLa: ?é @7 thena IPy(fv 33) +IPz(fa CC) +IQ(f7 :E) < I(f,x) =
Since Ig(f, ) > 2, we have Ip (f, z) + Ip, (f, z) < L.

|
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Lemma 3.8. Let P = 9’;3. Assume that f(z, y, z) € E(P) is irreducible in Clzx, y, z].
Then, V. (f) is a finite set, and we can choose local cones or infinitesimal local cones L; of
P at P; which satisfy the following conditions.

(1) Lin---NL. =Ry - f.

(2) P # Py ifi £ .

(3) {Pr,.., P} = V4 (f).

(4) If P, € Vi (f) NReg(Ve(f)), then P; € OP%, and one of the following cases occurs.
(4-1) If P € L,,; and k € {0, 1, 2} — {j}, then

Li={Fe®P|F(P)=F,(P)=0}.
(4-2) Assume that P = P, {j, k, I} = {0, 1, 2} and m := Ip(f, 2x) > Ip(f, =) = L.

If m =1, then
Li={Fe®|F(P)=0}.
If m = 2, then
L;={Fe?P|F(P)=F,/(P)=0}.
If m = 3, then

(5) If P, € V. (f) is an acnode, then
L;={F(z,y,z) €P | F(P) = F,(P) = F,(P) = 0}.

Proof. (1) By Theorem 2.11, there exist local cones or infinitesimal local cones £, of P
at P; which satisfy L, N---NL, =Ry - f. If L; C L for i # j, we get rid of L. So, we
may assume that £; ¢ L; if i # j.

(2) By our observation in Example 2.14, the local cone (PF3)p, does not have two
distinct infinitesimal local cones, if f is cubic and P is an acnode, a cusp or a non-singular
point in 8]?1. Thus, P; # P; if ¢ # j.

(3) P; € V4.(f) by the definition. Assume that Py € Vi.(f) —{P1,..., P-}. Let Lp
be the local cone or the infinitesimal local cone of 3’;3 at P, with respect to f. Lp,_, is
unique by Example 2.14. Then Lp, N---NLp ., =R, - f still holds. After repeating this
process, we may assume Vi (f) = {P1,..., Pryi}.

(4) Assume that P € Vi (f) N Reg(Ve(f)). If P € Int(P2), then Vi (f) must contain
a locus of analytic curve Cp near P, and sign(f) is opposite on both sides of Cp. Thus
P € 0P

(4-1) Consider the case P € L,. Note that Ip(f, z) < I(f, z) = 3. If Ip(f, z) is odd,
then V. (f) must contain a locus of analytic curve Cp near P, and sign(f) changes across
Cp. Thus Ip(f, z) = 2. By Example 2.14(3), we have (4-1).

(4-2) follows from Example 2.14(4).
(5) follows from Example 2.14(2). O

Notation 3.9. Throughout the remaining part of §3, we use the following notation.
We denote a local cone or an infinitesimal local cone £; in the above lemma by L p,. Assume
that f(z, y, z) € E(P) is irreducible in C[x, y, z]. Lemma 3.8(1) is represented as

Lplﬁ-"ﬂﬁ;pr =R;-f
where {Py,..., P,} =V, (f) and P; # P;j if i # j. This Lp, N--- N Lp, is denoted by L.
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Lemma 3.10. Assume that f € 8(3’;3) is irreducible. Let m:P% — P be the

surjective morphism defined by w(zo:x1:79) = (22:23:23), and let g := w*f. That is
g(z0, 1, 12) = f(a3, 23, 23). Take P € V. (f). We define
4 (If P is an acnode of V(f).)
12 (If P € Int(PP%) and P is a cusp of Vc(f).)
Np(f):=<6 (If P € OP2 and P is a cusp of Vc(f).)
2 (If P€ Ly, ULy, ULy, and P € Reg(Vc(f)).)

lengthp f (It P € {Pyy, Pay, Py} and P € Reg(Ve(f)).)

and N(f) := Z Nqg(f). Then N(f) < 10. Moreover, if N(f) = 10, then g is irreducible

QeVL(S)
in Clzg, z1,22] and g € E(P36). In particular, Ve (f) does not have a cusp in Int(P?).

Proof. We will separate 8 cases according to the type of the point P.

(1) Consider the case P € Int(P3) and P is the acnode of Ve (f). If P = (1: p*: ¢*) (p > 0,
q > 0), then 77 1(P) = {(1:p:q), (1:p: —q), (1: =p:q), (1: —p: —q)}. Put = := (z1 — p*0) /0
and y := (v9 — ¢®z0)/w0. Then f(x,y) = ax? + 2bxy + cy? + (higher terms) as in Example
2.14(1). Put 2’ := (z1 — pwo) /w0 and y' := (z2 — qx0) /7o around Q := (1:p:q) € PZ. Then
g(z',y') = ax’ 4 2bx’y’ + cy’? + (higher terms). Thus, lengthy g = 1 for all Q € 7~ (P).
Therefore, Vc(g) has 4 acnodes in m—1(P).

(2) Consider the case P € L, UL, U L, is the acnode of V¢ (f). We may assume that
P = (1:p%:0) (p > 0). Let x := (x1 — p*xg)/z0, y = x2/30, ' := (1 — px0)/20 and
y' = xa/z0. Take Q := (1:p:0) € 7~ 1(P) = {(1: £p:0)}. Then g(z',y') = az'? + 2bx'y"* +
cy" + (higher terms). Thus lengthy, g = 2. Therefore, Vio(g) has 4 zeros or infinitely near
zeros in 7 (P).

(3) Consider the case P € Int(P2) and P is the cusp of Vc(f). If P = (1:p*¢?)
(p > 0, ¢ > 0), then f(z,y) = 23 + y? + (higher terms) as in Example 2.14(5). Then
g(z',y') = 2 + y’* + (higher terms). Thus lengthg g = 3. Therefore, Vc(g) has 12 zeros or
infinitely near zeros in 7—1(P).

(4) Consider the case P € L, U L, U L, and P is the cusp of Vg(f). Assume that
P = (1:p*:0) (p > 0), Then g(2’,y') = z'° + y'* + (higher terms). Thus lengthy g = 3.
Therefore, Vo (g) has 6 zeros or infinitely near zeros in 7= 1(P).

(5) Consider the case P € L, UL, UL, and P € Reg(Vc(f)). Then f(z,y) = ay +
br? + (higher terms) (a > 0, b > 0) as in Example 2.14(3). Since g(z’,y’) = ay’® + bz’ +
(higher terms), we have lengthg g = 1. Thus, Vo (g) has 2 acnodes in 77! (P).

(6) Consider the case P € {Py,, Py, Py} and P € Reg(Vc(f)). Let z := x1/x¢ and
y := x2/x9. We may assume that f(z, y) = ax + by™ + (higher terms) with a > 0, b > 0.
Then g(z, y) = az? + by*™ + (higher terms). Thus, length, g = lengthp f.

(7) Consider the case that g = g1¢2 is reducible in C[z,y, z].

Then m(Ve(g1)) Un(Ve(ge)) = m7(Ve(g)) = Ve(f). Since Vi(f) is an irreducible cubic
curve, Ve(g1) and Vi(g2) are irreducible cubic curves. Thus, we may assume that there
exists g3 € Clz,y,2]3) — Rlz,y, 2] such that g; = g3 and go = g3. g3 is irreducible in
Clz, y, 2], because V(gs) is irreducible.

The intersection number of Vi(g3) and Vi (g3) is equal to 9. So, N(f) < 9.

(8) Consider the case N(f) > 10.
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Then, g is irreducible, and the arithmetic genus of Vi(g) satisfies

(degg — 1)(degg —2) _ 2": v(@)W(@) -1

10 =
2 - 2 -

=1

So, N(f) =10. Then g € £(P3) by Theorem 2.17. O

Lemma 3.11. Assume that f € 8(3’;3) is irreducible, and P is the acnode of V¢ (f).
Then P ¢ OP2.

Proof. Assume that P is an acnode of V¢(f) and P € 81?1. Then, P € L, UL, UL,
by Lemma 3.5 and 3.6. We may assume P = (0:a:1) € L, (a > 0). If we replace y by y/a,
we may assume P = (0:1:1). f(P,) = f(P.) = 0 is impossible by Lemma 3.7. So, we may
further assume f(P,) > 0 by the symmetry.

(1) Consider the case Q, = (1:7:0) € Vi .(f) (r > 0).

Then Vi (f) C {P, Q,} UV, (y) by Lemma 3.7. In Notation 3.9, we put P, = P and
Py = Q.. Let G(z, y, 2) := ylrz —y — 2)%. Then, G, = 2ry(rz —y — 2), Gpz = 2%y,
Gy=(re—y—2z)(re =3y —2), G, = —2y(re —y — z) and G, = 2y.

For Q € {P, Q.} = {P1, P2}, we have G(Q) = G,(Q) = G4(Q) = G.(Q) = 0. Thus,
GeLp NLp,.

For any point @ € V4 (y), we have G(Q) = G.(Q) = G..(Q) = G.(Q) = G..(Q) = 0.
Note that Ip, (f, z) <1 by Lemma 3.7. Thus, if P, € Vi (y), £ p, is one of the following:

Ly :={gePi;|g(P:) =0},
Lo={g€Piy|9(P:) = g:(P2) =0},
Ls:={gePis|g(P:)=9:(P:) = g:-(P:) = 0}.
Since G(P,) = G,(Py) = G,.(P;) = 0, we have G € £, (i =1, 2, 3). Thus, G € Lp, if
P, e VL (f).

Similarly, since Ip, (f, x) <1, we have G € Lp_ if P, € V,.(f).
If Qe L,NVy(f), then
Lo=1{9€P5|9(Q) =9:(Q) = 0}.

Thus, G € LQ.

Since V4 (f) C{P, Q.}UVi(y), we have G € Lp N---NLp =R, - f. This implies f
is a multiple of G and f is reducible. A contradiction.

(2) Consider the case Vi (f)N L, = 0.

Then Vi(f) € {P}UV,(y). Let H(x, y, z) := y(y — z)>. Then, H, = 0, H, =
(y —2)By — 2), Hyy = 23y —22), H, = —2y(y — z) and H,, = 2y. Thus, for any
point Q € Vi (y), we have H(Q) = H,(Q) = H,2(Q) = H.(Q) = H,.(Q) = 0. Thus, if
QeVi(f)n(LyU{P;}), then H € L.

Moreover, H,(P,) = Hy,(P;) = 0. So, H € Lp,. Therefore H € Lp, N---NLp. =
R, - f. A contradiction. O

By Lemma 3.5— 3.11, if f € 8(?;3) is irreducible, Vi (f) has an acnode in Int(P2) or
a cusp on 9P% — {P,, P, P.}.
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3.3. The case V¢ (f) has a cusp.

From this subsection, many complicated calculations appear. In most of them, we use
the software Mathematica. The code for Mathematica can be found on the link of the
authors WEB or in arXiv’s anc folder.

Lemma 3.12. Let p > 0, ¢ > 0 be constants with (p, q) # (0, 0), and P := (0:1:1) €
L, C ]P’%r. Let

H. = {g(x,y, z) € Hs s
Then H. = R - b,,, where
bpq(, Y, 2) = 2% 4+ 3(p — @)2°y — 6pgzy” + ¢° (3p + q)y* + 3(q — p)2°2 — bpgu2?
+ (p* +36p°q — 6pg® — 2¢°)y*z + (—2p° — 6p*q + 3pg® + ¢°)y2?
+p%(p + 39)2° + 12pgzyz.
Moreover, b,, € 8(?;3) and Vi (hy,) is irreducible. Moreover, b, (22, y?, 2%) € E(P3 ).

Proof. Let {e1,..., ero} = {2®,..., zyz} be all the monomials of H33. Take g =
aier + -+ 4+ aperp € Hs 3, and let a be the column vector t(ai,..., aip). A differential
equation ¢g(0, 1, 1) = ¢,(0, 1, 1) = g,(0, 1, 1) = g,2(0, 1, 1) = g4,(0, 1, 1) = g(p, 0,
1) =g2(p, 0,1) = g(q, 1, 0) = g, (g, 1, 0) = 0 can be written as Aa = 0 for a certain 9 x 10
matrix A. Using Mathematica, we can check that Ker A = R - b,,. If h,, is PSD on P2,
then b,q € E(P33) by Proposition 2.13.

(1) Solving the equation b,q(z(t), 1, 1 + tx(t)) = 0, then we have
t2 3
() = — 2(19 +4) .

(pt —1)*((p +39)t +2)
(gt +1)*((3p+ )t — 2)
(pt = 1)*((p+ 3q)t +2)
Thus Vi (bhpg) is an irreducible rational curve which has a cusp at P.

(2) We shall show that Ve(hpe) NInt(P3) = 0. It is enough to show that if z(¢) > 0
then y(t) <O0.

Put z(t) == 1+ tx(t) = — . Then b,q(x(t), 1, 2(t)) = 0 for all t € C.

If z(t) > 0, then (p+3¢)t+2<0and t < — . Then
(t) (p+3q) <2713
8(p+q)
Ip+q)t—2< —(3p+ o=V -,
(3p+q) <—(3p q)p+3q > 134

Thus z(t) < 0.

(3) Since b,e(1, 1, 1) = 2p3¢®> > 0, we have b,, € 3’;3. Put P, = (p:0:1) and
P; = (¢:1:0). Then Np(bhpe) + Np, (hpq) + Np,(hpg) = 6 +4 + 4 = 10. Thus bpq(ajz, Y2,
2?) € &(P36) by Lemma 3.10. O

Theorem 3.13. Assume that f € 8(3’;3) is irreducible, and Vc(f) has a cusp at
PeP2 ThenPe L,UL,UL..
Assume that P = (0:1:1). Then, there exists p > 0, ¢ > 0 and ¢ > 0 such that (p,

0) # (0, 0) and f = cb,.
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Proof. Let P be a cusp of V¢(f). Then P € L, UL, U L., by Lemmmas 3.5, 3.6 and
3.10. Assume that P = (0:1:1). By Example 2.14(5),
Lp={g(@,y,2) € Pi5 | 9(P) = gu(P) = gy(P) = gua(P) = guy(P) = 0}.
We consider conditions :
(Cy) 3P, = (p:0:1) € Vo (f) or “Ip,(f, y) > 2 for P, =(0:0:1) (p:=0)".
(Cz) AP; = (q:1:0) € Vi (f) or “Ip,(f, y) > 2 for P3 = (0:1:0) (¢ :=0)”.

(1) Consider the case (Cy) and (Cz) are true. Then, f = ch,, (p >0, ¢ >0, ¢ > 0) by
Lemma 3.12.

(2) Consider the case (Cy) is true, (Cz) is false and f(P,) > 0.

Let G(z,y,2) := y(y — 2)%. Then, G, =0, Gyz = 0, G4y, = 0, G, = —2y(y — 2) and
G.. =2y. Thus G € Lp. Since G(Py) = G, (P2) =0, we have G € Lp,.

Note that Vi (f) C {P, Ps, P,, P.} and Ip (f, ) < 1. Since G(P,) = G.(P.) =
Gzz(P,) =0, we have G € Lp,. Since G(P,) = G,(P;) = G,,(P;) =0, we have G € Lp,.
Thus G € Ly =R, - f. A contradiction.

(3) Consider the case (Cy) is true, (Cz) is false and f(P,) = 0. Let

o) = 0:7) = ) = g (F) = ) =0
9(p,0,1) = go(p,0,1) = g(P,) =0
Then dimg H; = 2 and ?:?3 NH; =Ry -byo+ Ry -z(z+ py — pz)?. Since f is irreducible,
Lf == RJ’_ . hp,O-
(4) Consider the case (Cy) and (Cz) are false.

f(Py) = f(P,) = 0 is impossible by Lemma 3.7. We may assume f(P,) > 0. Then
G(z,y,2) =y(ly—2)> € Ly =R, - f as (2). A contradiction. O

:}_Cl = {g(ﬂf,y,z) € :]-(:3,3

3.4. The case V¢(f) has a node.

Assume that f € 8(3’?{,3) is irreducible and Vi (f) does not have a cusp. Then V¢ (f)
has the unique node P on IP%_ by Lemma 3.5. P must be an acnode. By Lemma 3.11,
P eInt(P%). Let P = (a:b:1) (a > 0, b > 0). Note that if we replace the coordinate system
(z:y:2) by (xz/a:y/b: z), we can assume P = (1:1:1).

Lemma 3.14. Put @, := (0:1:p), Q, := (1:0:q), P := (1:1:1) and
Opq(T,y, 2) = 22 + ¢?a?2 + pPy?z — 2qu2® — 2py2® — (p® + ¢* — 4p — 4q + 3)ayz
+(1-p+a)(1l-p—qr’y+(1+p—q)(1—p—qzy”
(1) Assume that p >0 and g >0. If f € ?;3 satisfies
f(P) = [(Qz) = f(Qy) = f(P:) = f(P)) =0,

then there exists a € R such that f = ag,q.
(2) Assume that p > 0 and ¢ = 0. If f € Hs 3 satisfies

f(P):f(Qx):f(Px):f(Py):fZ(Py):fzz(Py)zov

then there exists a € R such that f = agpo.
(3) Assume that p =0 and ¢ = 0. If f € H3 3 satisfies

then there exists a € R such that f = aggo.
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Proof. (1) Since f(1,1,1) = f(0,1,p) = ( ,0,9) = f(1,0,0) = f(0,1,0) = 0 and
f € f]{3737 f must satisfies f(]-’l)]-) - 0 fa:( ) ’ ) = 0 f (1 1 1) = 07 f(ov ) 0
fy(0717p) =0, f(1707Q) =0, fz(1707q) =0, f(17070) = 0, and f(oala ) - 0 Using

Mathematica, we have that the solution space is equal to R - gpq(2,y, 2). This implies
LpNLqg, NLg,NLp, NLp, CRy - gy

If gpq € ?;3, then L5 =Ry - g,q, and gpq € 8(3’;3).
We can prove (2) and (3) by the similay way as (1). 0

Theorem 3.15. Assume that p > 0 and ¢ > 0.
(1) If p+q > 1, then gy, ¢ ?;B.
(2) If p+ q =1, then gpy(x,y, 2) = (pr + qy — 2)*z
(3) Ifp+q<1,p>0andq>0, then gy, € 8(?;3). Moreover, gpq(x?, y?, 2%) € E(P3 ).
Proof. (1) Assume that p+¢ > 1. Let a:=1/(2(p+¢—1)) > 0. Since
Opg(z,2,1) = (z — 1)2(1 —2(p+q-— 1):13),
we have gpq(z,2,1) <0 if 2 > a. Thus g, ¢ P35.
(2) is easy to see.
(3) We shall show that g,q € E(PF3) if p+¢ < 1.
Let g(z,y,2) := (1—-p+q)z+(14+p—q)y—2z. Note that g(1,1,1) = 0. Fix (z:y: z) € P%.

Consider the case g(x,y,z) > 0. Then z > z or y > z, since g(1,1,1) = 0. If x > z,
then

Opa(,9,2) = (1 — p— Qy(x — 2)g(z,y,2) + (g2 + (1 — @)y — )= > 0. (3.15.1)
If y > z, then
Opa(,9,2) = (1= p — Q)x(y — 2)g(z,y,2) + (1 = p)z + py — 2)°2 > 0. (3.15.2)

Consider the case g(z,y,z) < 0. Then x < z or y < z, since g(1,1,1) = 0. If x < z, then
Opg(2,y,2) >0 by (3.15.1). If y < 2, then g,q(x,y, 2) > 0 by (3.15.2). Thus g,q(z,y,2) >0
for all (z:y:2) € P, if p+¢q < 1.

Itp+¢<1,p>0andq<0,then g, € 8(3’33) by Lemma 3.14.

(3-2) We shall show that g,, is irreducible if p + ¢ < 1. Then Vg(f) — {P} has a
parametrization

tl—p—a)(1+p—q)+t(1—p+q))

I-p-a)(A+p—q) +t(l—p+q)
This implies V(f) is an irreducible rational cubic curve.

(3-3) gpq(wza yz’ 22) € S(T&ﬁ) follows from Np (9pq)+NQw <9pq)+NQy (gpq)“‘NPw <9pq)+
Np,(g9pg) =4+2+2+1+1=10. 0

Note that

gp0(2,y,2) = (1 — p)22®y + (1 — p)?zy® + p*2?z — 2pxz® — (1 — p)(3 — p)ayz + 2°,
goo(7,y,2) = 2%y + zy® + 2° — 3ayz.
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Definition 3.16. We define f,q.(x,y, 2) as the following:

a1(p,q) :==pg—p+1,

az(p,q,r) == p*qr — p*r +pqr —pq+2pr +p—r+1,

c1(pq,7) == a1 (p, q)ar(r, p)az(p, q,7),

(p.q,7) := —a1(p, ) 20°°r® — 2p°r® + 6p°*r® — 2pg®r® + 3pg°r® — 6pg°r?
+3pg*r® + 2¢°r° — pg® — 3¢*r* + 3pq® = 3pg+ ¢* +p — 1),

e3(p, q,r) = ra1(p, q)(P°*r® — *r® + 3p°*r® — pa®r® — 3p®r® + 3pg’r + ¢*r®
—2pq® — 3pgPr + 6pg® — 3¢*r — 6pq + 2¢% + 2p — 2),

ca(p,q,r) == —c1(p,q,7) — c1(g;r,p) — ea(r,p,q) — c2(p, ¢, 7) — c2(q, 7, p) — c2(r, p, q)
—c3(p,q,7) — c3(q,m,p) — c3(r, p, q),

foqr (2,9, 2) := c1(p,q,7)2* + c1(q, 1, p)y* + 1 (7, p, ¢)2°
+ ca(p, q,7)2%y + e3(p g, 7)ay® + ca(q, 7, p)y*z + es(q, 7, p)y2?
+ ca(r,p, q)22x + e3(r, p, q)zx® + ca(p, q, r)TYZz.

C2

Lemma 3.17. Put Q, := (0:p:1), Q, := (1:0:q), Q@ := (r:1:0), P := (1:1:1).
(1) Assume thatp >0,q>0andr >0. If f € f]’;;?) satisfies
f(P) = [(Qz) = f(Qy) = f(Q:) =0,
then there exists a € R such that f = afpq,.
(2) Assume thatp>0,q¢>0andr=0. If f € ?;3 satisfies

f(P):f(Qw):f(Qy):f(Py):fw(Py):07
then there exists a € R such that f = afy 4,0
(3) Assume thatp>0,q=0andr=0. If f € fP;;3 satisfies

f(P):f(Qx):f(Px):fz(Px>:f(Py):fm(Py):07
then there exists o € R such that f = afp0,0.
(4) Assume that p=0,q=0andr=0. If f € f]’?t?) satisfies

then there exists a € R such that f = ofo,0,0-

Proof. f € P34 and f(P) =0 implies f,(P) = f,(P)=0. If r > 0, f(Q.) = 0 implies
F(Q2) = £o(@2) = 0. S0, in any case of (1), (2), (3), (4), f must satisfy f(1,1,1) = 0,
f(1,1,1) =0, f,(1,1,1) = 0, f(0,p,1) =0, f,(0,p,1) =0, f(1,0,q) = 0, f.(1,0,q) = 0,
f(r,1,0) =0, fu(r,1,0) = 0, where p > 0, ¢ > 0 and r > 0. We know that the solution of

the above equations is a multiple of f,q, (2, y, 2), using Mathematica.

We shall study the conditions on p, g, r for f,q € T?T,:')-

Lemma 3.18. (I) Assume that p > 0, ¢ > 0 and r > 0. Then, fp4(1,0,0) > 0,
fpgr(0,1,0) > 0, and f,q-(0,0,1) > 0, ifand only if a1 (p, ¢) > 0, a1(g,7) > 0 and a1 (r, p) > 0.
(IT) Assume that p >0, ¢ > 0 and r > 0. Then, fpqr(1,0,0) > 0, fpe-(0,1,0) > 0, and

fper(0,0,1) > 0, if and only if a1(p,q) > 0, a1(¢g,) > 0 and ay(r,p) > 0.
Proof. (1) Assume that ai(p,q) > 0, a1(q,r) > 0, and a;(r,p) > 0.
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Then az(p, q,7) = prai(p, q) + pai(q,r) + ai(r,p) > 0. Thus,

fpar(1,0,0) = e1(p, ¢,7) = ¢*as(p, ¢)ar (r, p)az(p, ¢, ) > 0.
Similarly, we have fpq-(0,1,0) > 0 and fpq-(0,0,1) > 0.

(2) Assume that f,q,(1,0,0) > 0, fper(0,1,0) > 0, and f,q,(0,0,1) > 0. We shall derive
a contradiction assuming a;(p, q) < 0.

(2-1) we shall show that p > 1,0 < ¢ < 1, a1(q,r) > 0 and a;y(r,p) > 0.

If p <1, then a1(p,q) = pg+ (1 —p) > 0. If ¢ > 1, then a1(p,q) = p(g—1)+1 > 0.
Thus, if a1(p,q) < 0, then p > 1 and 0 < ¢ < 1. Then, ai(q,7) = qr + (1 —q) > 0, and
ai(r,p)=r(p—1)+1>0.

Let

bi(p,q) == —p*q+p° —pg—2p+1=(p—1)> —p(p+ 1)g,
ba(p, q) == p°q* — 2p*q — 2pq + p* — 2p + 1,

_ 14+p(1—9q)
To(p,q) = W
ra(poq) = pl—¢°—-1-¢

alpg+(p—1))
(2-2) We shall show that by (p,q) > 0 and ro(p,q) < r < r2(p,q). Since
0 < quT(17 07 O) = q2a1 (p7 q)al (T', p)a2(p7 q, 7’),
0< qu’l‘(07 17 0) = r2a1 (q: ’I")(Il (p7 q)a2(q) r, p)7
0< qur(ov 07 1) = p2a1 (T7 p)al (Qa T)CLZ (Ta b, Q)a
we have az(p, q,7) < 0, az(q,r,p) < 0and ax(r,p,q) > 0. Note that az(p,q,0) = 1+p(1—q) >
0. Since 0 > as(p,q,7) = —b1(p, q)r + az2(p, ¢,0), we have by(p,q) > a2(p,q,0)/r > 0. Thus,
as(p,q,r) is monotonically decreasing on r. The equation as(p,q,r) = 0 on r has just one
root r = r9(p, q). Since az(p,q,r) < 0, we have r > ro(p, q).
Since 0 > az(q,7,p) = rq(pg + (p — 1)) + (=pqg® + 2pq — p + q + 1) is monotonically
increasing on r, we have r < ry(p, q). Since ro(p,q) < r < r2(p, q), we have
—a1(p, q)b2(p, q)
q(pq + (p — 1))b1(p, q)

0 <r2(p,q) —7o(p,q) =

Thus bs(p, q) > 0.
Remember that 0 < as(r,p,q) = (p — 1)gr? — (p— 1) — (p+2)q)r + (1 — q). This is a
quadratic function on r with (p — 1)g > 0. Note that
2a1(p, 9)b2(p; )
2
((p—1)% = palp +1))
2 b
a1(p, ¢)b2(p, qz) <0
((p—1) +pg)
Thus, if 70(p,q) < r < ra(p,q), then as(r,p,q) < 0. A contradiction. Thus we have

a1(p,q) > 0.
Similarly, we obtain a1 (q,r) > 0 and a;(r,p) > 0.

We can obtain (II), if we consider limits p — 40, ¢ — +0 or » — +0 in (I). 0

aQ(TO(paQ)vpuq) = <07

as (r2(p, ), p, q) =

Lemma 3.19. f,,, has the followinf properties:
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(1) fpgr(z:2,y) = fqrp(fayaz)a fpar (s 2, @) = frpg(2, Y, 2).

() f112(®.9.2) = g g afera(® 2,0).

(3) If ai(p,q) =0, i.e. if g=(p—1)/p, then

L+ @—1r)'z((p— Dz +y—pz)°
p? '

fo.(0—1) /0,0 (%4, 2) =
Proof. These follow from direct calculations using Mathematica. 0

Theorem 3.20. Assume that p >0, ¢ > 0 and r > 0. Then:
(1) fpgr € f]’;r,3 if and only if a1(p,q) > 0, a1(q,r) > 0 and a1 (r,p) > 0.
(2) fpqr is irreducible if and only if a1 (p,q) > 0, a1(g,r) > 0 and a1 (r,p) > 0.
(3) Ifai(p,q) > 0, a1(q,7) > 0 and ay(r,p) > 0, then fpu (22, y?, 2%) € E(P34).

Proof. (i) ‘Only if part’ of (1): Assume that f,, € fP;;S. Then fpqr(1,0,0) > 0,
qu’r‘(oa]-ao) > 0, qur(0,0,l) > 0. Thus al(pv Q) > 0, al(‘]a T) > 0, and al(’l“,p) > 0, by
Lemma 3.18(1I).

(ii) ‘Only if part’ of (2) follows from Lemma 3.19(3).

(iii) ‘If part’ of (1) and ‘if part’ of (2):

If p=¢q=r=0, then fooo(,y,2) = %y + y?z + 2%z — 3zyz. In this case, fooo € ?:;3,
and fogo is irreducible. So, we may assume p > 0, ¢ > 0 and r > 0, by Lemma 3.19(1).

(iii-1) Assume that aq(p,q) > 0, a1(g,r) > 0, and a4 (r,p) > 0.

Let £, C P2 be the line defined by y — z = t(z — 2) where t € R. The intersection point
of Ve(fpgr) and £; (# (1:1:1)) is given by P(t) := (2pgr(t) : Ypar(t) : 2pgr(t)), where

Tpar (1) i= a1, 7) (t+ (0 = 1) (201 (b, @)z (g, 7, D)t

— ((PPa*r® + Vas(a.7) + 2qras(r,p) + 2par’as (p, ) ).
Upar (1) = a1 (r,2) (1 = )t + 0)* (= (W + D (1, )

+ 2prar(p,4) + 20%aras (4,7) + a1 (b, )z (p, 0,7) ),

Zpar (t) := (rt — 1)?a1(p, q) (a1(q, 7)az(q, 7, p)t + ¢°ax(r, p)az(p. q, 7).

Note that this also implies that Vi (fpgr) is irreducible. Thus we obtain the ‘if part’ of (2).
We shall show fpqr € 8(9’;3).

(iii-1-1) Consider the case t < 0. Then zp4-(t) < 0 and ype-(t) > 0. Thus P(t) ¢
Int(P2).

(iii-1-2) Consider the case ¢ > 0. Let
(P*¢°r® + Daa(q,r) + 2qrai (r,p) + 2pgras(p, )

r2ay(p, q)az(q, 7, p)
a1(p, q)az(p, ¢, 7)

(P*¢*r? + 1)ax (r,p) + 2prai(p, q) + 2p*qrai(q,r)’
Zpgr(t) > 0 for all t > 0. If ¢ < ¢; then x,4,(t) <0, and if ¢ > ¢; then x,4,(t) > 0. If t < £y
then yper(t) > 0, and if ¢ > to then ypq,(t) < 0. Note that
az(r,p, q) (a1 (r,p) + prai(p, q) + p*qrai (g, r)big)

r2a1(p,q)az(q,7,p) (a1(r,p) + 2pras (p,0) + 20 qra(q,7) + p¢*r%a (1)

tl =

)

tg =

ty —ta =
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> 0.

Thus, for every t > 0, at least one of Zpqr(t), Ypgr(t), 2per(t) is non-negative, and at least
one of Lpgr(t), Ypgr(t), Zpgr(t) is non-positive. Thus P(t) ¢ Int(P3). Therefore fpq € Pq 5.
By Lemma 3.17, we have fpq € E(P35).

(iii-2) Consider the cases that at least one of a;(p, q), a1(q,7), a1(r,p) is equal to zero.

fpgr(Z,y,2) is contineous with respect to a1(p,q), ai1(g,r) and ai(r,p). Thus, the ‘if
part’ of (2) follows from the above result.

(3) ](pqr(an 3/27 22) € 8(?3,6) follows from NP(qur)"‘NQm(qur)+NQy(qur)+NQz (](pqr)
=4+2+2+2=10, where Q, := (0:p:1), Qy := (1:0:¢) and Q. := (r:1:0) with p > 0,
g>0andr>0. O

3.5. Final classification of &(P3;).
Throughout §3.5, P will stand for (1:1:1).

Corollary 3.21. Let Q. := (0:p:1), Q, := (1:0:¢) and Q. := (r:1:0) with p > 0,
g > 0, r > 0. Assume that f € 8(T§3) is irreducible, and satisfies f(P) = f(Qz) =
f(Qy) = f(Q.) =0. Then there exists o > 0 such that f = afpqr. Moreover, pg—p+1 >0,
qgr—q+1>0andrp—r+1>0 hold.

Proof. This follows from Lemma 3.17(1) and 3.20(2). O

Theorem 3.22. Let QQ, = (0:p:1) and Q, = (q:0:1). Assume that f € 8(?;3) is
irreducible, and satisfies f(P) = f(Qz) = f(Qy) =0 and V4. (f) N L, = (. Then, one of the
following statements holds:

1 1
(1) f=ag1 1 (3a >0) where — + — < 1. In this case f(P,) = f(P,) = 0.
r’q p q

(2) f(x,y,2) =af1 g 4(2,2,y) (3a > 0) wherep > 1 and q < 2% In this case f(P,) = 0.
(3) f=af,19 (Ba>0) where g>1 and p < Ll In this case f(P,) = 0.
1q q_

Proof. Assume that f € 8(?;2,,) is irreducible, f(P) = f(Q.) = f(Qy) = 0 and
Vi(f)N L, =0. In Notation 3.9, we put P = P, P, = Q, and P; = Q. Let

— + | 9(P) = gz(P) = gy(P) =0,

Pr= {g < ?3’3 Q(Qx) = gy(Qz) = g(Qy) = QZ(Qy> = O} '
Note that 1 = Lp, N Lp, N Lp,. A direct calculation usung Mathematica shows that
dim Py = 3. Thus, {P,, Py, P} NVi(f) # 0. Then, there are following four cases (i)-(iv).

(i) The case f(P,) =0.

Then f(P;) > 0 and f(P,) > 0 by Lemma 3.7. Moreover Ip (f, ) = 1 and Ip_(f,
y) =1. Thus Vi (f) = {P, Qz, Qy, P:}. P2:=P; ﬂ(f]’;;?))pz is a two dimensional fan whose
edges are generated by extremal elements y((p — 1)z +y — pz)? and x(qz + (1 — q)y — 2)2.
Thus P2 2 Ry - f. Therefore, we have f(P,) > 0.

Note that Ip, (f, y) <1, Ip,(f, z) <1 by Lemma 3.7.

(ii) The case f(Py) = f(P,) = 0. Then, there exists a € R such that f = agi 1, by
Lemma 3.14(1).
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(iii) The case f(P;) =0 and f(P,) > 0. Let
P3:={geP | 9(Py) = gy(Py) = 0}.
Then P3 = Ry -f1 o ,(z,2,y) by Lemma 3.17. Since Ip,(f, y) < 1, we have g.(P,) # 0. Note
that if g,(P;) = 0 then g,(FP,) = 0 by Remark 2.15. This implies that Ry - f = L D Ps.
Therefore, f(z,y,2) = af1 o ,(z,2,y).

(iv) The case f(FP;) > 0 and f(P,) = 0. Same as (ii). O

Assume that [ € 8(?3{73) is irreducible and satisfies f(0, p, 1) = 0 for p > 0. Then,
f(Py) >0or f(P,) >0 by Lemma 3.7.

Theorem 3.23. Let Q, = (0:p:1), Assume that f € E(P3,) is irreducible, and
satisfies f(P) = f(Q.) = 0, f(P.) > 0, Vo(f) N L, = 0 and V,(f) N L, = §. Then,
f(Pz) = f(P,) =0 and one of the following statements holds:

1) f= g1 o (Far>0).
(2) f(z,y,2) = afpool(z,y,2) (3a > 0) where p < 1.

Proof. Assume that f € 8(?5{3) is irreducible, and V4 (f) C {P, Qu, Py, P,}.
In Notation 3.9, we put P, = P and P, = Q. Let

7y (e, |40 =onlP) = 0P =0,

9(Qz) = 9y(Qz) =0

Note that P; = Lp, NLp,.

For u # v € {z, y, 2}, we denote I, := Ip,(f, v). For example, I, = Ip, (f,
y). Let I, := max{l,y, I;.}, I, := max{l,., I,;} and I, := max{l.,, I.,}. Note that
I, =lengthp f, I, = lengthpy Jand I, = lengthp_f.

(i) Consider the case I, + I, = 4. Then (I, I,) = (3, 1), (2, 2) or (1, 3).

(i-1) The case I, = 3 and I, = 1.

Since I, + I, < deg f = 3 and I, # 0, we have I,, < 2. Thus I, = 3 and I, = 1.
Let

Py = {gej)l ’ f(Pa:):fz(Px):fzz(Px):f(Py)ZO}
Then Py = Ry - g1/p,0 by Lemma 3.14(2). Since Ry - f = L; C Py, we have f = agy/,0
(Fa > 0).

(i-2) The case I, = I, = 2.

Since I, = 1, we have I,,, = 2. Since I, + I, < 3, we have I, =1 and [, = 2. Let
Then P3 = Ry - f,0,0 by Lemma 3.17(3). Since R4 - f = Ly C P3, we have f = afp 0,0
(Ja > 0).

(i-3) The case I, =1 and I, = 3.

Since I, + Iy, < 3 and I, = I, = I, = 1, we have I,, =1 and I, = 3. Let

Py= {96?1 ’ f(Pa:):f(Py):fx(Py):fm(Py):O}'
Then Py =Ry - 2((p — 1)z +y — pz)?. Thus, f is reducible.
(ii) Consider the case I, + I, # 4.
IfI1,4+1, <3 then Ly D Py, Ly DPsor Ly DPy. If I, +1, > 5, then Ly C Py,

LyCPsor Ly C Py Inany case, Ly =Py or Ly =P3or L =Py. O
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Theorem 3.24. Assume that f € 8(3’?{,3) is irreducible, and satisfies f(P) = 0 where
P = (1:1:1). Moreover, we assume that V,(f) C {P, P;, P,, P.} and lengthp f >
length P, f > lengthp_f. Then one of the following statements holds
(1) f = g0,0 (ElOl > 0)

(2) f=afoo0=ca(z?y+y*z+ 222 — 3zyz) (3a > 0).
(3) f(z,y,2) = afooo(, z,y) = a(zy® + y2% + 202 — 3zyz) (Ja > 0).

Proof. Assume that f € 8(9’;;3) is irreducible, and Vi (f) C {P, P, P,, P.}.
Notation 3.9, we assume Py = P. Let I, I, I, Iy,..., 1., be same as in the proof of
Theorem 3.23. By our assumption, I, > I, > I,. If I,, > 2, then I, = 1. Note that
Iy + 1.0 <3, Iy + 1.y <3 and I, + I,. <3 by Lemma 3.7. In paticular, I, + I, + I, <
9—-1-1-1=6.

(i) Consider the case I, + I, + I, = 6. Then (I, I,, I.) = (3, 3, 0), (3, 2, 1) or (2, 2,
2). By Lemma 3.7, (I, I, I.) = (3, 2, 1) is impossible.

(i-1) The case I, = I, = 3 and I, = 0.

This can possible only if I, = I, = 3. Thus f is an element of

Pii= {g S fp;:g ‘ 9(P) = 9(P) = 9:(Pr) = 9:2(Ps) = 9(Py) = 9:(Py) = g2-(Py) = O}'
P1 =Ry - goo Lemma 3.14(3). Thus f = ago (Ja > 0).

(i-2) The case I, = I, = I, = 2.

By Lemma 3.14(3), there are two possibilities that I, = I, = I,, =2 and I, = I, =
L, =2

If I,y =1,. = I., =2, then f is an element of

Py = {g € ?ZJ{:; | 9(P) = g(P) = g.(P:) = g(Py) = gl‘(Py) =g(P;) = gy(Pz) = 0}
Then, Py = Ry - fooo by Lemma 3.17(4), and we have (2).

Iftl,, =1, =1.,=2,then fis an element of

P3 = {g € Pis | 9(P) = 9(Po) = gy(P2) = 9(Py) = g:(Py) = g(P2) = gu(P2) = 0}.
Then, Ps = Ry - fooo(z, 2, y), and we have (3).

(ii) Consider the case I, + I, + I, <5 and Iy > I,..

Then I, <2, I, <1and I, = 1. Let G(x,y,2) = y(z — 2)?. Then G, = 2y(x — z2),
Gylz —2)?, G, = =2y(x — 2), Gy = G, = 2y and G, = 0. Note that G, (P;) # 0 and
Gy(P.) #0.

Since G(P) = G4(P) = Gy(P) = G.(P) = 0, we have G € Lp. Since G(P,) =
G.(P;) = G..(Py) =0, we have G € Lp,. Since G(P,) = G,(Py) = G.(P,) = 0, we have
G € Lp,. Since G(P.) =0, we have G € Lp,. Thus G € Ly =R, - f. A contradiction.

(iii) Consider the case I, + I, + I, <5 and Iy, < I,..

As the above argument, we have G(z, z,y) = 2(z —y)? € Ly = Ry - f. A contradiction.

(iv) Consider the case I, + I, + 1. <5 and Iy = I,..

Then I, =1, =1, =1,and Thus G € Ly =Ry - f.

Thus, we complete the proof. (]

3.6. Proofs of Theorems in §1.

Theorem 1.1 follows from Theorem 3.20(2) and Lemma 3.17(1). Theorem 1.2 follows
from Theorem 3.15(2), (3) and Lemma 3.14(1). Theorem 1.4 follows frrom Theorem 3.13
and Lemma 3.12.
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Proof of Theorem 1.5. (1) If f € 8(9’{;3) is reducible, then f is (4) or (5) in Theorem
1.5, by Theorem 1.1.

Assume that [ € 8(9’;{,3) is irreducible, Then, V¢ (f) is a rational curve on P% whose
unique singular point lies on IP%F.

(IT) Consider the case that V¢ (f) has a cusp. Then P € L, UL, UL, by Theorem 3.13.
If P=(0:a:1) € L, (a > 0), put fi(z,y,2) = f(z,ay,z). Then, Vc(f1) is a rational curve
whose cusp is at (0:1:1). Thus fi = abpq (3o > 0)by Theorem 1.4. So, f(z, y, z) = abp,(z,
y/a, 2).

If P=(1:0:a) € L, (a > 0), put fi(z, y, 2) = f(z, z, ay). Then, Vc(f1) is a rational
curve whose cusp is at (0:1:1). Thus fi(z, y, 2) = abpe(z, y, 2) and f(x, y, 2) = abpe(y,
z/a, x).

Similarly, if P = (a:1:0) € L, (a > 0), then f(z, y, 2) = abpe(2, z/a, y).

(ITI) We consider the case that V¢(f) has an acnode P. Then P € Int(P%) by Lemma
3.11. Let P = (1:a:b) (a > 0,b>0), and fi(z, y, 2) := f(z, ay, bz). Then f; € 8(3{{3)
and V¢(f1) has an acnode at (1:1:1). After a suitable permutation o of z, vy, z, fi(o(z),
o(y), o(z)) is equal to one of afpqr (2, y, 2), ag%%(x, Y, 2), af%’07q(x, z, ), ozfp’%’o(x, Y, 2),
Oégl (l’ Yy, =z )7 O4fp,0 O(IE Yy, =z ) Oégop(l', Y, Z), OéfO,O,O(xa Y, Z) and O‘fO,O,U(‘rv Z, y) by results
in §3 5. On the other hand

0pq (Y, 7, 2) = 9gp(7,Y, 2)
qur(y’x Z) = fqrp($ Z,Y)s

)
quT(y, ) = frpq(x Y,z ),
qur(z T,y) = fqrp(T (m, 72)7
fptﬁ“(z Y,z ) = frpq( )7
qur(yw%' Z) p4q47“4 % %,%(x,y, Z)a
Thus f(x, y, z) can be represented as one of the forms in (1), (2) and (3). O

Corollary 3.25. (1) E(P54) C E(P3).
(2) (Theorem 1.7) If f(x,y,z) € 8(?;;3), then f(z%,y?%, 2%) € E(P3).

Proof. (1) and (2) are equivalent, since 3’;3 = P35 ¢ by the correspondence f(x,y,z) —
f(a?, 92, 2%).

Take g € E(P§¢). There exists a f € E(Py4) such that g(x,y,z) = f(a?, y?, 22). If
f(z,y,2) = fpgr(z, y/a, 2/b), then g € E(P34) by Theorem 3.20(1). Similarly, we obtain
g € E(P3) in the cases (2), (3), (4) of Theorem 1.5, by Lemma 3.12 and Theorem 3.15.

Consider the case f(z,y, z) = x(az+bz+cz)? with dim (Vk (az+by+cz)NPL) = 1. Then
Vi (ax®+byTcz?) is an irreducible real quadric curve. Thus g(z,y, z) = 22 (az?+bx®+cx?)?
E(Pse).

It is easy to see that z2y?22 € &(P36). Thus we have the conclusion. 0

Proposition 3.26. Let ng = {f € 3’;3 | fly,z,2) = f(z,y,2) (ie. [ is cyclic) }.
Then, E(P55) C E(PT5).
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Proof. By Theorem 3.1 of [1], f € E(P§E) is equal to cxyz or cfs (3¢ > 0, s € [0, +00])
where
fo(w,y, 2) = 82 (2 + 2° + 2°) — (25° — 1)(2®y + y*2 + 2°z)
+ (s* — 28) (zy® 4+ y2% + z2?) — 3(s* — 253 + 5% — 25 + 1)zyz,
fool(, 9y, 2) i= xy? + y2° + 22° — 3zyz2.
Note that fsss(z,y,2) = (8% + 5+ 1)(s? — s + 1)*fs(z,y,2). Thus fs(z,y,2) € 8(?;3) for
s > 0. Since zyz € 8(?;3), we have S(ngJg) C E(P3s). O

Corollary 3.27. All the cyclic elements of E(PY) are cfs (s € [0, +00]) and cayz
(¢ >0). All the symmetric elements of E(P§h) are cfy and cxyz (¢ >0).

Note that f,2 (22, y?, 2?) appeared as S;(z, y, ) in [15, (1.9), (6.20)].

84. Appendix.

Hilbert proved P54 = ¥34. We shall give an alternative proof of this theorem. The
proof of [4, Proposition 6.3.4] is one of classical type proofs oh this Hilbelt’s theorem.

Theorem 4.1. (Hilbert) If f € E(P3.4), then f is the square of a quadratic polynomial.

Proof. Assume that f € E(P34) is not a square of a quadratic polynomial. It is easy
to see that this implies that f is irreducible in R[x, y, z].
If f is not exposed, then there exists f,, € E(P34) (n € N) such that lim f, = f (with

respcet to the Euclidean topology of Hs 4), and that all f,, are exposed (see [16, Theorem
2.1.7]). If f is irreducible in R[z,y, 2], we can take f,, so that f,, are irreducible in R[z,y, z].
So we may assume that f is exposed.

Consider Vi(f). It is easy to see that if dimg VR(f) = 1 as a topological space, then
f is not irreducible in R(xz,y, z|, since f is PSD. If Vg(f) = 0, then f cannot be extremal.
Thus Vr(f) is a set of isolated points. Since f is exposed, Vr(f) does not contain infinitely
near points. Since dimg Hs 4 = 15, Vr(f) must contain at least 5 = 15/3 points.

If Ve(f) is irreducible, this is impossible because any curves on P% whose arithmetic
genus is equal to 2, can have at most 4 singular points.

Thus f = g¢gg where g € Clz,y,z2] — R[z,y, 2] is a quadratic. Note that Vg(f) C
Ve(g) N Ve(g). Thus #Ve(f) < 4. A contradiction. 0

If f e &EP36) — X3, then z2df ¢ E(P3.6+24) — X3,6+24- Here we shall give examples
of irreducible f € E(P3q) — X34 for d = 8 and 10. Such f will be more interesting than
reducible ones.

Theorem 4.2. There exists f(z,y,z) € E(P],) such that f(z?, y?, 2*) € E(Ps ) and
f(2?, y?, 2?) is irreducible in C[z,y, 2].
Proof. In 8(?;4), the equality conditions f(1,1,1) = f(2,3,1) = f(1,2,3) = f(0,4,3)
= f(6,0,5) = f(0,1,0) = 0 determine the polynomial
f(z,y, 2) == 591900050z 4 43720510023y — 7664145612%y* + 217365672zy>
— 165061067023z — 10269502122y 2z + 248518503zy? 2 4+ 5496661° 2
+ 153173679222 22 + 1182212672y2> + 101630538y> 2>
— 63674335222° — 273946320y 2> + 1832823362*
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up to a constant multiplication. We can prove that f € 9’?{7 4 if we observe f(1+ z, 1+ tz,

1)/2? carefully. It is easy to prove that f(x2, y?, 2?) is irreducible in C[z, y, z] (see Theorem
4.3 below). f(z?, y?, 2?) has the following 17 isolated zeros: (1:1:1), (1:1:—1), (1: —1:1),
(—1:1:1), (vV2:v3:1), (vV2:V3: 1), (vV2: =V/3:1), (—v2:V3: 1), (1:v/2:V3), (1:v/2: —V/3),

(1: —v/2:v/3), (—1:v/2:4/3), (0:2:/3), (0:2: —/3), (v/6:0:1/5), (v/6:0: —/5) and (0:1:0).
Solve the differential equations for F' € Hs g such that F'(P) = F,(P) = F,(P) = 0 for the
above 17 points P. The solution space of this equation is R - f(z2,%2, 22). Thus f(22, y2,
22) S 8(?3’8). O

Theorem 4.3. There exists f(x,y,z) € 8(3’;;5) such that f(z?, y?, 2?) € &(P310) and
f(xQ, y2, z2) is irreducible in Clz,y, z].

Proof. The equality conditions f(4,1,1) = f(1,4,1) = f(1,1,4) = £(1,9,9) = f(9,1,9)
= f(9,9,1) = f(1,0,0) = f(0,1,0) = 0 determine the polynomial

f(z,y,2) = 837xy — 64523y* — 64522y> + 837xy* + 17552 2
— 1718123y z + 238762%y% 2 — 17181zy>z + 1755y 2 — 34862322
+ 1959422y 2% + 19594xy° 2% — 3486y°2% + 32872223 — 11030xy 2>
+ 3287y%2% — 169222% — 1692y2* + 64825,

Elementary but somewhat long calculation shows that f € ?;5. Let g(z, y, 2) == f(a?,
y?, z%). Then Vr(g) has the following 26 acnodes: Vg := {(2:1:1), (2:1: —1), (2: —1:1),
(=2:1:1), (1:2:1), (1:2:=1), (1:=2:1), (—1:2:1), (1:1:2), (1:1: =2), (1: —1:2), (—1:1:2),
(1:3:3), (1:3:=3), (1: —3:3), (—1:3:3), (3:1:3), (3:1: =3), (3: —=1:3), (—3:1:3), (3:3:1),
(3:3:—1), (3: =3:1), (—3:3:1), (1:0:0), (0:1: 0) }. The solution space of the system of equal-
ities g(P) = g.(P) = gy(P) = g.(P) = 0 for all P € Vag, is equal to R - f(z?,y?, 2?). Thus
g € E(Ps10). So, f € E(PF ;). We shall show that g is irreducible in Clz, y, z].

(1) To begin with, we prove that g is irreducible in Rz, y, z]. Assume that g = hiho
where hy € H3 4, ho € Hs . with d+e = 10, d < e. Since g € E(P3.10), we have hy € E(P3.q)
and hy € E(P3.). If d is odd, then P34 = 0. Thus d is even. If d = 2, then hy = h3
(3hs € Hs3.1). Then Vog must contain a line Vg(hg). If d = 4, then hy = h3 (Fhy € Hs o).
Since Sing(Vi(ha)) C Vag, we have Vig(hy) = 0 or hy = h + h (3hs, he € H31). Is is easy
to see that these are impossible.

(2) Thus, if g is reducible, there exists an imaginary hy; € Clx,y, 2] such that g =
hrzh7 where hy is the complex conjugate of hy. If P € Sing(Vc(hr)) NP2 # (), then P €
Sing(V(h7))NP3. This is impossible, since P € Vag is an acnode. Thus Sing(Ve(h7)) NP3 =
(0. This implies Vag C Vi(hr) N Ve(hr). But #(Ve(hr) NVe(hy)) < 52 = 25. [
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