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0. Introduction.
The purpose of this paper is to study the structure of contraction of extremal rays on non-singular projective
varieties. The notion of extremal ray was first introduced by Mori[8], that is a half line representing an edge
of a numerical cone generated by effective 1-cycles in a half space (see Sect. 1). Extremal ray consists
of curves that are contracted by a projective morphism, which was proved by Shokurov[13] in the general
situation. This projective morphism is called a contraction of the extremal ray. In the case of dimension
two and three, the structure of extremal rays was completely determined by Mori[8]. We shall study the
structure of extremal rays and their contractions in the higher dimensional cases. Contractions of extremal
rays may be roughly classified into two types. One is the type giving a birational morphism and another
type gives a fiber space. Our main result is summarized as follows.

Let X be a non-singular projective variety over an algebraically closed field of characteristic zero.
Assuming that the canonical divisor KX is not nef, we have an extremal ray R+[C] (Mori[8]). Let f :X → Y
be a contraction of R+[C]. Our main results are stated as follows:
(i) If f is birational and if the exceptional set of f is a divisor D, then the general fiber F of fD:D → f(D)
is a Gorenstein Fano variety with index greater than 1. (see Theorem 2.1 for details)
(ii) In addition to the above, if dim f(D) = dimD − 1 and if fD is equi-dimensional, then Y and f(D) are
non-singular and f is a blowing up of Y along the center f(D). (see Theorem 2.3)
(iii) If dimY < dimX, then the general fiber of f is a Fano manifold.
(iv) Moreover if dimY = dim X − 1 and if f is equi-dimensional, f induces a conic bundle structure.
(Theorem 3.1)

The morphism f in (i) is called a good contraction (see Kawamata[6]). In this case, our classification is
rather satisfactory to understand the properties of extremal curves. But in the case when f is birational and
its exceptional set has codimension bigger than one, our result is insufficient; for example the exceptional
sets in this case may be reducible. But the author does not have such an example when X is non-singular.
In case (iii), we have only informations on general fibers, as f might not be equi-dimensional.

In Sect. 1, we shall explain two important theorems on which this paper is based. One is called the
cone theorem, which asserts the existence of extremal rays, that was proved by Mori [8] and generalized by
Kawamata[6]. The other is called the base point free theorem, which claims the existence of contraction,
that was established by Shokurov[13] and Kawamata[6].

In Sect. 2, we shall treat the case where the contraction is birational, and in Sect. 3, we study the
contraction giving rise to a fiber space.

1. Preliminaries.
We assume that the ground field k is an algebraically closed field of characteristic zero. Let X be a projective
variety over k with only canonical singularities. This means that the canonical divisor KX is Q-Cartier and
that there exists a desingularization f :Y → X such that

KY = f∗KX +
∑

aiFi,

Fi being prime divisors, where ai = 0. We fix the following notation.
N1(X) := ({ Cartier divisors on X }/ ∼∼∼)⊗Z R
N1(X) := ({ 1-cycles on X }/ ∼∼∼)⊗Z R
NE(X) := the closure of the convex cone generated by effective 1-cycles in N1(X).

Here the symbol ∼∼∼ means the numerical equivalence. Further the symbol ∼ denotes the linear equivalence.
A Cartier divisor D is called numerically effective or nef if (D · C)X = 0 for all curves C on X.
Similarly 1-cycle Z is also said to be numerically effective or nef if (D ·Z)X = 0 for any effective Cartier

divisor D.
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The numerical Kodaira dimension of a nef Cartier divisor D is defined to be κnum(D) := max{ d |
Dd 6∼∼∼ 0 } (see Reid[11]). Then κ(D) 5 κnum(D) 5 n = dimX, where κ(D) denotes the D-dimension of X,
i.e. κ(D) := κ(D, X).

A Cartier divisor D is called big if κ(D) = n.
A linear system is called free if it has neither fixed components nor base points.

Definition. A curve C on X is called extremal if
(i) (KX · C) < 0,
(ii) given A, B ∈ NE(X), A, B ∈ R+[C] if A + B ∈ R+[C].
Definition. Let C be an extremal curve. A Cartier divisor H is called a good supporting divisor with respect
to C, if
(i) H is nef,
(ii) for Z ∈ NE(X), (H · Z)X = 0 if and only if Z ∈ R+[C].

The following two theorems are fundamental.
Theorem 1.1. Base point free theorem (Shokurov[13], Kawamata [6]). Let X be a projective variety with
only canonical singularities. Assume that a Cartier divisor H is nef and that aH −KX is nef and big for
some a ∈ N. Then |mH| is free, for m À 0.

Theorem 1.2. Cone theorem (Kawamata[6], Mori[8], Kollár[5]). Assume that X has only canonical singu-
larities. Fix an ample divisor L. Then for any ε > 0, there exist extremal curves C1,. . ., Cr such that

NE(X) =
r∑

i=1

R+[Ci] + NEε(X).

Here NEε(X) := { Z ∈ NE(X) | (KX · Z) > −ε(L · Z) }.
Corollary 1.3. For any extremal curve C, there exists a good supporting divisor H such that

(i) |mH| is free for any m À 0,
(ii) if E is a Cartier divisor such that (E · C)X > 0, then for m À 0, mH + E is ample. Especially,

mH−KX is ample for m À 0. Moreover if X is non-singular, then Hi(X, mH +E) = 0 and Hi(X, mH) = 0
for i > 0 and m À 0.

The morphism f = Φ|mH|:X → Y are isomorphic to each other if m À 0, and so f is called a contraction
associated with C.

Lemma 1.4. Let C be an extremal curve and H be a good supporting divisor with respect to C. H is big
if and only if C is not nef.

Proof. If H is big, then Hi(X, mH + KX) = 0 for m À 0, and i > 0 by Corollary 1.3. Since χ(mH +
KX) = 1

n! (H
n)X ·mn + (lower terms in m) À 0 for m À 0, |mH + KX | 6= φ for m À 0. Moreover, since

(mH + KX · C)X = (KX · C)X < 0, it follows that C is not nef.
Conversely if C is not nef, there exists an effective divisor D such that (D ·C)X < 0. By Corollary 1.3,

rH−D is ample for r À 0. Since 1
n!r

n(Hn)X ·mn+(lower terms in m) = h0(X, mrH) = h0(X, m(rH−D)) =
1
n! ((rH −D)n)X ·mn + (lower terms in m) for m À 0, we have (Hn)X > 0.

The following lemma is related to a conic bundle structure.

Lemma 1.5. Let X be a non-singular projective variety of dimension n. Further let C be an irreducible
curve on X such that

(i) (KX · C) < 0,
(ii) χ(OC′) = 0 for any subscheme C ′ in X with (C ′)red = C. Then C = P1 and NC/X is one of the

following four cases:

NC/X
∼= O⊕(n−1)

C , (1)
NC/X

∼= OC(−1)⊕O⊕(n−2)
C , (2)

NC/X
∼= OC(1)⊕OC(−2)⊕O⊕(n−3)

C , (3)
NC/X

∼= OC(1)⊕OC(−1)⊕2 ⊕O⊕(n−4)
C . (4)
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Moreover, in the cases of (3) and (4), letting J ⊂ OX be the ideal such that IC ⊃ J ⊃ I2
C and IC/J ∼= OC(−1),

we have J/J2 ∼= (OX/J)⊕(n−1), where IC is the ideal of OX defining C in X.

Proof. Since h1(C,OC) 5 1, C is isomorphic to P1 or a plane cubic curve. If C is a plane cubic curve, then
χ(Ω1

C) = 0. By the exact sequence

0 → IC/I2
C → Ω1

X ⊗OC → Ω1
C → 0

χ(OX/I2
C) = χ(OC) + χ(IC/I2

C) = χ(IC/I2
C) = χ(Ω1

X ⊗ OC) − χ(Ω1
C) = (KX · C) < 0, which contradicts

hypothesis (ii). Thus C ∼= P1.
Hence, letting I := IC , the sheaf I/I2 is locally free and so I/I2 ∼= OC(p1) ⊕ · · · ⊕ OC(pn−1) for some

p1,. . ., pn−1 with p1 5 p2 5 · · · 5 pn−1. Since C is a locally complete intersection,

0 → I/I2 → Ω1
X ⊗OC → Ω1

C → 0

is exact. Thus p1 + p2 + · · ·+ pn−1 = (KX · C) + 2 5 1. Especially p1 5 0.
Case I. p1 = 0. Then (p1,. . ., pn−1) = (0,. . ., 0) or (0,. . .,0, 1), corresponding to (1) or (2) respectively.
Case II. p1 5 −1. Let J and K be the ideals of OX defined by I ⊃ J ⊃ K ⊃ I2, I/J ∼= OC(p1),
J/K ∼= OC(p2) and K/I2 ∼= OC(p3)⊕ · · · ⊕ OC(pn−1). We claim:

χ(OX/Jr) = 2 · nHr−1 + (nHr−1 + 4 · n+1Hr−2) · p1 + 2n+1Hr−2(p2 + · · ·+ pn−1), (∗)

χ(OX/Kr) =(3 · nHr−1 + nHr−2)
+ (6 · n+1Hr−2 + 2 · n+1Hr−3 + nHr−1 + nHr−2)(p1 + p2)
+ (3 · n+1Hr−2 + n+1Hr−3)(p3 + · · ·+ pn−1)

(∗∗)

where nHr =
(
n+r−1

r

)
.

Since I, J and K are locally free, we have Ir/Ir+1 ∼= Sr(I/I2), Jr/IJr ∼= Sr(J/IJ), and IJr/Jr+1 ∼=
(Jr/IJr)⊗ (I/J). We can describe J/IJ as OC(q1)⊕ · · · ⊕ OC(qn−1) (q1 5 · · · 5 qn−1). Since

0 → I2/IJ → J/IJ → J/I2 → 0

is exact, I2/IJ ∼= S2(I/J) ∼= OC(2p1), and since J/I2 ∼= OC(p2)⊕· · ·⊕OC(pn−1), we have q1 + · · ·+ qn−1 =
deg J/IJ = deg I2/IJ + deg J/I2 = 2p1 + p2 + · · · pn−1. Therefore

χ(OX/Jr) =
r−1∑

i=0

χ(Si(OC(q1)⊕ · · · ⊕ OC(qn−1))) +
r−1∑

i=0

χ(Si(OC(q1)⊕ · · · ⊕ OC(qn−1))⊗OC(p1))

=
∑

r1+···+rn−1<r

{χ(OC) + χ(OC(p1)) + 2(r1q1 + · · ·+ rn−1qn−1)}

= nHr−1(2 + p1) + 2n+1Hr−2(q1 + · · ·+ qn−1)

Thus we have (∗). Now we shall prove (∗∗). Since rankK/IK = n we can express K/IK as OC(s1) ⊕
· · · ⊕ OC(sn) (s1 5 · · · 5 sn), where s1 + · · · + sn = deg K/IK = deg I2/IK + deg K/IJ − deg I2/IJ =
3(p1 + p2) + (2p1 + p3 + · · · + pn−1) − 2p1 = 3p1 + 3p2 + p3 + · · · + pn−1. Since 0 → OC(2p1 + 2p2) ⊗
Sr−2(K/IK) → Sr(K/IK) → Kr/IKr → 0 is exact and since IKr/JKr ∼= I/J ⊗ Kr/IJKr−1 ∼= I/J ⊗
Sr(K/IJ), JKr/Kr+1 ∼= J/K ⊗Kr/IKr, we have (∗∗).

We regard χ(OX/Jr) and χ(OX/Kr) as polynomials in r. By (∗) and (∗∗), we have

χ(OX/Jr) =
rn

n!
(4p1 + 2(p2 + · · ·+ pn−1)) + lower terms in r, (#)

χ(OX/Kr) =
rn

n!
(8(p1 + p2) + 4(p3 + · · ·+ pn−1)) + lower terms in r. (##)

By the assumption that χ(OX/Jr) = 0 and χ(OX/Kr) = 0 for any r > 0, it follows that 2p1+p2+· · ·+pn−1 =
0, and 2p1 + 2p2 + p3 + · · ·+ pn−1 = 0. Thus we have (p1,. . ., pn−1) = (−1,0,. . .,0,2) or (−1, 0,. . ., 0, 1, 1).
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Finally we shall prove that J/J2 ∼= (OX/J)⊕(n−1).
Case II.1. q1 = 0. Then q1 = · · · = qn−1 = 0, i.e. J/IJ ∼= O⊕(n−1)

C . Noting that IJ/J2 ∼= I/J ⊗ J/IJ ∼=
OC(−1)⊗O⊕(n−1)

C
∼= OC(−1)⊕(n−1), we have the following diagram.

0 → OC(−1)⊕(n−1) → (OX/J)⊕(n−1) → O⊕(n−1)
C → 0

‖ ‖
0 → IJ/J2 → J/J2 → J/IJ → 0

Since H0(IJ/J2) = 0 and since H1(IJ/J2) = 0, we have H0(J/J2) ∼= H0(J/IJ) ∼= kn−1. By this isomor-
phism we get the surjection (OX/J)⊕(n−1) →→ J/J2 making the above diagram commutative. Thus we have
(OX/J)⊕(n−1) ∼= J/J2.
Case II.2. q1 5 −1. Let L ⊂ OX be an ideal such that J ⊃ L ⊃ IJ , J/L ∼= OC(q1), and that L/IJ ∼=
OC(q2)⊕ · · · ⊕ OC(qn−1). Now we shall calculate χ(OX/Lr). If L ⊂ I2, then we have

χ(OX/Kr) =(3 · nHr−2 + nHr−2) + (nHr−1 + nHr−2)p1

+ (6 · n+1Hr−2 + 2 · n+1Hr−3 + nHr−1 + nHr−2)q1

+ (3 · n+1Hr−2 + n+1Hr−3)(q2 + · · ·+ qn−1)

by the same argument as in the proof of (∗∗). We assume L 6⊂ I2. Since (Lr/ILr)/tor ∼= Sr((L/IL)/tor),
#(Lr/ILr)tor 5 #(L/IL)tor · n−1Hr−2, JLr/Lr+1 ∼= Lr/ILr ⊗ J/L, and since 0 → T → Lr/ILr ⊗ I/J →
ILr/JLr → 0 is exact for some torsion OC-module T , we have

χ(OX/Lr) 5 3 · n+1Hr−2(p1 + q1 + · · ·+ qn−1) + nHr−1(3 + p1 + q1) + 3 · nHr−2χ((L/IL)tor).

Thus χ(OX/Lr) < 0 for r À 0. This is a contradiction.

Remark. If NC/X is one of (1), (3) or (4), then C is nef.

2. Birational case.
Throughout this section, we assume that X is non-singular. We fix an extremal curve C and assume that
C is not nef. Let H be a good supporting divisor with respect to C. Since C is not nef, the contraction
f = Φ|mH|:X → Y for m À 0 is a birational morphism. Let E be the exceptional set of f . C being not nef,
there is a prime divisor D such that (D ·C) < 0. If dimE = n−1 (n = dim X), then such a D is unique and
D = E. But in the case dimE < n− 1, there are infinitely many such D. In fact, (i) dim |mH + KX | À 0
for m À 0, because H is big and Hi(X, mH + KX) = 0 for i > 0 and m À 0. (ii) Any general member
of |mH + KX | is an irreducible divisor, since Bs |mH + KX | ⊂ E. Actually this follows from the fact that
mH + KX is ample outside E. Thus any irreducible member of |mH + KX | satisfies the condition for D.

We treat the case dim E = n− 1.
Definition. (See Fujita[1, 2]) A Gorenstein projective variety X with dim X = 3 is called Del Pezzo variety
if

(i) there exists an ample Cartier divisor L such that −KX ∼ (n− 2)L, and
(ii) Hi(X, tL) = 0 for all t ∈ Z, 0 < i < n.

Definition. (See Mukai[9]) A Gorenstein projective variety X with dimX = 4 is called Mukai variety if
(i) there exists an ample Cartier divisor L such that −KX ∼ (n− 3)L, and
(ii) Hi(X, tL) = 0 for all t ∈ Z, 0 < i < n.

Theorem 2.1. Assume that dimE = n − 1. Let F be a general fiber of fD:D → f(D) (Note that if
dim f(D) = 0, then F = D). Then there exists a Cartier divisor L on X such that

(i) Im(Pic X → PicF ) = Z[L|F ] and L|F is ample on F ,
(ii) OF (−KX) ∼= OF (pL) and OF (−D) ∼= OF (qL) for some p, q ∈ N,
(iii) Hi(F, tL) = 0 for 0 < i < dimF , unless −q < t < −p.
Especially Hi(F, tL) = 0 for all t ∈ Z and 0 < i < dimF , if dimF 5 4.

By these properties, we can classify F into the lower dimensional cases in the following way:
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(a) If dimF = 1, F ∼= P1.
(b) If dimF = 2, F is P2 or Q2.
(c) If dim F = 3, F is P3, Q3, or a Del Pezzo 3-fold.
(d) If dimF = 4, F is P4, Q4, a Del Pezzo 4-fold, or a Mukai 4-fold.

Lemma 2.2. Let P be a Cartier divisor in X such that mH + P −KX is nef and big for any m À 0. Then
Hi(F,OF (P )) = 0 for i > 0. Moreover if F ′ is a subscheme of X with (F ′)red ⊂ F , then Hr(F ′,OF ′(P )) = 0,
where r = dim F .

Proof. Let A1,. . ., Ab (b = dim f(D)) be very ample divisors in Y such that f(D) ∩ A1 ∩ · · · ∩ Ab 3 f(F ),
Hj := f∗Aj (1 5 j 5 b), and let s be a fixed natural number. Noting that Hj are good supporting divisors
with respect to C, mH + P − KX − t1H1 − · · · − tbHb (tj = 0 or s) is nef and big for m À 0. Since
mH − D is ample for m À 0 by Corollary 1.3, it follows that mH + P − t1H1 − · · · − tbHb − KX and
mH + P − t1H1 − · · · − tbHb − sD −KX are nef and big for m À 0. Thus

Hi(X, mH + P − t1H1 − · · · − tbHb) = Hi(X, mH + P − t1H1 − · · · − tbHb − sD) = 0

for i > 0, by Kawamata-Viehweg vanishing Theorem([7, 14]). Using the exact sequence

0 → OX(mH + P − t1H1 − · · · − tbHb − sD) → OX(mH + P − t1H1 − · · · − tbHb)
→ OsD(mH + P − t1H1 − · · · − tbHb) → 0,

we have Hi(OsD(mH + P − t1H1 − · · · − tbHb)) = 0 for any i > 0. Again using the exact sequence

0 → OsD(mH + P − sH1 − t2H2 − · · · − tbHb) → OsD(mH + P − t2H2 − · · · − tbHb)
→ OsD∩sH1(mH + P − t2H2 − · · · − tbHb) → 0,

we have Hi(OsD∩sH1(mH + P − t2H2 − · · · − tbHb) = 0 for any i > 0. Repeating this process we have
Hi(OsD∩sH1∩···∩sHb

(mH + P )) = 0 for i > 0.
On the other hand, F is a connected component of D ∩H1 ∩ · · · ∩Hb. Therefore

Hi(F,OF (mH + P )) ⊂ Hi(OD∩H1∩···∩Hb
(mH + P )) = 0

for i > 0. Since |mH| is free and H|F ∼∼∼ 0, it follows that OF (H) ∼= OF . Thus, we have Hi(OF (P )) = 0 for
i > 0.

Let s be an integer such that sD∩sH1∩· · ·∩sHb ⊃ F ′. Then OsD∩sH1∩···∩sHb
(mH+P ) → OF ′(mH+P )

is surjective. Thus
Hr(F ′,OF ′(P )) = Hr(F ′,OF ′(mH + P )) = 0.

Proof of Theorem 2.1. We take Aj and Hj (1 5 j 5 b) as in proof of Lemma 2.2. Since |Hj |D| are
free, every connected component of |D ∩ H1 ∩ · · · ∩ Hb| is irreducible and reduced for general A1,. . ., Ab

by a theorem of Bertini. Thus F is irreducible and reduced Gorenstein variety. Take any curve Z in
F . Then (H · Z)X = 0. Therefore Z ∈ R+[C]. This means that rank(Im(N1(F ) → N1(X))) = 1. We
shall show that Im(PicX → PicF ) ∼= Z. Take any element M ∈ PicX such that M |F ∼∼∼ 0. Since
rank(Im(N1(X) → N1(F ))) = 1, it suffices to show that M |F ∼ 0. mH + M −KX is ample for m À 0, we
have Hi(OF (M)) = 0 for i > 0, by Lemma 2.2. Therefore h0(OF (M)) = χ(OF (M)) = χ(OF ) = h0(OF ) = 1.
So OF (M) ∼= OF . This implies that Im(PicX → PicF ) ∼= Z.

Let L ∈ PicX be a generator of Im(PicX → PicF ) such that L|F is ample. Then OF (−KX) ∼= OF (pL)
and OF (−D) ∼= OF (qL) for some p, q ∈ N. By the adjunction formula, ωF

∼= OF ((−p − q)L). By Lemma
2.2, we conclude Hi(F, tL) = 0 for i > 0, t = −p. By Serre duality Hi(F, tL) = 0 for i < dimF , t 5 −q.

Let r := dim F and d := (Lr)F . Now we classify F in the case r 5 4. Let

P (t) := χ(OF (tL)) =
d

r!
tr +

(p + q)d
2(r − 1)!

tr−1 + lower terms in t.
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By Serre duality, P (−t) = (−1)rP (t − p − q). P (0) = χ(OF ) = 1. By (iii), P (t) = 0 for any t such that
−p 5 t < 0. By these properties we have

(a) If r = 1, P (t) = dt + 1.
(b) If r = 2, P (t) = d

2 t(t + p + q).
(c) If r = 3, P (t) = d

12 t(t + p + q)(2t + p + q) + 2t
p+q + 1.

(d) If r = 4, P (t) = 1
24{t2(t + p + q)2d + t(t + p + q)(pqd + 24

pq )}+ 1.
We can compute ∆-genera of (F , L) defined by ∆(F , L) = (n − 1) + d − P (1) in the sense of Fujita [1] as
follows.

First we treat the case dim F = 3. If p + q > 4, then ∆(F , L) < 0. This contradicts Fujita’s result to
the effect that ∆(F, L) = 0 (see [1]). Thus 2 5 ∆(F, L) 5 4.

Case (p, q) = (3, 1), (2, 2), (1, 3). Then ∆ = 3
2 (1− d) ∈ Z. Therefore ∆ = 0, d = 1 and so F ∼= P3 by

Fujita[1].
Case (p, q) = (2, 1), (1, 2). Then ∆ = 2

3 (2− d) ∈ Z. Therefore ∆ = 0, d = 2 and so F ∼= Q3, again by
[1].

Case (p, q) = (1, 1). Then ∆ = 0 and so F is a Del Pezzo variety which allows hypersurface singularities.
In the case of dim F = 4, by the same discussion as above we have 2 5 p + q 5 5 and finally we obtain

the following table.

Table 1

p + q 5 4 3 2
∆(F, L) 0 0 0 2d
d 1 2 d = 1 d = 1
F P4 Q4 Del Pezzo varieties Mukai varieties

　

Theorem 2.3. If dim f(D) = dimD − 1 = n − 2 and fD is equi-dimensional then both Y and f(D) are
non-singular, and moreover f :X → Y is the blowing up along the smooth center f(D).

Proof. Take any irreducible curve Z ∈ R+[C]. Let Z ′ be an arbitrary subscheme of X with (Z ′)red = Z.
Since every fibre of fD:D → f(D) is one-dimensional, it follows that H1(OZ′) = 0 and H1(OZ′(KX)) = 0
by Lemma 2.2. Thus Z satisfies the condition of Lemma 1.5. Since Z is not nef, we have NZ/X

∼= OZ(−1)⊕
O⊕n−2

Z . Therefore (KX · Z)X = −1. This implies that any fiber of fD is irreducble and isomorphic to P1.
Let T be a connected component of the Hilbert scheme HilbX/k containing a fiber C of fD. Choose any

closed point t ∈ T , and let Z be a closed subscheme of X representated by t. We regard Z as a 1-cycle and
denote it by Γ which is written as SpecOZ/K. Since (Z · −KX)X = 1 and since any irreducible component
of Γ belongs to R+[C], Γ is irreducible as a 1-cycle. By a property of Hilbert scheme, χ(OZ) = χ(OC) = 1.
Since Γ ∼∼∼ C, χ(OΓ) = χ(OC) = 0. Therefore χ(K) = 0. Since K is a skyscraper sheaf, it follows
that K = 0. Thus Z is an irreducible and reduced curve, and Z ∈ R+[C]. This implies that Z ∼= P1

and NZ/X
∼= OZ(−1) ⊕ O⊕n−2

Z . Since H0(NZ/X) = kn−1 and H1(NZ/X) = 0, T is smooth and (n − 1)-
dimensional at t. Thus T is an irreducible non-singular (n−1)-dimensional projective variety. Let U ⊂ T×X
be a universal family containing all fibers of fD, and π:U → X, ϕ:U → T be natural morphisms. Since U
is a Zariski P1-bundle, U is non-singular. Moreover since any fiber of ϕ belongs to R+[C] and since for any
point of D there is a fiber of fD passing through the point, we have π(U) = D. Take any point x ∈ D. Since
only one fiber of fD passes through x, ϕ(π−1(x)) is one point. Therefore π is an isomorphism on any fiber
of ϕ. Thus π is bijective. We claim that π is the isomorphism. Actually, π∗ωD

∼= OU (KU + ∆) where ∆ is
an effective divisor. For any fiber Γ of ϕ, (KU · Γ)U = (π∗ωD · Γ)U = −1. Therefore (∆ · Γ)U = 0. Since ∆
doesn’t contain any fiber of ϕ, ∆ = 0. Thus π is an isomorphism. By contraction theorem of Nakano [10],
we see that f is the blowing up along f(D).

Remark. If dimX = 3, fD is always equi-dimensional. In fact, if a fibre of fD contains a surface, it must be
D.
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Now we consider the case dim E < n− 1. It is not difficult to see that dimE = 2. In fact:
Assume dim E = 1. Take the reduced curve C of an irreducible component of E. Let H1,. . ., Hn−1 ∈

|mH + KX | be hypersurfaces of X which intersect transversally. By the same argument as in Lemma 2.2,
we have

Hi(sH1 ∩ · · · ∩ sHn−1,OsH1∩···∩sHn−1(mH)) = 0 for i = 1, m À 0,
repeating cutting process by H1,. . ., Hn−1. Thus H1(C ′,OC′) = H1(C ′,OC′(mH)) = 0 for any subscheme
C ′ of X with (C ′)red = C. Since C is not nef, it follows that C ∼= P1 and NC/X

∼= OC(−1) ⊕ O⊕(n−2)
C , by

Lemma 1.5. Thus C is movable, which contradicts the fact that C is a component of the exceptional locus.
Therefor dimE = 2 fas been established.

Note that if X and Y are toric varieties, then dimE = 1
2 dimX. (See Reid[12].) It seems to be true that

this holds in general for smooth varieties. Of cource if X has singularities, there are many examples in which
dimE = 1. (See Reid[12].) In such case, E is a rational tree, since H1(E,OE) = 0. (See Kawamata[6].)

3. Fiber case.
Throughout this section, assume that X is non-singular and that the extremal curve C is nef. Let H be a
good supporting divisor with respect to C, and f := Φ|mH|:X → Y for m À 0, which is a contraction of C.
Let b denote dimY = κ(H) = κnum(H). Since C is nef, it follows that b < n = dim X.

Theorem 3.1. (i) A general fiber of f is a Fano (n− b)-fold.
(ii) If b = n−1 and f is equi-dimensional, then Y is non-singular and f induces a conic bundle structure

on X.

Proof. (i) Let p be a general point of Y . Take ample divisors A1,. . ., Ab in Y such that p ∈ A1 ∩ · · · ∩Ab and
dim(A1 ∩ · · · ∩Ab) = 0. Let Hj := f∗Aj . Then F := f−1(p) is an irreducible component of H1 ∩ · · · ∩Hb.

Since F is a complete intersection and OF (Hj) = OF , we have ωF = OF (KX). On the other hand, any
curve Z on F belongs to R+[C]. Hence −KX is ample on F . By definition, F is a Fano variety.

(ii) Let Γ be a one-dimensional subscheme of X whose support is included in a fiber of f :X → Y . By
the same argument as in the proof of Lemma 2.2, we have H1(OΓ) = 0. In particular any irreducible reduced
component C of a fiber of f :X → Y satisfies the assertions of Lemma 1.5. Especially C ∼= P1. We claim
that any fiber F := f−1(y) of f is isomorphic to a plane conic. Since (KX · F ) = −2, F has at most two
irreducible components.
Case 1. F is irreducible. Then F ∼= P1 and NF/X

∼= O⊕(n−1)
F .

Case 2. F = C1 ∪ C2. We claim that C1 ∩ C2 consists of only one point.
Since C1

∼= C2
∼= P1 and

0 → OF → OC1 ⊕OC2 → OC1∩C2 → 0

is exact, we have
χ(OC1∩C2) = χ(OC1) + χ(OC2)− χ(OF ) = 2− χ(OF ).

On the other hand, noting that H1(OF ) = 0, we have χ(OF ) = 1. Thus χ(OC1∩C2) = 1, i.e. C1 ∩ C2 is one
point.
Case 3. F = 2C as a 1-cycle. Let I := IC and J := IF . Considering on each local ring, we have I ⊃ J ⊃ I2.
Since 1 = χ(OF ) = χ(OC) + χ(I/J) = 1 + χ(I/J), 0 = χ(I/J) = deg I/J + rank I/J . By Lemma 1.5,
deg I/J = −1. Thus deg I/J = −1, rank I/J = 1. This implies that NC/X is of type (3) or (4) in Lemma
1.5, and that J/J2 ∼= O⊕(n−1)

F .
Since any fiber of f is isomorphic to a plane conic, f is flat. Therefore Y is non-singular.

Remark. If dimX = 3 and dimY = 2, f is equi-dimensional. In fact, if some fibre f−1(p) has dimension
two, then (f−1(p) · C)X < 0 for any curve C ⊂ f−1(p). But since C is an extremal curve, C must be nef.
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