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§1. Introduction.

An algebraic curve C in an algebraic manifold X is called exceptional or contractible, if

there exists a birational projective morphism ϕ:X → Y whose exceptional set is C, here Y may

be an algebraic space or an analytic space. The morphism ϕ is called a small contraction, and

the singularity (ϕ(X), ϕ(C)) is called a small singularity, if dimX = 3.

When X is an algebraic surface, C is exceptional if and only if its normal bundle NC/X is

negative. We consider the case dim X = 3. Grauert has shown that if NC/X is negative, then C

is exceptional. But we know many exceptional curves whose normal bundles are not negative.

In the case dim X = 3, the author and Nakayama have proved the following: (See [1], [2] and

[14])

Theorem 1.1. If C is an exceptional rational curve, then its normal bundle NC/X
∼=

OC(a) ⊕OC(b) (assume a 5 b) satisfies a + 2b < 0 and (a, b) 6= (−1, 0). Conversely, for every

pair of integers (a, b) which satisfies the above conditions, we can construct such exceptional

rational curves.

In this paper, we aim to generalize the above theorem to the higher dimensional case. Our

results are the following:

Theorem 1.2. Let C be a smooth exceptional curve of genus g, and let M be a subbundle

of NC/X of the maximal degree. Put b = deg M and a = deg NC/X − deg M. Then a + 2b < 0

and a + b < 0. Moreover if g = 0, then a + b 5 −n + 1.

Theorem 1.3. If (d1, · · ·, dn−1) are integers such that d1 5 · · · 5 dh < 0 5 dh+1 5 · · · 5
dn−1 and that (d1 + · · · + dh) + 2(dh+1 + · · · + dn−1) 5 −n + 1. Then we can construct an
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exceptional smooth rational curve C whose normal bundle is NC/X
∼= OC(d1)⊕· · ·⊕OC(dn−1).

In the case of surfaces, the singularity obtained by contracting a rational curve is at worst

a rational singularity. This is no longer true if dimX = 3. Related to this, the following facts

are known.

(1) (Laufer[10]) A small singularity obtained by contracting a smooth rational curve whose

normal bundle is semi-negative (i.e. di 5 0 for all i) is a rational singularity.

(2) There exists the natural surjection R1ϕ∗OX → H1(C, IC/I2
C), here IC is the defining

ideal of C ∼= P1 in OX . Note that IC/I2
C = N∗

C/X . Therefore if di = 2 for some i, then

R1ϕ∗OX 6= 0.

(3) We can constract (X, C) with H1(C, IC/I2
C) = 0 and R1ϕ∗OX 6= 0. (See §3.)

(4) A small singularity is rational if and only if it is Cohen-Macauley. But a rational small

singularity need not be Gorenstien. (Proposition 3 in p.363 of [16]is not true.)

§2. Proof of Theorem 1.2.

We summarize some results which have been proved in some preceding papers. Some

results are quoted in slightly extended form. So, we give proofs of them, though they are based

on the original papers.

Let IC be the defining ideal of a non-singular curve C in OX .

Definition. (Saturation) An ideal I of OX is called saturated if OX/I has no embeded

primes. Under the condition SuppOX/I = C, I is saturated if and only if there exists a

filtration OX = F0 ⊃ F1 ⊃ · · · ⊃ Fr = I such that every Fi−1/Fi is an invertible OC-module.

For any ideal J ⊂ OX and SuppOX/J = C, there exists the unique saturated ideal I such

that I ⊃ J and that I/J is a zero-dimensional sheaf or I = J. We call this ideal I to be the

saturation of J, and represent as Sat(J). A filtration of ideals included in IC is called saturated

if every successive quotient is a locally free OC-module.

Definition. (Degree and length) For two ideals I and J with IC ⊃ I ⊃ J and SuppOX/J =

C, there exists a filtration I = F0 ⊃ F1 ⊃ · · · ⊃ Fr ⊃ J such that every Fi−1/Fi is a lo-

cally free OC-module and that Fr/J is a zero-dimensional sheaf. Then we define deg I/J =
∑r

i=1 deg Fi−1/Fi + deg Fr/J, and lengthI/J =
∑r

i=1 rankFi−1/Fi. Clearly these are inde-

pendent of the choice of a filtration.

Definition. (f-base) Assume that I and J are ideals with IC ⊃ I ⊃ J, and that I/J is a

locally free OC-module. Let F: I = F0 ⊃ F1 ⊃ · · · ⊃ Fr = J be a filtration such that Fi−1/Fi
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are invertible OC-modules. A set of functions g1, · · ·, gr on a open set U is said to be an f-base

(filtration base) corresponding to F, if gi ∈ Γ(U,Fi−1) and if the class of gi modulo Fi is a

local base of the invertible sheaf Fi−1/Fi. We say h1, · · ·, hr is an f-base, if it is an f-base

corresponding to a suitable filtration.

Definition. (Numerical equivalence) Two vector bundles F and G over a curve C is called

to be numerical equivalent (denoted F ∼∼∼ G), if rankF = rankG and deg F = deg G.

Theorem 2.1. (Vanishing Theorem, Ando[2].) Assume that the ground field is an alge-

braically closed field of any characteristic. Let ϕ:X → Y is a surjective morphism such that the

general fibers of ϕ are at most one-dimensional. (Hence, dimX = dim Y or dimX = dim Y +1.)

If C is an irreducible component of an one-dimensional fiber of ϕ, then there exists a divisor

A (independent of the choice of Γ ) such that H1(Γ,OΓ(A)) = 0 for any subscheme Γ whose

support is C.

Proof. Since the argument is local, we can assume that Y is an affine neighborhood of

y = ϕ(C). Put m = dim Y = n − dimϕ. Let B1, · · ·, Bm ⊂ Y be divisors such that

y ∈ B1 ∩ · · · ∩Bm and that B1 ∩ · · · ∩Bm is zero-dimensional. Let Hi = ϕ∗Bi. Then we choose

r1, · · · , rm ∈ N so that Γ ⊂ r1H1 ∩ · · · ∩ rmHm as a scheme. Put qj = 0 or rj . Since ϕ is

projective morphism, we can choose a sufficiently ϕ-ample divisor A such that Riϕ∗OX(A) = 0

for i > 0. Then Riϕ∗OX(A−q1H1−· · ·−qmHm) ∼= Riϕ∗OX(A)⊗OY (−q1B1−· · ·−qmBm) = 0

for i > 0. Since Y is affine, Hi(Y, ϕ∗A − q1B1 − · · · − qmBm) = 0 for i > 0. Thus Hi(X, A −
q1H1 − · · · − qmHm) = 0 for i > 0. Therefore Hi(r1H1 ∩ · · · ∩ rmHm, A) = 0 for i = 1. Since

dim(Supp(Ker(Or1H1∩···∩rmHm → OΓ))) 5 1, we have H1(Γ,OΓ(A)) = 0.

Theorem 2.2. (Existence of an ample ideal, Nakayama[14].) If C is an exceptional curve,

then there exists an ideal A included in IC such that C is a component of Supp(OX/A) and

that A/ICA is an ample OC-module. Conversely, if there exists such an ideal A, then C is

exceptional.

Proof. Since the argument is local, we can assume that Y is a (formal or an analytic)

neighborhood of y, and that X is a (formal or an analytic) neighborhood of C. Since ϕ is

projective, we can find effective Cartier divisors D1, · · ·, Dn−1 such that (Di ·C)X < 0 for 1 5

i 5 n−1, and that dim(D1∩· · ·∩Dn−1) = 1. Let A be the ideal OX(−D1)+ · · ·+OX(−Dn−1).

Since (Di · C)X < 0, C ⊂ Di. Hence A ⊂ IC . Since A/ICA ∼= A ⊗ OC
∼= OC(−D1) ⊕ · · · ⊕

OC(−Dn−1), A/ICA is ample.
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Conversely, assume that there exists such A. We can suppose that A is saturated and

SuppSpecOX/A = C. We can apply the contractible criterion of Artin[3], Fujiki[5] to Spec(OX

/A).

Corollary 2.3. Assume that there exists a birational projective morphism ϕ:X → Y

whose exceptional set is a union of curves ∪iCi, and if C is an irreducible component of ∪iCi.

then C is contractible.

Theorem 2.4. (Jiménez[6] Theorem 1.) If C is an exceptional curve of genus g, then

there exists a line bundle L on a neighborhood of C in X such that deg(L|C) = g − 2 and

dimH1(X̂, L̂) < +∞. Here X̂ is the formal completion of X along C, and L̂ is the formal

completion of L along C. Conversely, if there exists such L, and if the ground field is C, then

C is contractible.

Let IC = J0 ⊃ J1 ⊃ · · · ⊃ Jn−1 = I2
C be a filtration such that all Ji−1/Ji are invertible

sheaves. We can find such a filtration, by Atiyah[4]. For some 1 5 h 5 n − 2, we put J = Jh.

Let ai = deg Ji−1/Ji, a = −(ah+1 + · · ·+ an−1) and b = −(a1 + · · ·+ ah). We can find a f-base

x1, · · ·, xn−1 corresponding to the above filtration on a sufficiently small neighborhood U of

p ∈ C. Clearly,

IC |U = (x1, · · · , xn−1),

J |U = (x1, · · · , xh)2 + (xh+1, · · · , xn−1).

We can easily check the following:

Proposition 2.5.

(Jr/ICJr)|U = 〈xm1
1 · · ·xmn−1

n−1 | (m1 + · · ·+ mh) + 2(mh+1 + · · ·+ mn−1) = 2r〉

(ICJr/Jr+1)|U = 〈xm1
1 · · ·xmn−1

n−1 | (m1 + · · ·+ mh) + 2(mh+1 + · · ·+ mn−1) = 2r + 1〉

Here 〈g1, · · · , gr〉 implies the OC∩U -module whose base is g1, · · ·, gr.

By the above proposition, we recognize that Jr and ICJr are saturated. If we read carefully

the proof of Theorem 3.2 in Ando [2], we obtain the following results.
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Theorem 2.6.

deg Jr/ICJr =− b

[h/2]∑

i=1

(
h− 1
2i− 1

)(
n + r − i− 2

n− 2

)

− (a + 2b)
[h/2]∑

i=0

(
h

2i

)(
n + r − i− 2

n− 1

)
,

rankJr/ICJr =
[h/2]∑

i=0

(
h

2i

)(
n + r − i− 2

n− 2

)
,

deg ICJr/Jr+1 =− b

[(h−1)/2]∑

i=0

(
h− 1

2i

)(
n + r − i− 2

n− 2

)

− (a + 2b)
[h/2]∑

i=0

(
h

2i + 1

)(
n + r − i− 2

n− 1

)
,

rank ICJr/Jr+1 =
[(h−1)/2]∑

i=0

(
h

2i + 1

)(
n + r − i− 2

n− 2

)
,

deg OX/Jr =− b
h∑

i=1

(
h− 1
i− 1

)(
r − [i/2] + n− 2

n− 1

)

− (a + 2b)
h∑

i=0

(
h

i

)(
r − [i/2] + n− 2

n

)
,

lengthOX/Jr =
h∑

i=0

(
h

i

)(
r − [i/2] + n− 2

n− 1

)
.

Here, [x] implies the round down of real number x.

Proof. We start by proving the following:

Claim 2.6.1. Jr
p/(ICJqJ

r−1
p ) ∼∼∼

⊕r
k=0 S2k(IC/Jq)⊗ Sr−k(Jp/I2

C) for 1 5 q 5 p < n− 1.

Proof. Put Gk = I2k−3
C JqJ

r−k+1
p + I2k

C Jr−k
p , and Hk = I2k−2

C Jr−k+1
p ∩ ICJqJ

r−1
p , here we

formally put J0 = J−1 = J−2 = OX . First we prove Gk ⊃ Hk. It is enough to show this on U .

Let xα be a monomial in x1, · · · , xq of degree α, yβ be a monomial in xq+1, · · · , xp of degree β,

and zγ be a monomial in xp+1, · · · , xn−1 of degree γ. Since Gk and Hk are generated by the

monomials in the form xαyβzγ , it is enough to show that if xαyβzγ ∈ Hk then xαyβzγ ∈ Gk.

Note that xαyβzγ ∈ Ii
CJj

p if and only if α + β + γ = i + j and α + β + 2γ = i + 2j. Assume

xαyβzγ ∈ Hk and xαyβzγ 6∈ Gk. Since xαyβzγ 6∈ I2k
C Jr−k

p and since xαyβzγ ∈ I2k−2
C Jr−k+1

p , we

have α + β + γ = r + k − 1 and α + β + 2γ = 2r. Since Gk ⊃ I2k−3
C JqJ

r−k+1
p ⊃ I2k−3

C Jr−k+2
p ,

xαyβzγ 6∈ I2k−3
C Jr−k+2

p . Thus α + β + 2γ < 2r + 1. Therefore γ = r− k + 1, α + β = 2k− 2. If

β = 1 and α + β = 2k − 2, then xαyβ ∈ I2k−3
C Jq. Hence xαyβzγ ∈ I2k−3

C JqJ
r−k+1
p ⊂ Gk. Thus

β = 0. But x2k−2zr−k+1 6∈ ICJqJ
r−1
p . Thus we have Gk ⊃ Hk.

Since I2
C ⊂ Jp ⊂ Jq ⊂ IC , we have I2k−3

C JqJ
r−k+1
p ⊂ Hk and Hk+1 = I2k

C Jr−k
p ∩Hk. Thus
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Gk = I2k
C Jr−k

p + Hk. Put Fk = Gk/Hk. By the isomorphism theorem, Fk
∼= I2k

C Jr−k
p /Hk+1.

On the other hand

S2k(IC/Jq)⊗ Sr−k(Jp/I2
C) ∼= I2k

C Jr−k
p /Gk+1.

Thus

0 → Fk+1 → Fk → S2k(IC/Jq)⊗ Sr−k(Jp/I2
C) → 0

is exact for 0 5 k 5 r. By similar arguments, we have F0
∼= Jr

p/ICJqJ
r−1
p and Fr+1

∼=
I2r−1
C Jq/(I2r

C ∩ ICJqJ
r−1
p ) = 0.

Claim 2.6.2. (Jq/Jq+1)⊗ (Jr
p/ICJq+1J

r−1
p ) ∼= JqJ

r
p/Jq+1J

r
p for 0 5 q < p 5 n− 1.

Proof. There exists the canonical surjection from the left hand side to the right hand side.

Thus it is enough to show that the both have the same rank at a general point of C. We use

the same notations as above. JqJ
r
p is generated by the monomials xαyβzγ with (α, β, γ) which

satisfy α + β + 2γ = 1 + 2r and α + 2β + 2γ = 2 + 2r. Thus JqJ
r
p/Jq+1J

r
p is generated by

xαxβ
q+1z

γ which satisfy α + β + 2γ = 1 + 2r and β = 1. On the other hand, Jr
p/ICJq+1J

r−1
p is

generated by xαxβ
q+1z

γ with α + β + 2γ = 2r. Thus (Jq/Jq+1)⊗ (Jr
p/ICJq+1J

r−1
p ) is generated

by xαxβ
q+1z

γ which satisfy α + β + 2γ = 1 + 2r and β = 1.

Put

Z(r) =

{
(m1, · · · ,mn−1) ∈ Zn−1

∣∣∣∣∣
(m1 + · · ·+ mh) + 2(mh+1 + · · ·+ mn−1) = r,

and mi = 0 for 0 5 i 5 n− 1

}
.

If we apply Claim 2.6.1 with p = q = h, then we have

Jr/ICJr ∼∼∼
r⊕

k=0

S2k(IC/J)⊗ Sr−k(J/I2
C)

∼∼∼
⊕

(m1,···,mn−1)∈Z(2r)

OC(m1a1 + · · ·mn−1an−1).

Here OC(d) means an invertible OC-sheaf of degree d. (OC(d) is unique up to numerial equiv-

alence, though it need not be unique up to isomorphisms.) Consider the coarse filtration

ICJr ⊃ J1J
r ⊃ J2J

r ⊃ · · · ⊃ Jh−1J
r ⊃ Jr+1.

By Claim 2.6.2, we have

ICJr/Jr+1 ∼∼∼
h⊕

q=1

OC(aq)⊗ (Jr/ICJqJ
r−1).

By Claim 2.6.1, we have

ICJr/Jr+1 ∼∼∼
h⊕

q=1

h⊕

k=0

OC(aq)⊗ S2k(IC/Jq)⊗ Sr−k(J/I2
C)

∼∼∼
⊕

(m1,···,mn−1)∈Z(2r+1)

OC(m1a1 + · · ·mn−1an−1).
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For each element ε = (ε1, · · · , εh) ∈ (Z/2Z)h, we put

Z(r, ε) = {(m1, · · · ,mn−1) ∈ Z(r) | mi ≡ εi(mod 2) for 1 5 i 5 p}.

Let rk(r, ε) be the number of elements in Z(r, ε), and let

d(r, ε) =
∑

(m1,···,mn−1)∈Z(r,ε)

(m1a1 + · · ·+ mn−1an−1).

Note that

rankJr/ICJr =
∑

ε∈(Z/2Z)h

rk(2r, ε),

rank ICJr/Jr+1 =
∑

ε∈(Z/2Z)h

rk(2r + 1, ε),

deg Jr/ICJr =
∑

ε∈(Z/2Z)h

d(2r, ε),

deg ICJr/Jr+1 =
∑

ε∈(Z/2Z)h

d(2r + 1, ε).

When ε contains p pieces of 1 and (h − p) pieces of 0, we denote v(ε) = p. We consider the

case: ε = (1, · · · , 1, 0, · · · , 0), v(ε) = p. If we put m1 = 2l1 +1, · · ·, mp = 2lp +1; mp+1 = 2lp+1,

· · ·, mh = 2lh; mh+1 = lh+1, · · ·, mn−1 = ln−1, then we can denote as

Z(r, ε) = {(m1, · · · ,mn−1) ∈ Zn−1 | 2(l1 + · · ·+ ln−1) = r − p}.

Thus, if r− p is an odd number, then Z(r, ε) = φ. If r− p is an even number: r− p = 2k, then

rk(r, ε) =
(

n + k − 2
k

)
=

(
k + n− 2

n− 2

)
.

Let’s calculate d(r, ε) in this case.

d(r, ε) =
∑

(m1,···,mn−1)∈Z(r,ε)

((2l1 + 1)a1 + · · ·+ (2lp + 1)ap

+ 2lp+1ap+1 + · · ·+ 2lhah + lh+1ah+1 + · · ·+ ln−1an−1)

=
∑

l1+···ln−1=k

((l1(2a1) + · · ·+ lh(2ah) + lh+1ah+1 + · · ·+ ln−1an−1) + (a1 + · · ·+ ap))

=
(

k + n− 2
n− 1

)
(2(a1 + · · ·+ ah) + (ah+1 + · · ·+ an−1)) +

(
k + n− 2

n− 2

)
(a1 + · · ·+ ap)

=
(

k + n− 2
n− 1

)
(−a− 2b) +

(
k + n− 2

n− 2

)
(a1 + · · ·+ ap).

Now we vary ε under the condition v(ε) = p = r − 2k. The number of such ε is
(
h
p

)
.

∑

v(ε)=p

d(r, ε) =
(

h

p

)(
k + n− 2

n− 1

)
(−a− 2b) +

p

h

(
h

p

)(
k + n− 2

n− 2

)
(a1 + · · ·+ ah)

=
(

h

p

)(
k + n− 2

n− 1

)
(−a− 2b) +

(
h− 1
p− 1

)(
k + n− 2

n− 2

)
(a1 + · · ·+ ah),

∑

v(ε)=p

rk(r, ε) =
(

h

p

)(
k + n− 2

n− 2

)
.

Varying 0 5 p 5 h, we have the conclusions.
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Proof of Theorem 1.2. Let M be a subbundle of NC/X of the maximal degree. Since

IC/I2
C is the dual sheaf of NC/X , we can find the ideal IC ⊃ J ⊃ I2

C such that (IC/J)∗ ∼= M. Let

h = rank IC/J . Note that IC/J and J/I2
C are locally free OC-modules, deg IC/J = −deg M =

−b and that deg J/I2
C = −a. By Atiyah[4], we can find a filtration IC = J0 ⊃ J1 ⊃ · · · ⊃ Jh =

J ⊃ Jh+1 ⊃ · · · ⊃ Jn−1 = I2
C such that all Ji−1/Ji are invertible sheaves.

Let L be the line bundle in Theorem 2.4. By Theorem 2.6, we have

χ(OX/Jr ⊗L) =− b
h∑

i=1

(
h− 1
i− 1

)(
r − [i/2] + n− 2

n− 1

)
− (a + 2b)

h∑

i=0

(
h

i

)(
r − [i/2] + n− 2

n

)

+ (deg L|C + χ(OC))
h∑

i=0

(
h

i

)(
r − [i/2] + n− 2

n− 1

)
.

Since deg L|C 5 g − 2, we have deg L|C + χ(OC) < 0. Moreover −b 5 0 by assumption. Since

dimH1(X, OX/Jr ⊗L) 5 dimH1(X̂, L̂),

we have

χ(OX/Jr ⊗L) = −dimH1(X̂, L̂)

for any r À 0. Thus −(a + 2b) must be positive. Therefore a + 2b < 0.

Similarly, we have a + b < 0, by

χ(OX/Ir
C ⊗L) = −(a + b)

(
r + n− 2

n

)
+ (deg L|C + χ(OC))

(
r + n− 2

n− 1

)
.

Assume that C ∼= P1. The dimension of the Hilbert scheme HilbC/X at [C] is not less

than h0(NC/X) − h1(NC/X) = deg NC/X + (n − 1). Since C is exceptional, the dimension of

the Hilbert scheme at [C] must be zero. Thus a + b = deg NC/X 5 −n + 1.

Remark. Jiménetz[6] Proposition 4.1 insists the similar inequality a + (h + 1)b 5 1 instead

of a + 2b 5 1. But this is incorrect. Theorem 1.3 gives a counter example for it. He have made

an error in calculation of χ(Jr/Jr+1 ⊗L).

§3. Examples of exceptional rational curves.

Proof of Theorem 1.3. It is convenient to fix better notations. We shall thereby prove

the following:

Let q and r are non-negative integers with q + r = n− 1, and let n1, · · ·, nq and p1, · · ·, pr

be any integers such that −ni < 0, pj = 0 for 1 5 i 5 q, 1 5 j 5 r, and that

(3.1) −(n1 + · · ·+ nq) + 2(p1 + · · ·+ pr) 5 −n + 1.
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Then, there exist an n-dimensional algebraic variety X and an exceptional curve C in X whose

normal bundle is

(3.2) NC/X = OC(−n1)⊕ · · · ⊕OC(−nq)⊕OC(p1)⊕ · · · ⊕OC(pr).

Let U and V are Cn with coordinates (t1, . . . , tq, s1, . . . , sr, w) and (z1, . . . , zq, y1, . . . ,

yr, x) respectively. Let Pj = 2(p1 + · · · pj) + j (0 5 j 5 r, P0 = 0), Ni = n1 + · · · + ni − i

(0 5 i 5 q, N0 = 0), and

σ = y2
1 + xP1y2

2 + · · ·+ xPr−1y2
r

(if r = 0 then σ = 0). Note that Ni = 0. We construct X by patching U and V by the following

transition functions:



ti = xnizi + x1−Ni−1σ (1 5 i 5 q)

sj= x−pj yj (1 5 j 5 r)

w= x−1.

Let C be the curve in X defined by t1 = · · · = tq = s1 = · · · = sr = 0 in U , and z1 = · · · =

zq = y1 = · · · = yr = 0 in V . Clearly C is a non-singular rational curve which satisfies (3.2).

We shall show that C is an exceptional. We shall directly construct the contraction morphism

of C. For that purpose, let’s find some holomorphic functions on X which vanish on C. Let

ui =
{

t1 = xn1z1 + xσ if i = 1,
ti − wni−1−1ti−1 = xnizi − xzi−1 if 2 5 i 5 q.

u1, . . . , uq are such functions. Let

σj =
r∑

k=j

xPk−1−Pj−1y2
k

for 1 5 j 5 r. Formally, put σr+1 = 0. Note that σ1 = σ. For 1 5 j 5 r, let I(j) be an integer

such that NI(j) + 1 > Pj = NI(j)−1 (I(j) is not always unique). Since Nq = Pr by (3.1), we

have 1 5 I(1) 5 · · · 5 I(r) 5 q. Let

vj = wPj−NI(j)−1tI(j) −
j∑

k=1

wPj−Pks2
k = x1+NI(j)−Pj zI(j) + xσj+1.

Then v1, . . . , vr are holomorphic functions on X which vanish on C. Moreover, ui and vj can

be divided by x on V . Thus wui, wvj , skupk

i and skvpk

j are also such functions (1 5 i 5 q,

1 5 j 5 r, 1 5 k 5 r).

Now we have (q+r)(2+r) holomorphic functions ui, vj , wui, wvj , skupk

i and skvpk

j . Aligning

these functions, we have the holomorphic map h:X −→ C(n−1)(2+r). Let X
ϕ−→Y

g−→C(n−1)(2+r)

be the Stein factorization of h. Clearly, ϕ(C) is a point. We shall show that X−C ∼= Y −ϕ(C).

It is enough to show that h is finite map on X −C. It is elementary (and somewhat tiresome)

9
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work to check it. These details are similar to the last part of the proof of Theorem 3.1. Thus

we omit it.

Theorem 3.1. For any positive integer m, there exists an 3-dimensional algebraic variety

X and an exceptional rational curve C in X with

NC/X = OC(−2m− 1)⊕OC(m).

Proof. Let U and V be C3 with coordinates (t, s, w) and (z, y, x). We construct X by

patching U and V by the following transition functions:



t= x2m+1z + y2 + x2my3

s= x−my

w= x−1

It is clear that the curve C ⊂ X defined by t = s = 0 in U and z = y = 0 in V is a rational

curve with IC/I2
C
∼= OC(2m + 1)⊕OC(−m) where IC is a defining ideal of C in OX . We shall

show that this (−2m− 1, m)-curve C is exceptional. The first step is to find five holomorphic

functions v1, · · ·, v5 on X. Let v1 = t = x2m+1z + y2 + x2my3 and v2 = w2mt− s2 = xz + y3.

v1 and v2 are holomorphic functions on X. Since u = v2
2 − v3

1 = 2xy3z + x2z2 + x2mu0(x, z, y)

can be divided by x, v3 = sum and v4 = wu are also holomorphic functions on X. For r = 0,

let

f0,r =
{

wmtr/2 if r is even
st(r−1)/2 if r is odd.

Inductively, for q = 1, let fq,r = f0,rv
q
2 −

q−1∑

i=0

(
q

i

)
fi,3q−3i+r.

Claim.
b∑

i=a

(−1)i−a

(
b

i

)(
i

a

)
= 0.

Proof. Let r = b− a. Then
b∑

i=a

(−1)i−a

(
b

i

)(
i

a

)
=

b!
a!

b∑

i=a

(−1)i−a

(b− i)!(i− a)!
=

b!
a!

r∑

j=0

(−1)j

(r − j)!j!
=

b!
a!r!

r∑

j=0

(−1)j

(
r

j

)
= 0.

Let

σ
(q,r)
i =

{
wmt(3q+r−3i)/2vi

2 if q + r + i is even
st(3q+r−3i−1)/2vi

2 if q + r + i is odd.

Claim. fq,r =
q∑

i=0

(−1)q−i

(
q

i

)
σ

(q,r)
i .

10
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Proof. Note that σ
(k,3q−3k+r)
i = σ

(q,r)
i . Let σi = σ

(q,r)
i . We shall show that

fk,3q−3k+r =
k∑

i=0

(−1)k−i

(
k

i

)
σi.

Note that when we put k = q, we have the claim. If k = 0, the above equality trivially holds.

If k > 0, we shall prove this by the induction on k. Since f0,3q−3k+rv
k
2 = σ

(q,r)
k ,

fk,3q−3k+r= f0,3q−3k+rv
k
2 −

∑k−1
i=0

(
k
i

)
fi,3k−3i+r

= σk −
∑k−1

i=0

(
k
i

) ∑i
j=0(−1)i−j

(
i
j

)
σj

= σk −
∑k−1

j=0

(∑k−1
i=j (−1)i−j

(
k
i

)(
i
j

))
σj

= σk +
∑k−1

j=0 (−1)k−j
(
k
j

)
σj

=
∑k

j=0(−1)k−j
(
k
j

)
σj .

Trivially, fq,r is a polynomial with respect to w, t, s. On the other hand, by construction,

fq,r(x, z, y) = xq−mzqyr + xmg(x, z, y), where g is a suitable polynomial. Especially, fm,0 is

also a polynomial with respect to x, z, y. Thus, v5 = fm,0 is a holomorphic function on X.

Now we have a holomorphic mapping h = (v1, · · ·, v5):X −→ C5. Let X
ϕ−→Y

g−→C5

be the Stein factorization of h. Since C = h−1(0), ϕ(C) is a point. We shall show that

X−C ∼= Y −ϕ(C). Since g is a finite map, and since every fiber of ϕ is connected, it is enough

to show that h is finite except the origin 0.

Let v = (v1, · · ·, v5) ∈ h(U) − {0}. If v2
2 − v3

1 6= 0, then t = v1, s = v3/(v2
2 − v3

1)m and

w = v4/(v2
2 − v3

1). Thus h−1(v) is just a point.

Assume v2
2 − v3

1 = 0. If v2 = 0, then we can derive v1 = v2 = v3 = v4 = v5 = 0. Thus

v2 6= 0. Since fm,0 = v5, we have αwm − βs = v5, where

α =





m/2∑

j=0

(
m

2j

)
v
(3m−6j)/2
1 v2j

2 if m is even

(m−1)/2∑

j=0

(
m

2j + 1

)
v
(3m−6j−3)/2
1 v2j+1

2 if m is odd

and

β =





(m/2)−1∑

j=0

(
m

2j + 1

)
v
(3m−6j−4)/2
1 v2j+1

2 if m is even

(m−1)/2∑

j=0

(
m

2j

)
v
(3m−6j−1)/2
1 v2j

2 if m is odd.

Since v2
2 = v3

1 and since v2 6= 0, we have (α, β) 6= (0, 0). Thus the equations on w and s{
αwm − βs= v5

v1w
2m − s2= v2

11



T. ANDO: Normal bundle of Exceptional curve

have at most 2m common solutions. Thus h|U−C is finite.

Let v = (v1, · · ·, v5) ∈ h(V − U) − {0}. Then x = 0. Thus v1 = y2, v2 = y3, v3 =

2mzmy3m+1, v4 = 2zy3, and v5 = zm. Therefore h|V−U−C is finite.

Thus we have h|X−C is finite. Therefore C is exceptional.

Lemma 3.2. Let ϕ: (X, C) → (Y, y) be a small contraction of C ∼= P1, and my be the

maximal ideal at y in OY . If I2
C ⊂ ϕ∗my and H1(C, IC/I2

C) = 0 then R1ϕ∗OX = 0.

Proof. Let my = (y1,. . ., yr), J = ϕ∗my and zi = ϕ∗yi (1 5 i 5 r). Define g:O⊕r
X → J by

g(a1,. . ., ar) = a1z1 + · · ·+ arzr. Since R2ϕ∗(Ker g) = 0, g:R1ϕ∗O⊕r
X → R1ϕ∗J is surjective.

Since H1(C, IC/I2
C) = 0, ι:R1ϕ∗I2

C → R1ϕ∗IC is surjective. Since I2
C ⊂ J , ι factor through

the surjection R1ϕ∗J → R1ϕ∗IC . Since H1(C, OC) = 0, R1ϕ∗IC
∼= R1ϕ∗OX . Thus we have a

surjection h:R1ϕ∗O⊕r
X → R1ϕ∗OX .

Assume that R1ϕ∗OX 6= 0. Let ξ1,. . .,ξd be basis of R1ϕ∗OX . Since h factors through g,

ξi can be written as

ξi =
r∑

k=1

zk

d∑

j=1

aijkξj ,

here aijk ∈ C. The matrix

(
r∑

k=1

aijkzk

)

i,j

must be invertible. But values of zk are zero on C.

This is a contradiction. Thus R1ϕ∗OX = 0.

By the above Lemma, the small singularities obtained as in the proof of Theorem 1.3 are

rational, if H1(C, IC/I2
C) = 0. But the following are examples with H1(C, IC/I2

C) = 0 but

R1ϕ∗OX 6= 0.

Example 3.3. Let U and V be C3 with coordinates (t, s, w) and (z, y, x). We construct

X and C by the following transition functions as the proof of Theorem 3.1.



t= x5z + xy3

s= x−1y

w= x−1

C is contracted by




v1= t = x5z + xy3

v2= wt = x4z + y3

v3= w4t− s3 = xz

v4= w5t− ws3 = z

Since IC/I2
C
∼= OC(5)⊕OC(−1), H1(C, IC/I2

C) = 0.

12
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We shall show that R1ϕ∗OX 6= 0. Note that H1(X, OX) ∼= R1ϕ∗OX An elementary

calculation of the Čech cohomology show us that the class of x−1y2 is not zero in H1(X, OX).

Thus R1ϕ∗OX 6= 0. (A careful calculation lead us to dimR1ϕ∗OX = 1.)

Example 3.4. Let n = 3. Let U and V be C3 with coordinates (t, s, w) and (z, y, x).

We construct X and C by the following transition functions as above.



t= xn+1z + yn + xnyn+1

s= x−1y

w= x−1

C is contracted by



v1= t = xn+1z + yn + xnyn+1

v2= wnt− sn = xz + yn+1

v3= wn+1t− wsn − st = z − xnyz − xn−1yn+2

v4= svn−1
2 − wtn

Note that v4 is a polynomial with (x, y, z). Since IC/I2
C
∼= OC(n+1)⊕OC(−1), H1(C, IC/I2

C) =

0. Onthe other hand,

R1ϕ∗OX =
n−1⊕

i=1

i⊕

j=1

C · x−jyi+1

. Thus dimR1ϕ∗OX = (n− 1)(n− 2)/2.

Remark. By the above exsamples, we conclude the following: A three dismensional small

singularity obtained by contracting (a, 1)-curve is a rational singularity if a = −3. But if

a 5 −4, we can construct both examples that are rational and that are irrational.

§4. Moving Fiber.

Consider the case that ϕ:X → Y is a morphism such that the general fibers of ϕ are at

most one-dimensional. We choose a and b as in Theorem 1.2. Then we can prove that a+2b 5 0

holds, similarly to the proof of Theorem 1.2 using Theorem 2.1 and 2.6. We shall consider the

case a + 2b = 0. Let C be an irreducible component of an one-dimensional fiber of ϕ. We

expect that some multiple of C is movable. The following theorem gives a partial answer to

this. This argument play one of the important roles in the classification theory of the extremal

ray (Mori[11]).

We choose the ideal J of OX as in the proof of Theorem 1.2. That is, J is the ideal such

that IC ⊃ J ⊃ I2
C , and that IC/J gives the quotient bundle of IC/I2

C of the minimal degree.

Theorem 4.1. Assume that a + 2b = 0 and that C ∼= P1, then Je/ICJe and ICJe/Je+1

are semi-negative for any positive integer e.

13
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Proof. We shall show that Je/ICJe is semi-negative for any positive integer e.

Assume that Je/ICJe is not semi-negative. Let’s derive a contradiction. Since Je/ICJe is

not semi-negative, we can find an ideal L such that Je ⊃ L ⊃ ICJe and that L/ICJe is an ample

invertible OC-module. Let f = 2e + 1 and let Lr =
∑

i+2j+fl=r Ii
CJjLl. We take a divisor A

of X as in Theorem 2.1. We want to derive the contradiction h0(X, OX/Lr ⊗OX
OX(A)) =

χ(OX/Lr ⊗OX
OX(A)) < 0 for r À 0. We have to calculate deg OX/Lr and lengthOX/Lr.

Let’s construct a saturated filtration between Lr and Lr+1.

For an integer i with 0 5 i 5 [r/f ], we define numeric functions γ(r, i) = [r/f ] − i,

β′(r, i) = (r%f + fi), β(r, i) = [β′(r, i)/2] and α(r, i) = β′(r, i)%2, where [ ] is the Gaussian

symbol, and % is the remainder operator (adopted in the programming language C ). Note that

β′(r, i) + fγ(r, i) = α(r, i) + 2β(r, i) + fγ(r, i) = r. Using these symbols, we define Lr,i as the

following:

Jl = J [l/2]I l%2
C ,

Pr,i = I
α(r,i)
C Jβ(r,i)Lγ(r,i) = Jβ′(r,i)L

γ(r,i),

Lr,i = Lr+1 +
[r/f ]∑

k=i

Pr,k.

Note that Lr =
∑

i+2j+fl=r

Ii
CJjLl =

[r/f ]∑

k=0

Pr,k. We have the filtration Lr = Lr,0 ⊃ Lr,1 ⊃ · · · ⊃

Lr,[r/f ] ⊃ Lr+1. Put Lr,[r/f ]+1 = Lr+1 for convenience’ sake. We shall introduce an another

filtration. Let

Ur
l,i = Ll,i + Jr.

This definition is valid if 0 5 i 5 [l/f ] + 1. But Ur
l,i have significance, only if r + 1 5 l <

[(fr − 1)/(2e)] and if 0 5 i < r − l + [l/f ]. Consider the coarse filtration Lr,[r/f ] = Ur
r+1,0 ⊃

Ur
r+2,0 ⊃ Ur

r+3,0 ⊃ · · · ⊃ Jr, and the fine filtration Ur
l,0 ⊃ Ur

l,1 ⊃ Ur
l,2 ⊃ · · · ⊃ Ur

l+1,0. By the

following claim, we consent that the conditions r+1 5 l < [(fr−1)/(2e)] and 0 5 i < r−l+[l/f ]

are reasonable.

Claim 4.1.1 If l = [(fr − 1)/(2e)], then Ur
l,i ⊂ Jr. If i = r − l + [l/f ], then Ur

l,i ⊂ Ur
l+1,0.

Proof. Note that Pl,i ⊂ Jr if and only if β′(l, i) + 2eγ(l, i) = r. Hence Ur
l,i ⊂ Ur

l+1,0 if and

only if β′(l, i) + 2eγ(l, i) = r. Note that β′(l, i) + 2eγ(l, i) = (l%f + fi) + (f − 1)([l/f ] − i) =

(l%f + f [l/f ])− ([l/f ]− i) = l − [l/f ] + i. Thus Ur
l,i ⊂ Ur

l+1,0 if and only if i = r − l + [l/f ].

Assume l = [(fr−1)/(2e)]. Since l > [(fr−1)/(2e)]−1 = [f(r−1)/(2e)], l > f(r−1)/(f−1).

Hence l − (l/f) > r − 1. Thus β′(l, i) + 2eγ(l, i) = l − [l/f ] = r for i = 0. Therefore Ur
l,i ⊂ Jr.
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With the symbol Ur, we denote the filtration Lr,[r/f ] = Ur
r+1,0 ⊃ Ur

r+1,1 ⊃ · · · ⊃ Ur
r+2,0 ⊃

· · · ⊃ Jr. For 0 5 i 5 [r/(2e)], let Jr,i = Jr−2eiL
i + Jr+1, and let Jr,[r/(2e)]+1 = Jr+1. Then

we have a filtration Jr ⊃ Jr,1 ⊃ · · · ⊃ Jr,[r/(2e)] ⊃ Jr+1. Consider the natural surjective map

Si(L/ICJe)⊗ Jr−2ei/Jr−2ei,1 → Jr,i/Jr,i+1.

Claim 4.1.2 Jr,i/Jr,i+1 is a locally free OC-module for 0 5 i 5 [r/(2e)], and

Jr,i/Jr,i+1
∼= Si(L/ICJe)⊗ Jr−2ei/Jr−2ei,1.

Proof. To begin with, we shall show that Jr,i/Jr,i+1 are locally free OC-modules. We

show this Subclaim by an induction on r. Put r = 2ep + q (0 5 q < 2e). Since Je/ICJe ∼=
Je/L⊕L/ICJe, we obtain an injection f0:Jq/Jq+1⊗ Sp(Je/L) → Jq/Jq+1⊗ Sp(Je/ICJe). Let

g0:Jq/Jq+1⊗Sp(Je/ICJe) → Jr/Jr+1 be the natural surjection, and let Mr,0 = Image(g0 ◦ f0).

Mr,0 is a locally free OC-module, and it have a canonical surjection π0:Mr,0 → Jr/Jr,1. We

assume that Mk,0
∼= Jk/Jk,1 for k < r as an induction hypothesis. By this assumption, we

obtain the canonical injection, fi:Mr−2ei,0 ⊗ Si(L/ICJe) → Jr−2ei/Jr−2ei+1 ⊗ Si(Je/ICJe) for

1 5 i 5 [r/(2e)]. There also exists the canonical surjection gi:Jr−2ei/Jr−2ei+1⊗Si(Je/ICJe) →
Jr/Jr+1. Let Mr,i = Image(gi ◦ fi). Mr,i is a locally free OC-module, and it have a canonical

surjection πi:Mr,i → Jr,i/Jr,i+1. Since Mr,i ∩ (
∑

j 6=i Mr,j) = 0, we have
∑[r/(2e)]

i=0 rankMr,i 5

rankJr/Jr+1. Thus rankJr/Jr+1 =
∑[r/(2e)]

i=0 rankJr,i/Jr,i+1 5
∑[r/(2e)]

i=0 rankMr,i 5 rankJr/

Jr+1. Therefore we have Mr,i
∼= Jr,i/Jr,i+1 for 0 5 i 5 [r/(2e)]. Thus we have proved that

Jr,i/Jr,i+1 are locally free OC-modules. Since the natural injection Si(L/ICJe)⊗Jr−2ei/Jr−2ei,1

→ Jr/Jr+1 can be factored as Si(L/ICJe) ⊗ Jr−2ei/Jr−2ei,1 → Mr,i → Jr/Jr+1, we have that

Si(L/ICJe) ⊗ Jr−2ei/Jr−2ei,1 → Jr,i/Jr,i+1 is injective. Since Jr−2ei/Jr−2ei,1
∼= Mr−2ei,0, this

map is surjective, therefore isomorphic.

Since Lr,[r/f ] = Jr + Lr+1, we have the natural surjection Jr/Jr+1 → Lr,[r/f ]/Lr+1. Since

Jr,1 ⊂ Lr+1, the above map can be reduce to the surjection Jr/Jr,1 → Lr,[r/f ]/Lr+1. On the

other hand, we obtain the natural surjections

(LU-r) Ll,i/Ll,i+1 → Ur
l,i/Ur

l,i+1 (r + 1 5 l < [(fr − 1)/(2e)] and 0 5 i < r − l + [l/f ]).

Note that, if r < f , these are isomorphisms. By induction on r, we will afterward show that

these surjections are all isomorphisms. We proceed our argument assuming that (LU-k) are

isomorphisms for k 5 r. Moreover we assume that

(LF-r) “Ll,i/Ll,i+1 are locally free OC-modules if (l 5 r and 0 5 i 5 [l/f ]) or (r + 1 5 l <

[(fr − 1)/(2e)] and 0 5 i < r − l + [l/f ]).”
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Note that (LF-(f − 1)) holds trivially.

We consider two filtrations between Lr,[r/f ] and Jr+1:

(F1) :Lr,[r/f ] = Ur
r+1,0 ⊃ · · · (filtration Ur) · · · ⊃ Jr ⊃ Jr,1 ⊃ · · · ⊃ Jr+1,

(F2) :Lr,[r/f ] ⊃ Lr+1 ⊃ Lr+1,1 ⊃ · · · ⊃ Lr+1,[(r+1)/f ] ⊃ · · · (filtration Ur+1) · · · ⊃ Jr+1.

We can couple the successive quotients of both filtrations as the following. Any quotients

Ur
r+1,i/Ur

r+1,i+1 in (F1) can be coupled with Lr+1,i/Lr+1,i+1 in (F2) — (CPL-1). For l = r +2,

any quotients Ur
l,i/Ur

l,i+1 in (F1) can be coupled with Ur+1
l,i /Ur+1

l,i+1 in (F2) — (CPL-2). The

quotient Jr/Jr,1 in (F1) can be coupled with Lr,[r/f ]/Lr+1 in (F2) — (CPL-3). Jr,1/Jr,2 in (F1)

can be coupled with Lr+1,[(r+1)/f ]−1/Lr+1,[(r+1)/f ] in (F2) — (CPL-4). For 2 5 i 5 [r/(2e)],

Jr,i/Jr,i+1 in (F1) can be coupled with Ur+1
r+i,[(r+i)/f ]−i/Ur+1

r+i,[(r+i)/f ]−i+1 in (F2) — (CPL-5). By

the above couplings, we have an one-to-one corresponding between the successive quotients of

(F1) and (F2). We shall show that these couples are isomorphic to each other. About (CPL-1),

since (LU-r) is an isomorphism, we have Ur
r+1,i/Ur

r+1,i+1
∼= Lr+1,i/Lr+1,i+1. About (CPL-2),

we have the natural surjection,

(SJ-2.r) Ur
l,i/Ur

l,i+1
∼= Ll,i/Ll,i+1 → Ur+1

l,i /Ur+1
l,i+1

About (CPL-3), we already have the natural surjection

(SJ-3.r) Jr/Jr,1 → Lr,[r/f ]/Lr+1.

About (CPL-4), since Pr+1,[(r+1)/f ]−1 = Jr−2eL, we have the natural surjection

(SJ-4.r) Jr,1/Jr,2
∼= L/ICJe ⊗ Jr−2e/Jr−2e+1,1 → Lr+1,[(r+1)/f ]−1/Lr+1,[(r+1)/f ].

About (CPL-5), since Pr+i,[(r+i)/f ]−i = Jr−2eiL
i, we have the natural surjection

(SJ-5.r) Jr,i/Jr,i+1
∼= Si(L/ICJe)⊗ Jr−2ei/Jr−2ei,1

→ Lr+i,[(r+i)/f ]−i/Lr+i,[(r+i)/f ]−i+1

→ Ur+1
r+i,[(r+i)/f ]−i/Ur+1

r+i,[(r+i)/f ]−i+1.

Claim 4.1.3. The surjections (LU-(r + 1)), (SJ-2.r), (SJ-3.r), (SJ-4.r) and (SJ-5.r) are

isomorphisms. Moreover (LF-(r + 1)) holds.

Proof. We are now proving the above claim by an induction on r. Since (SJ-2.r), (SJ-3.r),

(SJ-4.r) and (SJ-5.r) are obtained as the one to one coupling between the successive quotients of

the filtrations (F1) and (F2), we should mention that if each left hand sides of these surjections

are locally free OC-modules, these surjections are all isomorphisms. Since (SJ-3.r), (SJ-4.r)

and (SJ-5.r) clearly satisfy this condition, it is enough to check that Ll,i/Ll,i+1 are locally free

for l = r + 2 and 0 5 i < r − l + [l/f ]. This condition is satisfied by the induction hypothesis
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(LF-r). Thus (SJ-2.r), (SJ-3.r), (SJ-4.r) and (SJ-5.r) are isomorphisms. Since (SJ-2.r) and

(SJ-5.r) are isomorphisms, we know that (LU-r + 1) are isomorphisms. Therefore (LF-(r + 1))

holds. Thus we complete the proof of Claim 4.1.3.

Claim 4.1.4. The natural morphism Lβ′(r,i),i/Lβ′(r,i),i+1 ⊗ Sγ(r,i)(L/ICJe) → Lr,i/Lr,i+1

is an isomorphism for 0 5 i < [r/f ].

Proof. Since

L/ICJe ⊗ Jr−2e/Jr−2e,1
∼= Lr+1,[(r+1)/f ]−1/Lr+1,[(r+1)/f ],

and

Jr−2e/Jr−2e,1
∼= Lr−2e,[(r−2e)/f ]/Lr−2e,[(r−2e)/f ]+1,

we have the following isomorphism:

L/ICJe ⊗ Lr−2e,[(r−2e)/f ]/Lr−2e,[(r−2e)/f ]+1 → Lr+1,[(r+1)/f ]−1/Lr+1,[(r+1)/f ].

Similarly, for 2 5 i 5 [r/(2e)], since

Si(L/ICJe)⊗ Jr−2ei/Jr−2ei,1
∼= Lr+i,[(r+i)/f ]−i/Lr+i,[(r+i)/f ]−i+1,

and since

Jr−2ei/Jr−2ei,1
∼= Lr+i,[(r+i)/f ]−i/Lr+i,[(r+i)/f ]−i+1,

we have the following isomorphism:

Si(L/ICJe)⊗ Lr−2ei,[(r−2ei)/f ]/Lr−2ei,[(r−2ei)/f ]+1 → Lr+i,[(r+i)/f ]−i/Lr+i,[(r+i)/f ]−i+1.

Varying r and i, we have Claim 4.1.4.

Put rk(r) = rankLr,[r/f ]/Lr+1 and put d(r) = deg Lr,[r/f ]/Lr+1. Since Lr,[r/f ]/Lr+1
∼=

Jr/Jr,1, and since Si(L/ICJe) ⊗ Jr−2ei/Jr−2ei,1
∼= Jr,i/Jr,i+1, we have

∑[r/(2e)]
i=0 rk(r − 2ei) =

rankJr/Jr+1, and
∑[r/(2e)]

i=0 (d(r − 2ei) + rk(r − 2ei) · ideg L/ICJe) = deg Jr/Jr+1.

Claim 4.1.5.

(4.1.5.a) rk(2r) =
[h/2]∑

k=0

(
h

2k

) e−1∑

j=0

(
r − j − k + n− 3

n− 3

)
,

(4.1.5.b) rk(2r + 1) =
[(h−1)/2]∑

k=0

(
h

2k + 1

) e−1∑

j=0

(
r − j − k + n− 3

n− 3

)
.

Proof. We shall prove (4.1.5.a). By Theorem 2.6, we have
∑[2r/(2e)]

i=0 rk(2r − 2ei) =
∑[h/2]

k=0

(
h
2k

)(
r−k+n−2

n−2

)
. Assume that rk(2r − 2ei) =

∑[h/2]
k=0

(
h
2k

) ∑e−1
j=0

(
r−ei−j−k+n−3

n−3

)
holds for

i = 1. Then it is enough to show
∑[r/e]

i=0

∑[h/2]
k=0

(
h
2k

) ∑e−1
j=0

(
r−ei−j−k+n−3

n−3

)
=

∑[h/2]
k=0

(
h
2k

)(
r−k+n−2

n−2

)
.

Note that
∑m

j=0

(
j+q

q

)
=

(
m+q+1

q+1

)
. Put p = 2ei + j. Then

∑[r/e]
i=0

∑e−1
j=0

(
r−2ei−j−k+n−3

n−3

)
=

17
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∑e[r/e]+e−1
p=0

(
r−k−p+n−3

n−3

)
=

∑r−k
p=0

(
r−k−p+n−3

n−3

)
=

(
r−k+n−2

n−2

)
. Thus (4.1.5.a) hold. Similarly

we can prove (4.1.5.b).

We shall represent
∑r

l=0 d(l) as a function on r. Let T0(h) =
∑[h/2]

k=0

(
h
2k

)
, and T1(h) =

∑[(h−1)/2]
k=0

(
h

2k+1

)
. Note that T0(h) + T1(h) =

∑h
k=0

(
h
k

)
= 2h. If h is an odd number, then

T0(h) = T1(h) = 2h−1. If h is an even number, then T0(h) = 2h−1 +
(

h
h/2

)
/2 and T1(h) =

2h−1 − (
h

h/2

)
/2. Since

(
r−j−k+n−3

n−3

) ∼ rn−3/(n− 3)!, we have

rk(2r) ∼ T0(h)
ern−3

(n− 3)!
,

and

rk(2r + 1) ∼ T1(h)
ern−3

(n− 3)!
.

Thus we have
[r/e]∑

i=0

(rk(2r − 2ei) · i) ∼ T0(h)
rn−1

e(n− 1)!
,

and
[r/e]∑

i=0

(rk(2r + 1− 2ei) · i) ∼ T1(h)
rn−1

e(n− 1)!
.

Put c = deg L/ICJe. Recall that −b = deg IC/J and −a = deg J/I2
C . Since deg Jr/ICJr ∼

T0(h)(−a− 2b)rn−1/(n− 1)! and deg ICJr/Jr+1 ∼ T1(h)(−a− 2b)rn−1/(n− 1)!, we have
[r/e]∑

i=0

d(2r − 2ei) = deg Jr/ICJr −
[r/e]∑

i=0

(rk(2r − 2ei) · ideg L/ICJe)

∼ T0(h)
((−a− 2b)− c/e)rn−1

(n− 1)!
,

and
[r/e]∑

i=0

d(2r + 1− 2ei) = deg ICJr/Jr+1 −
[r/e]∑

i=0

(rk(2r + 1− 2ei) · ideg L/ICJe)

∼ T1(h)
((−a− 2b)− c/e)rn−1

(n− 1)!
.

Hence
r∑

i=0

d(l) ∼ ((−a− 2b)e− c)rn−1

2n−1−h(n− 1)!
.

Let’s calculate deg Lr/Lr+1. Put r = pf + q (0 5 q < f). Since

Lpf+q,i/Lpf+q,i+1
∼= Lif+q,i/Lif+q,i+1 ⊗ Sp−i(L/ICJe),

we have

deg Lpf+q/Lpf+q+1 =
p∑

i=0

deg Lif+q,i/Lif+q,i+1 ⊗ Sp−i(L/ICJe)

=
p∑

i=0

(d(if + q) + (p− i)crk(if + q))

∼
p∑

i=0

d(if + q) +
pn−1fn−3c

2n−h−2(n− 1)!
.
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We sum up the above equalities on q = 0, · · ·, f − 1, thereby we modify
∑p

i=0 d(if + q) to
∑f(p+1)−1

i=0 d(i), and we consequently have

deg Lpf/L(p+1)f ∼
(pf)n−1

2n−h−1(n− 1)!
(((−a− 2b)e− c) +

2c

f
)

∼ (ef(−a− 2b)− (f − 2)c)(pf)n−1

2n−h−1(n− 1)!f
.

Finally we have

deg OX/Lr ∼ rn

2n−h−1f2n!
(ef(−a− 2b)− (f − 2)c).

By Theorem 2.1, 0 < χ(OX/Lr ⊗OX
OX(A)) ∼ deg OX/Lr. Therefore (ef(−a − 2b) −

(f − 2)c) = 0. On the other hand, by the given condition, a + 2b = 0, c = deg L/ICJe > 0,

f = 2e + 1 = 3. This implies (ef(−a− 2b)− (f − 2)c) < 0. A contradiction. Thus we conclude

that Je/ICJe is semi-negative for any positive integer e.

We shall show that ICJe/Je+1 is semi-negative for any positive integer e.

Assume that ICJe/Je+1 is not semi-negative. Take an ample invertible sub module M of

ICJe/Je+1. Let f = 2e + 1 and ψ: S2(ICJe/Je+1) → Jf/ICJf . Clearly ψ(S2(M)) 6= 0. But

this contradict to the fact that Jf/ICJf is semi-negative.

Corollary 4.2. Under the assumption in Theorem 4.1, we assume IC/J ∼= OC(−1). Then

Spec(OX/J) is movable.

Proof. Since deg J/ICJ = −a − 2b = 0 and J/ICJ is semi-negative, we have J/ICJ ∼=
O
⊕(n−1)
C and ICJ/J2 ∼= IC/J ⊗ J/ICJ ∼= OC(−1)⊕(n−1). The isomorphism H0(X, J/J2) ∼=

H0(X, (OX/J)⊕(n−1)) ∼= kn−1 derives the isomorphism J/J2 ∼= (OX/J)⊕(n−1). Thus Spec(OX/J)

is movable.

This result will be used in Kachi[7].
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