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Abstract

Many analogues between the character degrees of irreducible char-
acters and lengths of conjugacy classes on a group G has already been
studied by several authors. Our purpose here is to impose analogous con-
ditions on the lengths of conjugacy classes of G and to describe the group
structure under these conditions. Moreover, we will describe the structure
of the class-length graph Γ∗(G) corresponding to the degree graph Γ(G).

1 Introduction

In this paper G always denotes a finite group. Let cd(G) be the set {χ(1) |
χ ∈ Irr(G)} where Irr(G) is the set of all the irreducible characters of G, and
ccl(G) be the set of the lengths of all the conjugacy classes of G.

It is clear that G is abelian if and only if cd(G) = {1} (or ccl(G) = {1}).
In [13], N. Ito proved that if ccl(G) = {1,m}, then m is a power of a prime p
and G is a direct product of a Sylow p-subgroup with an abelian group. The
results on character degrees corresponding to ccl(G) = {1,m} are also known
(see I. M. Isaacs [8, Chap. 12]).

The information obtained for | cd(G)| ≥ 3 is not as detailed as when | cd(G)| =
2. However, many results for | cd(G)| ≥ 3 have been given by I. M. Isaacs,
T. Noritzsch, D. S. Passman, B. Huppert and others. (see [2] [6] [7] [8] [9] [17]
[18]). As one of their results, it is known that if G is solvable and (m,n) = 1 for
all distinct m,n ∈ cd(G), then | cd(G)| ≤ 3, due to B. Huppert and T. Noritzsch
(see I. M. Isaacs [8, Problems (12.3)]).

Our main purpose is to obtain the class-length analogue of this without as-
suming the solvability of G and to generalize the next theorem, due to D. Chillag,
S. Dolfi and M. Herzog, which gives a necessary and sufficient condition on G
that all the class-lengths of G are prime powers.

Theorem(D. Chillag, S. Dolfi and M. Herzog [7, 33.9]).

(1) Let ρ∗(G) be the set of prime divisors of all elements of ccl(G). Suppose
that each m ∈ ccl(G) is a prime power and |ρ∗(G)| ≥ 2 If G does not have
any abelian direct factor 6= {1}, then the following statements hold:

(i) G is solvable and p-nilpotent with abelian Sylow p-subgroups for some
prime p.

(ii) Op′(G) is abelian.

(iii) Op(G) = Z(G).
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(iv) P/Op(G) operates fixed point freely on Op′(G). In particular P/Op(G)
is cyclic and G/Z(G) is a Frobenius group with Frobenius kernel
Op′(G)×Op(G)/Op(G).

(v) Op′(G) is a Sylow q-subgroup of G for some prime q 6= p. In partic-
ular |G| = paqb and ρ∗(G) = {p, q}.

(2) Suppose conversely that G has all the properties listed in (1). Then the
class-lengths of G are only the prime powers 1, |P/Op(G)|, |Op′(G)|.

Before stating our theorems, we will introduce to some notation. The set of
primes dividing an integer a is denoted by π(a). In particular, π(|G|) is denoted
by π(G). Sylp(G) denotes the set of Sylow p-subgroups of G. Z(G) and G′

denote the center of G and the commutator subgroup of G respectively. The
rest of the notation is standard.

Theorem 1. Suppose ccl(G) = {1, m1, m2, ..., ms, n1, n2, ..., nt}. Let
m = m1m2 · · ·ms and n = n1n2 · · ·nt with m < n. If (m,n) = 1, then the
following statements hold:

(1) (i) G is solvable and G = MN × A, where (possibly after interchanging
m and n) M is an abelian non-normal Hall π(m)-subgroup, N is an
abelian normal Hall π(n)-subgroup and A is abelian.

(ii) s = t = 1 and n ≡ 1 (mod m). In particular, ccl(G) = {1,m, n}.
(iii) G/Z(G) is a Frobenius group with Frobenius kernel NZ(G)/Z(G).

(iv) If G does not have non-trivial abelian direct factor, then M is cyclic,
Oπ(m)(G) = Z(G) and N = Oπ(n)(G) is the commutator subgroup of
G.

(2) cd(G) = {1,m}. In particular, the degree pattern of G is

(1, ..., 1︸ ︷︷ ︸
mc

,m, ..., m︸ ︷︷ ︸
kc

),

where n = 1 + km and c = |Z(G)|.

Remark. There are many groups with | ccl(G)| = 3. For example, the
symmetric group S3 of degree 3, the alternating group A4 of degree 4, a non-
abelian group Gpq of order pq where p and q are distinct primes, SL(2, 3) and
others. However, it is not true that groups for which ccl(G) = {1,m, n} with
m < n always satisfy cd(G) = {1,m}. In fact, although

ccl(S3) = {1, 2, 3}, ccl(A4) = {1, 3, 4}, ccl(Gpq) = {1, p, q} (p < q),
cd(S3) = {1, 2}, cd(A4) = {1, 3}, cd(Gpq) = {1, p},

those of SL(2, 3) are

ccl(SL(2, 3)) = {1, 4, 6}, cd(SL(2, 3)) = {1, 2, 3}.

Note that SL(2, 3) does not satisfy the assumption (m,n) = 1 of Theorem 1.
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The following corollary is an immediate conclusion from Theorem 1.

Corollary 1.1. Let ccl(G) = {1,m
(1)
1 , . . . , m

(1)
s1 , . . . , m

(r)
1 , . . . , m

(r)
sr } and

let m(k) = m
(k)
1 · · ·m(k)

sk for k = 1, 2, . . . , r. If (m(i),m(j)) = 1 for i 6= j, then
r ≤ 2.

We may obtain the next results as the special case for Corollary 1.1.

Corollary 1.2. If (m,n) = 1 for all m,n ∈ ccl(G) such that m 6= n, then
| ccl(G)| ≤ 3.

This corollary is the analogous result of cd(G) described as above. But the
solvability of G is not assumed.

Next corollary, which is one of the known results due to [4], follows as an
immediate consequence of our main theorem 1 using Tschebyschev’s theorem,
that is, there exists a prime number between integers n and 2n if n > 1.

Corollary 1.3. Suppose ccl(G) = {1, 2, . . . , r}. Then r ≤ 3. In particu-
lar, G/Z(G) ∼= S3 if r = 3.

In the case r = 2, see Ishikawa [10]. Corollary 1.3 is the analogue of B. Hup-
pert [7, §32].

Theorem 2 Suppose ccl(G) = {1,m, n} with (m,n) = 1 and m < n. Sup-
pose that G does not have non-trivial abelian direct factor. Put G∗ = M∗N∗

where M∗ is a non-central π(m)-subgroup of G and N∗ is a normal π(n)-
subgroup of G. Then

ccl(G∗) = {1, |M∗ : M∗ ∩ Z(G)|, |N∗|}.

In particular,
ccl(G) = {1, |M : Z(G)|, |N |}

where M is a Hall π(m)-subgroup of G and N is a Hall π(n)-subgroup of G.

In Section 3, using Theorem 1 and Theorem 2, we will discuss the conditions
of existence on a finite group G that ccl(G) = {1,m, n} with (m,n) = 1 and
m < n in terms of integers m and n.

We have already stated in Theorem 1 a necessary condition on such a group
G. The next result gives a sufficient condition for G.

Theorem 3 Assume that G does not have non-trivial abelian direct factor
and let π ⊂ π(G). Suppose that G has the following properties:

(a) G has an abelian Hall π-subgroup M .

(b) G has an abelian normal Hall π′-subgroup N .

(c) Z(G) = Oπ(G).

(d) G/Z(G) is a Frobenius group with Frobenius kernel NZ(G)/Z(G).
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Then ccl(G) = {1, |M : Z(G)|, |N |}.

Combining parts of Theorem 1 and Theorem 3, we obtain a generalization of
the result of D. Chillag, S. Dolfi and M. Herzog which was stated first. Later we
became aware that an equivalent result had already been proved by S. Dolfi [5] as
the conjugacy-class version of the concept of character-π-separability introduced
by O. Manz in [15]

The second section of this paper is devoted to the proofs of Theorems 1, 2
and 3. In Section 4, we will consider an application of Theorem 1 to the graph,
and give a relation between the class-length graph Γ∗(G) and the degree graph
Γ(G).

2 Proofs of our theorems

In order to prove Theorem 1, let us recall some well known facts, which can
be found in B. Huppert [7].

First we need to introduce some more notation. For any element g ∈ G,
let σG(g) be the set of all prime divisors of class length |gG|. Put ρ∗(G) =⋃

g∈G σG(g), that is, the set of prime divisors of all elements of ccl(G).

Lemma 1 (N. Ito [12]). Suppose that p and q are distinct primes in ρ∗(G).
If no length of any conjugacy class of G is divisible by pq, then (possibly after
interchanging p and q) G is p-nilpotent with abelian Sylow p-subgroups.

Remark. Suppose ccl(G) = {1,m, n} with (m,n) = 1. Then by Lemma 1
we may assume that

G is p-nilpotent with abelian Sylow p-subgroups (∗)

for every p ∈ π(m)(or for every p ∈ π(n)). In fact, this follows from:
(i) If G is p-nilpotent with abelian Sylow p-subgroups for every p ∈ π(m),

then π(m) satisfies (∗).
(ii) If there exists some p ∈ π(m) which does not satisfy (∗), then since no

class length in G is divisible by pq for every q ∈ π(n), it follows from Lemma 1
that G is q-nilpotent with abelian Sylow q-subgroups, and hence π(n) satisfies
(∗).

In the proof of Theorem 1, we may assume that π(m) satisfies (∗).

We shall improve for any finite group G the result [7, Lemma 33.3] which
has been proved under the assumption that G is solvable. This is used to prove
Steps 2 and 3 of the proof of Theorem 1.

Lemma 2. Let π a set of primes. Suppose that the length of any conjugacy
class of G is either a π-number or a π′-number or 1. If g ∈ G \ CG(Oπ(G)),
then |gG| is a π-number.

Proof. Let g ∈ G. If |gG| is a π′-number, then by assumption |CG(g)|π =
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|G|π. Put C = CG(g) and N = Oπ(G). Then

|CN |π =
|C|π|N |π
|C ∩N |π =

|C|π|N |
|C ∩N | ≥ |C|π = |G|π.

Hence N = C ∩N , that is, N ≤ C = CG(g). Therefore we obtain g ∈ CG(N).
If |gG| = 1, then clearly g ∈ Z(G) ≤ CG(N). Thus the proof of Lemma 2 is
complete.

Lemma 3 (B. Huppert[7, 33.4]). ρ∗(G) is the set of all prime divisors of
|G : Z(G)|.

Let A be a finite abelian group. We put Â = Irr(A), the dual group of A.

Lemma 4 (B. Huppert[7, 18.10, 26.1, 14.5]). Suppose that G operates on a
finite abelian group A. Then the following statements hold:

(1) If (|G|, |A|) = 1, then A ∼= Â as G-set.

(2) If G is abelian, then cd(GÂ) = { |aG| ∣∣ a ∈ A }.
(3) If (|G|, |A|) = 1, then A = [G, A]× CA(G).

Lemma 5 (B. Huppert[7, 33.2]). Suppose x, y ∈ G such that xy = yx and
(o(x), o(y)) = 1. Then σG(xy) ⊇ σG(x) ∪ σG(y).

Lemma 6 (N. Ito[11]). Let p be a prime. Then the following are equivalent:

(a) G has an abelian normal Sylow p-subgroup.

(b) G is p-solvable and p - χ(1) for all χ ∈ Irr(G).

Remark. Suppose ccl(G) = {1,m, n} with (m,n) = 1. Then by Theorem 1
G is solvable and we have G = MN × A where M is an abelian Hall π(m)-
subgroup, N is an abelian normal Hall π(m)-subgroup and A is abelian. Hence
every Sylow subgroups of G are abelian and so Lemma 6 means that

a Sylow p-subgroup of G is normal in G ⇐⇒ p - χ(1) for all χ ∈ Irr(G)

for any prime p. Moreover it follows from Theorem 1(2) that cd(G) = {1,m}
and hence Lemma 6 implies that any Sylow p-subgroup of G is not normal in
G for every p ∈ π(m) and any Sylow q-subgroup of G is normal in G for every
q ∈ π(n).

Proof of Theorem 1. By the previous reasoning, we can assume without
loss of generality that G is p-nilpotent with abelian Sylow p-subgroups for every
p ∈ π(m). Denote π(m) by π and put H =

⋂
p∈π Op′(G). Since G is p-nilpotent,

Op′(G) ≥ G′ for all p ∈ π and hence H ≥ G′. Also H is a π′-group.

We will now prove the theorem 1 via several steps.
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Step 1. G is π-solvable (and so G has a Hall π-subgroup, say M), M is
abelian and H is a unique Hall π′-subgroup of G.

Proof. Put π = { p1, p2, ..., pr}, Hi = Op′i(G), G0 = G and Gi = H1 ∩H2 ∩
· · · ∩Hi = Gi−1 ∩Hi for i = 1, 2, ..., r. Then we obtain a normal series of G

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gr = H ⊃ {1}.

Since G is pi-nilpotent for each i, 1 ≤ i ≤ r

Gi−1/Gi = Gi−1/(Gi−1 ∩Hi) ∼= Gi−1Hi/Hi ≤ G/Hi
∼= Pi ∈ Sylpi

(G)

and so Gi−1/Gi is a π-group. Also Gr/{1} ∼= H is π′-group. Hence G is π-
solvable and |G|π′ = |H|. Thus H is a Hall π′-subgroup of G. Since H is normal
in G, H is a unique Hall π′-subgroup of G. Moreover, since G is π-solvable, G
has a Hall π-subgroup M . Then

M ′ ≤ M ∩G′ ≤ M ∩H = {1}.

Therefore M is abelian. The proof of Step 1 is now complete.

Step 2. Let Ḡ = G/CG(H). Then M̄ is normal in Ḡ.

Proof. By Step 1 G is π-solvable, hence Ḡ is π-solvable. If g ∈ G \CG(H),
then by Lemma 2 |gG| is a π′-number since H = Oπ′(G). Hence |ḡḠ| is either
a π′-number or 1 and so every class-length of Ḡ is prime to every p ∈ π. Thus
by Lemma 3 |Ḡ : Z(Ḡ)| is not divisible by every p ∈ π, hence Z(Ḡ) contains a
Hall π-subgroup of Ḡ, and so M̄ ≤ Z(Ḡ). This implies that M̄ is normal in Ḡ
as required.

Step 3. H is abelian and G is solvable.

Proof. Suppose that H is not abelian. Let x ∈ H\Z(H). Then by Lemma 2
|xG| is a π′-number, and hence CG(x) ≥ Mg for some g ∈ G. Since MCG(H)
is normal in G by Step 2 and also CG(x) ≥ CG(H), we obtain

M ≤ MCG(H) ≤ (MCG(H))g = MgCG(H) ≤ CG(x).

This forces H = Z(H)∪CH(M). Hence H = Z(H) or CH(M). The first case is
excluded since H is not abelian. Thus H = CH(M). Then G = M ×H. Hence
no length of any conjugacy class of G is a π-number. This is a contradiction.

Therefore H is abelian and so we obtain G′′ = {1} since H ≥ G′. In
particular, G is solvable. Hence the proof of Step 3 is complete.

Since H is abelian, we can put H = N ×A where N is an abelian Hall π(n)-
subgroup of G and A is an abelian Hall π(mn)′-subgroup of G.

Step 4. M is not normal in G, N is normal in G and G = MN ×A.

Proof. If M is normal in G, then G = M ×H is abelian, a contradiction.
Therefore M is not normal in G.
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Since (|N |, |A|) = 1, N and A are characteristic subgroups of G and so
both of them are normal in G. Thus MN is a subgroup of G and A is a
unique Hall π(mn)′-subgroup of G. If g ∈ MN , then A ≤ CG(g) since p - |gG|
for any p ∈ π(mn)′. Hence MN and A commute element by element. Since
(|MN |, |A|) = 1, we obtain

G = MH = M(N ×A) = MN ×A.

The proof of Step 4 is complete.

Statement (1)(i) has been proved by Steps 1, 2, 3 and 4.

Remark. Set G = K × A where G is a finite group, K a subgroup and A
an abelian subgroup of G. Then it is easy to see that ccl(G) = ccl(K) and
cd(G) = cd(K). Also since Z(G) = Z(K)×A, we have

G/Z(G) = (K ×A)/(Z(K)×A) ∼= K/Z(K).

So a unique normal Hall subgroup of G/Z(G) (if exists) is mapped to a unique
normal Hall subgroup of K/Z(K).

Therefore, from now on, we may assume that G does not have non-trivial
abelian direct factor, and that G = MN where M is a non-normal abelian Hall
π(m)-subgroup of G and N = H is a normal abelian Hall π(n)-subgroup of G.

Step 5. Z(G) = Oπ(G), G′ = N .

Proof. Since N is abelian, by Lemma 4 it follows that N = [M, N ] ×
CN (M), and hence G = MN = M [M, N ] × CN (M). Since G does not have
any abelian direct factor, this yields CN (M) = {1}. Therefore Z(G)∩N = {1},
and hence Z(G) is a π-group, which implies Z(G) ≤ Oπ(G). Conversely,

[Oπ(G), G] ≤ Oπ(G) ∩G′ ≤ Oπ(G) ∩N = {1},

and hence Z(G) ≥ Oπ(G) which proves Z(G) = Oπ(G).
Furthermore, since

G′ ≤ N = [M, N ] ≤ [G, G] = G′.

we have G′ = N and the proof of Step 5 is complete.

Step 6. Let x ∈ M \Z(G) and y ∈ N \Z(G) (= N \{1}). Then |xG| = |N |
and |yG| = |M : Z(G)|.

Proof. If g ∈ CN (x), then by Lemma 5 σG(gx) ⊇ σG(g) ∪ σG(x). Since
M is abelian, |xG| is a π′-number and so π′ ⊇ σG(x) 6= ∅. This implies that
|(gx)G| is a π′-number, and hence σG(g) = ∅. Thus g ∈ N ∩ Z(G) = {1}, so
CN (x) = {1}. Therefore we obtain |xG| = |G : CG(x)| = |N : CN (x)| = |N |.

Similarly, if g ∈ CM (y), then by Lemma 5 σG(gy) ⊇ σG(g) ∪ σG(y). Since
N is abelian, |yG| is a π-number and so π ⊇ σG(y) 6= ∅. This implies that
|(gy)G| is a π-number, and hence σG(g) = ∅. Thus g ∈ M ∩ Z(G) = Z(G), so
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CM (y) ≤ Z(G). Conversely, it is clear that CM (y) ≥ Z(G). Therefore we have
CM (y) = Z(G) and so |yG| = |G : CG(y)| = |M : CM (y)| = |M : Z(G)| as
required.

Put m1 = |M : Z(G)| and n1 = |N |. Since |yG| = m1 for every y ∈ N \ {1}
and N is normal in G, there exists an integer k such that n1 = 1 + km1.
Therefore n1 ≡ 1 (mod m1). In particular, m1 < n1 and

|G| = |MN | = |M ||N | = cm1(1 + km1)

where c = |Z(G)|.

Step 7. s = t = 1, m < n and n ≡ 1 (mod m).

Proof. Let g ∈ G \ (M ∪ N) and put g = xy for some x ∈ M \ {1} and
y ∈ N \ {1}.

Suppose that |gG| is a π-number. Then it is clear that |gG| ≤ |M : Z(G)| =
m1. Also since gh = (xy)h = xyh for all h ∈ M , we have, by Step 6,

|gG| ≥ |gM | = |yM | = |M : Z(G)| = m1.

Thus we have |gG| = m1 and hence s = 1.
Next suppose that |gG| is a π′-number. If x ∈ G \ Z(G), then similarly

as above, we have |gG| = |xN | = |N | = n1. If x ∈ Z(G), then we have
|gG| = |yG| = m1 since gh = xyh for all h ∈ G. This is a contradiction.
Therefore we obtain t = 1. In particular, m = m1 < n1 = n and so n ≡ 1
(mod m) as required.

Statement (1)(ii) follows from Step 7.

Step 8. Let Ḡ = G/Z(G). Then Ḡ is a Frobenius group with Frobenius
kernel N̄ and M is cyclic.

Proof. Let g ∈ G. First we claim that |gG| = m if and only if g ∈ (Z(G)×
N) \ Z(G).

If |gG| = m, then clearly CG(g) ≥ Z(G)×N . But since

|CG(g)| = |G|
|gG| =

|MN |
|M : Z(G)| = |Z(G)||N |,

we have CG(g) = Z(G)×N , which implies g ∈ Z(G)×N \ Z(G).
Conversely, if g ∈ (Z(G)×N)\Z(G)，then |gG| is a π-number since CG(g) ≥

N , and so |gG| = m as claimed.
Similarly, we obtain that |gG| = n if and only if g ∈ Mh \ Z(G) for some

h ∈ G. Therefore we have a partition of G such that

G =
(
Z(G)

) ∪ (
(Z(G)×N) \ Z(G)

) ∪ ( ⋃

h∈G

Mh \ Z(G)
)

=
(
Z(G)×N

) ∪ ( ⋃

h∈G

Mh
)
.
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Next we claim that if M 6= Mh for h ∈ G, then M ∩Mh = Z(G).
For, suppose M 6= Mh so that M ∩ Mh ≥ Z(G) since Z(G) = Oπ(G).

On the other hand, if g ∈ M ∩ Mh, then |gG| = 1 or n. Since M and Mh

are abelian, CG(g) contains M and Mh, hence M ⊂ MMh ⊆ CG(g), and so
|gG| = |G : CG(g)| < |G : M | = n. This implies |gG| = 1, that is, g ∈ Z(G) and
thus M ∩Mh ≤ Z(G). Therefore we have M ∩Mh = Z(G) as claimed.

Hence Ḡ is a Frobenius group. In particular, N̄ is a Frobenius kernel of Ḡ.
Moreover, since M̄ = M/Z(G) is an abelian Frobenius complement, so M̄ is
cyclic.

We can now choose generators x1, ..., xd of M and an integer e such that

M =<x1>×<x2>× · · · ×<xd>,

Z(G) =<xe
1>×<x2>× · · · ×<xd>.

Then <x2> × · · · × <xd> is an abelian direct factor of G and hence <x2> ×
· · · ×<xd> = {1}. Therefore M is cyclic and the proof of Step 8 is complete.

Statement (1)(iii) and (iv) are immediate from Steps 5, 6 and 8.

Step 9. cd(G) = {1,m}. In particular, the degree pattern of G is

(1, ..., 1︸ ︷︷ ︸
cm

,m, ...,m︸ ︷︷ ︸
ck

)

where c = |Z(G)| and n = 1 + km.

Proof. Put N̂ = Irr(N). Then it follows from Lemma 4 that

cd(G) = cd(MN) = cd(MN̂) = { |yM |
∣∣ y ∈ N} = {1,m}.

Since G′ = N by Step 5, the number of linear characters of G is |G : G′| =
|M | = cm and hence the number of irreducible characters of G with degree m
is ck since ∑

χ∈Irr(G)

χ(1)2 = |G| = cm(1 + km).

as desired.

Statement (2) follows from Step 9 and therefore the proof of Theorem 1 is
now complete.

Proof of Theorem 2. Let M be a Hall π(m)-subgroup of G which contains
M∗, and N be a unique Hall π(n)-subgroup of G so that N∗ ≤ N . Let g ∈ G∗.

(i) Suppose |gG| = m, then since CG(g) = Z(G)×N , we have

CG∗(g) = G∗ ∩ CG(g) = M∗N∗ ∩ (Z(G)×N).

Let h ∈ CG∗(g) and put h = x1y1 = x2y2 for some x1 ∈ M∗, y1 ∈ N∗,
x2 ∈ Z(G), y2 ∈ N . Then

x−1
2 x1 = y2y

−1
1 ∈ Z(G)M∗ ∩NN∗ ≤ M ∩N = {1},
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and so x1 = x2 ∈ M∗ ∩ Z(G) and y1 = y2 ∈ N∗ ∩ N = N∗. Hence h =
x1y1 ∈ (M∗ ∩ Z(G))×N∗, so CG∗(g) ≤ (M∗ ∩ Z(G))×N∗. Conversely, since
M∗∩Z(G) ≤ Z(G) < CG(g) and N∗ ≤ N < CG(g), we have (M∗∩Z(G))×N∗ ≤
G∗ ∩ CG(g) = CG∗(g). Therefore CG∗(g) = (M∗ ∩ Z(G))×N∗ and hence

|gG∗ | = |M∗N∗ : (M∗ ∩ Z(G))×N∗| = |M∗ : M∗ ∩ Z(G)|.
(ii) Suppose |gG| = n. Then since CG(g) = Mh for some h ∈ G, g is a π-

element. Also G is solvable and so G∗ is solvable. Thus there exists a Hall π(m)-
subgroup M∗

g of G∗ such that M∗
g 3 g. Since M∗ is a Hall π(m)-subgroup of

G∗, M∗ and M∗
g are conjugate. Hence M∗

g is abelian and M∗
g ≤ CG∗(g). On

the other hand, since

|CG∗(g)| = |G∗ ∩Mh| ≤ |G∗|π(m) = |M∗| = |M∗
g |,

this implies CG∗(g) = M∗
g . Therefore we have

|gG∗ | = |M∗N∗ : M∗
g | = |N∗|.

In particular, since Z(G) = Oπ(m)(G) by Theorem 1, we have M > Z(G) and
hence ccl(G) = { 1, |M : Z(G)|, |N | }. The proof of Theorem 2 is complete.

Proof of Theorem 3. Put Ḡ = G/Z(G). As N, G/N are abelian, so G is
solvable, hence so is Ḡ. The order of a Frobenius complement of Ḡ is equal to
|Ḡ : N̄ | = |M̄ |, so M̄ is a Frobenius complement of Ḡ since any subgroup of
order |M̄ | is conjugate to M̄ . Hence

Ḡ = N̄ ∪ (
⋃

h̄∈Ḡ

M̄ h̄),

and we obtain a partition of G

G = (N × Z(G)) ∪ (
⋃

h∈G

Mh).

Take g ∈ G.
Suppose g ∈ (N × Z(G)) \ Z(G). Since N × Z(G) is abelian, we have

CG(g) ≥ N × Z(G). Now |gG| = |gM | = |M : CM (g)| as gG = gNM = gM .
Since M̄ operates N̄ fixed point free, CM̄ (ḡ) = {1} and hence CM (g) ≤ Z(G).
Otherwise Z(G) ≤ M as Z(G) = Oπ(G), hence CM (g) ≥ Z(G). Therefore we
have CM (g) = Z(G) and so |gG| = |gM | = |M : CM (g)| = |M : Z(G)|.

Suppose g ∈ Mh \Z(G) for some h ∈ G. Since Mh is abelian, CG(g) ≥ Mh.
Now |gG| = |gN | = |N : CN (g)| since gG = gMhN = gN . As M̄ operates N̄ fixed
point free, CN̄ (ḡ) = {1} and hence CN×Z(G)(g) ≤ Z(G). As Z(G) = Oπ(G),
we get

CN (g) = CN×Z(G)(g) ∩N ≤ Z(G) ∩N = {1},
and hence CN (g) = {1}. Therefore

|gG| = |N : CN (g)| = |N |.

Thus we obtain ccl(G) = {1, |M : Z(G)|, |N |} and the proof is complete.
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3 Existence of a group with three class-lengths

Throughout this section, we will assume that G does not have non-trivial
abelian direct factor, and that ccl(G) = {1,m, n} with (m,n) = 1 and m < n.

Let M be a Hall π(m)-subgroup of G and let N be a Hall π(n)-subgroup of
G. Then M is abelian non-normal in G and N is abelian normal in G, as stated
in Theorem 1.

Take q ∈ π(n) and let Q ∈ Sylq(G). Then it follows from Lemma 6 that Q
is normal in G, and so we have ccl(MQ) = {1,m, |Q|} and |Q| ≡ 1 (mod m)
by Theorem 1 and Theorem 2. Therefore, in studying how the structure of N
and ccl(G) are related, it seems to be important to consider the case that n is
a prime power.

From now on, we may assume that N = Q ∈ Sylq(G) and n = qe where q is
prime and e > 0.

3.1 We shall now construct an example of a group G with ccl(G) =
{1,m, qe}, as a semi-direct product of an elementary abelian group Q of or-
der qe by a cyclic group M of order m. Here since qe ≡ 1 (mod m), we can put
qe = 1 + km for some integer k > 0.

Let F be a finite field with qe elements. Then the additional group F+ is
elementary abelian of order qe. Also since the multiplicative group F× is a cyclic
group of order qe − 1, F× contains the subgroup <σ> of order m. We define
the action of <σ> on F+ by ax = xa for all a ∈ F+ and every x ∈ <σ>. Let
G be the semi-direct product of F+ by <σ>. Then, for (x, a), (y, b) ∈ G where
x, y ∈ <σ> and a, b ∈ F+, (y, b)−1(x, a)(y, b) = (y−1,−by−1

)(xy, ay + b) =
(x,−bx +ay + b) = (x, ya+(1−x)b), and hence |(x, a)G| ≤ |F+| = qe. If x 6= 1,
then |(x, a)G| ≥ |(x, a)F+ | = |F+| = qe, and thus |(x, a)G| = qe. Also it is clear
that |(1, a)G| = m or 1. Therefore we have ccl(G) = {1,m, qe}.

By the mentioned above, we obtain the following result.

Corollary 3.1. Let n =
∏r

i=1 qi
ei be the prime number decomposition

of n. There exists a finite group G satisfying ccl(G) = {1,m, n} with (m,n) = 1
and m < n if and only if qi

ei ≡ 1 (mod m) for i = 1, 2, · · · , r.

3.2 Suppose that G has a cyclic Sylow q-subgroup Q. Since Q is the only
Sylow q-subgroup of G, every q-element of G lies in Q. In particular, every
element of order q lies in Q. Since Q is cyclic, the number of elements of order q
is equal to q− 1, and these q− 1 elements form an union of conjugacy classes of
the same length m. This implies q ≡ 1 (mod m), which is a necessary condition
for that G satisfying our assumption has a cyclic Sylow q-subgroup.

We can show that q ≡ 1 (mod m) is also a sufficient condition. First we
want to show the following proposition.

Proposition 3.2. Let A be a finite cyclic group and let σ ∈ Aut(A) \ {1}.
If (o(σ), |A|) = 1, then <σ> operates fixed point freely on A. In particu-
lar, if H = <σ>A is the semi-direct product of A by <σ>, then ccl(H) =
{1, o(σ), |A|}.
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Proof. If <σ> does not operate fixed point freely on A, then there exists
an element of <σ> such that it does not fixed point freely on A and its order
is prime. Hence it suffices to prove that every element of prime order of <σ>
operates fixed point freely on A. Therefore we may assume that m = o(σ) is
prime.

Put M = <σ> and Ā = A/CA(M). We define the action of M on Ā by
āτ = aτ for all a ∈ A and for every τ ∈ M . Clearly this is well-defined. Let
τ ∈ M and a ∈ A. If ā ∈ CĀ(τ), then a−1aτ ∈ CA(M) and hence

a−1aτ = (a−1)τaτ2
= · · · = (a−1)τm−1

aτm

.

This implies (a−1aτ )m = 1 and hence aτ = a. Thus we conclude that ā ∈ CĀ(τ)
if and only if a ∈ CA(τ).

We next claim that M operates fixed point freely on Ā. Take any τ ∈
M \ {1}. Then since M = <τ>, CA(M) = CA(τ) and hence it follows from
above argument that āτ = ā if and only if ā = 1. Therefore τ operates fixed
point freely on Ā, as claimed.

Thus, by Theorem 3, we have ccl(MĀ) = {1, |M | = m, |Ā|}, and MĀ =
(
⋃

ḡ∈MĀ M ḡ) ∪ Ā. Hence since MĀ ∼= H/CA(M), we obtain H = (
⋃

g∈H Mg ×
CA(M)) ∪A. Now, since H = MA and A is abelian, so CA(M) ≤ Z(H).

If x ∈ Mg × CA(M) for some g ∈ H, then CH(x) ≥ Mg, and hence |xH |
is either a π(A)-number or 1. Also if x ∈ A, then CH(x) ≥ A, and so |xH | is
either a π(M)-number or 1. Thus we have ccl(H) = {1, m′, n′} where m′ is
a π(M)-number and n′ is a π(A)-number. Again since MĀ ∼= H/CA(M), so
m′ ≥ m = |M | and hence m′ = m. Moreover it follows from Theorem 2 that
n′ = |A|

We now suppose that q ≡ 1 (mod m) and put q = 1 + km for some integer
k. Then the automorphism group of a cyclic group Q of order qe (e = 1, 2, ...)
is a cyclic group of order ϕ(qe) = qe−1(q − 1) = qe−1km. Hence Aut(Q) has
an element of order m, and so, by Proposition 3.2, we obtain ccl(<σ>Q) =
{1, m, qe}. Therefore we conclude that q ≡ 1 (mod m) is a sufficient condition
for that G has a cyclic Sylow q-subgroup.

3.3 Now we give a rule with respect to Sylow q-subgroups G. Let Q ∈
Sylq(G) and let

Q = Z/qZ× · · · × Z/qZ︸ ︷︷ ︸
c1

×Z/q2Z× · · · × Z/q2Z︸ ︷︷ ︸
c2

× · · · × Z/qkZ× · · · × Z/qkZ︸ ︷︷ ︸
ck

.

Let Qk−1 be a subset of Q such that orders of elements are at most qk−1.
Then Qk−1 is a characteristic subgroup of Q, and hence Qk−1 is normal in
G. By Theorem 2 ccl(MQk−1) = {1, m, |Qk−1| = qe−ck}, hence qe−ck ≡ 1
(mod m) and so qck ≡ qckqe−ck = qe ≡ 1 (mod m). Similarly we obtain qcj ≡ 1
(mod m) (j = 1, 2, ..., k). Hence qd ≡ 1 (mod m) where d = (c1, c2, ..., ck, e) is
the greatest common divisor of c1, c2, ..., ck and exponent e.

We now suppose that qf ≡ 1 (mod m) and qj 6≡ 1 (mod m) for some integer
f and every j (= 1, 2, ..., f − 1).
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Then c1, c2, ..., ck, e are multiples of f . Hence we have

Q = Z/qZ× · · · × Z/qZ︸ ︷︷ ︸
f

× · · · × Z/qZ× · · · × Z/qZ︸ ︷︷ ︸
f

× Z/q2Z× · · · × Z/q2Z︸ ︷︷ ︸
f

× · · · × Z/q2Z× · · · × Z/q2Z︸ ︷︷ ︸
f

× · · · × Z/qkZ× · · · × Z/qkZ︸ ︷︷ ︸
f

× · · · × Z/qkZ× · · · × Z/qkZ︸ ︷︷ ︸
f

.

Hence if a cyclic group M of order m operates fixed point freely on

Z/qiZ× · · · × Z/qiZ︸ ︷︷ ︸
f

for each i (= 1, 2, ...), then we can define the action of M on the above Q
operating fixed point freely.

Remark Let f be as 3.3. If e is a prime, then we can determine the structure
of the Sylow q-subgroup Q of G by 3.3. Suppose that

Q = Z/qe1Z× · · · × Z/qerZ,

so that e = e1 + · · ·+ er. Since e is a prime, f is equal to e or 1.
(i) Suppose that f = e. Then since r is a multiple of f by 3.3 and since

r ≤ e, we have r = e. This implies that e1 = · · · = er = 1. Therefore Q is an
elementary abelian group. In particular, G is a semi-direct product of Q with a
cyclic group M of order m.

(ii) Suppose that f = 1, so that q ≡ 1 (mod m). Then by 3.2 M operates
fixed point freely on Z/qeiZ for any i = 1, ..., r, so we can define an action of M
on

Q = Z/qe1Z× · · · × Z/qerZ

such that fixed point freely. So all abelian groups of order qe are able to be the
Sylow q-subgroup of G such that ccl(G) = {1,m, qe}.

4 The class-length graph

In Section 2 we introduced the notation ρ∗(G) which is the set of prime
divisors of all elements of ccl(G). Similarly we put ρ(G) be the set of prime
divisors of all elements of cd(G).

We define the class-length graph Γ∗(G), whose vertices are the primes in
ρ∗(G) and p, q ∈ ρ∗(G) are connected by an edge in Γ∗(G) if there exists some
g ∈ G such that pq divides |gG|. Similarly we define the degree graph Γ(G),
whose vertices are the primes in ρ(G) and p, q ∈ ρ(G) are connected in Γ(G) if
there exists some χ ∈ Irr(G) such that pq | χ(1). Let n(Γ∗(G)) and n(Γ(G))
denote the number of connected components of the class-length graph Γ∗(G)
and the degree graph Γ(G) respectively.

In [14] and [16], O. Manz, R. Staszewski and W. Willems proved that
n(Γ(G)) ≤ 3 and if G is solvable, then n(Γ(G)) ≤ 2. G. Alfandary [1] proved

13



the following theorem for the class-length graph analogue of this result. We give
another short proof using Corollary 1.1.

Theorem 4(G. Alfandary [1]). Let G be a finite group. Then the following
statements hold:

(1) n(Γ∗(G)) is at most 2.

(2) If n(Γ∗(G)) = 2, then G is solvable.

(3) If G is a non-abelian simple group, then n(Γ∗(G)) = 1.

Proof. If n(Γ∗(G)) = 3, then we can write

ccl(G) = {1, a1, ..., ar, b1, ..., bs, c1, ... ct},
(a, b) = (b, c) = (c, a) = 1

where a = a1 · · · ar, b = b1 · · · bs, c = c1 · · · ct. However, by Corollary 1.1, there
exists no such a group, a contradiction. By a similar argument it is impossible
to be n(Γ∗(G)) ≥ 4. Therefore (1) holds.

If n(Γ∗(G)) = 2, it follows from Theorem 1 that G is solvable. So (2) holds.
(3) follows from (1) and (2). Thus the proof of Theorem 4 is complete.

Combining Theorem 1 and Theorem 4, we obtain a correspondence between
ccl(G) and cd(G).

Corollary 4.1 Let G be a finite group. Then the following statements
hold:

(1) If n(Γ∗(G)) = 2, then n(Γ(G)) = 1.

(2) If n(Γ(G)) ≥ 2, then n(Γ∗(G)) = 1.

Proof. (1) If n(Γ∗(G)) = 2, then cd(G) = {1,m} by Theorem 1(2), which
implies n(Γ(G)) = 1.

(2) Since n(Γ∗(G)) ≤ 2 by Theorem 4, the statement (2) follows the state-
ment (1).
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