COMMUTATIVITY OF OPERATORS
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ABSTRACT. For two bounded positive linear operators a,b on a
Hilbert space, we give conditions which imply the commutativity of
a,b. Some of them are related to well-known formulas for indefinite
elements, e.g., (a+b)" =Y, (})a" *b* etc. and others are related
to the property of operator monotone functions. We also give a
condition which implies the commutativity of a C*-algebra.

1. INTRODUCTION

Ji and Tomiyama ([3]) give a characterization of commutativity of
C*-algebra, where they also give a condition that two positive operators
commute. For bounded linear operators on a Hilbert space H, we
slightly generalize their result as follows:

Theorem 1. Let a and b be self-adjoint operators on H. Then the
following are equivalent.

(1) ab = ba.

(2) exp(a+b) = exp(a) exp(b).
(3) There exist a positive integer n > 2 and distinct non-zero real

numbers ty,ts, ..., t,_1 such that
(a+tb)" = 2": ") gk gn—kyk
Z k=0 k)

fori=1,2,....n—1.
(4) There exist a positive integer n > 2 and distinct non-zero real
numbers tq,tq, ..., t,_1 such that

—_

a — (tlb)n = (CL — tlb) anikil(tib)k
0

il

foro=1,2,....n—1.



DePrima and Richard([2]), and Uchiyama([9],[10]) independently prove
that, for any positive operators a and b, the following conditions are
equivalent:

(1) ab = ba.
(2) ab™ + b™a is positive for all n € N.
We give a little weakend condition for two operators commuting.

Ji and Tomiyama, and Wu([12]) use a commutativity condition of
two operators and a gap of monotonicity and operator monotonicity of
functions to characterize commutativity of C*-algebras. With a similar
point of view, we can get the following result:

Theorem 2. Let A be a unital C*-algebras. Then the following are
equivalent.

(1) A is commutative.

(2) There exists a continuous, increasing functions f on [0, 00) such
that f is not concave and operator monotone for A.

(3) Whenever positive operators a and b satisfy ab+ ba > 0, ab* +
b%a > 0.

2. PROOF OF THEOREM 1

Lemma 3. Let a and b be self-adjoint operators on 'H, and f a contin-
uous function on the spectrum Sp(a) of a. Then ab = ba implies that

fla)b=bf(a).

Proof. We can choose a sequence {p,} of polynomials which converges
to f uniformly on Sp(a). So we have

fa)b= Tim p,(a)b = lim bp,(a) = bf(a).

Lemma 4. Let a, b be self-adjoint operators on 'H and k a positive
integer. If a*ba = a*'b, then ab = ba.

Proof. We put p the orthogonal projection of H onto Ker(a). We re-
mark that

2 k+1

Kera=Kera”=---=Kera"", pa=ap=0.

Since
0 = a*bap = " bp = " (1 — p)bp,
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we have (1 — p)bp = 0. The self-adjointness of b implies
b= pbp + (1 —p)b(1 — p).
So we have
ab—ba = (p+ (1 —p))(ab—ba) = (1 — p)(ab — ba) — pba
= (1—p)(ab—ba) — pbpa = (1 — p)(ab — ba).

Since a®(ab — ba) = 0, we can get ab = ba. O

Proo of Theorem 1. (1)=(2), (1)=(3) and (1)=(4) are trivial.
(2)=(1) The element exp(a + b) is self-adjoint, so we have

exp(a) exp(b) = exp(b) exp(a).

We apply Lemma 3 for the function f(z) = logx on Sp(a). Since
log(exp(a)) = a, we have

aexp(b) = exp(b)a.

Repeated the same argument, we can show ab = ba.
(3)=-(1) Since (a + t;b)™ is self-adjoint, we have

- nkn—kkin N\ bk n—k -
Z(k)tia b—Z(k)tiba : (1=1,2,...,n—1).

k=0 k=0
This means that

1t - t?*Q (")(an—lb_ban—1> 0
1o ) | @ ey | (o
U otoy - 2] \(7 )@ — ra) 0

So we have a"1b = ba""'. When n is even, we have ab = ba, by using
Lemma 3 and the fact a = (a" 1)/,
We assume that n is odd. Then we have

aQb _ (an—1>2/n—1b _ b(an—1>2/n—1 _ baQ.
If we apply the same argument for the relation

=a" +t;(a" '+ a""%ba + - - +ba" ") +t2(- ) (n) tha"kpk,

then we can get

A"+ a"2ba+ -+ ba" ! = na™ 1.
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Using the commutativity of a® and b, we have
a" b = a"ba.

By Lemma 4, it follows that ab = ba.
(4)=-(1) By using the same argument as (3)=-(1), we can get that a
coefficient of ¢/~ vanishes, that is,

ab™t — bab"? = 0.

By Lemma 4, we can get ab = ba. U

Remark 5. On the implication (2)= (1), the following srtonger re-
sult is known for self-adjoint matrices (see [7] and [8]). If self-adjoint
matrices a, b satisfy the condition

Trace(exp(a + b)) = Trace(exp(a) exp(b)),

then ab = ba.

3. OPERATOR MONOTONE FUNCTIONS

Let f be a continuous function on [0, 00). We call f a matrix mono-
tone (resp. matrix concave) function of order n if it satisfies the fol-
lowing condition:

a,b e My(C),0<a<b= f(a) < f(b)
(resp. a,b € M,(C),0<a<b,0<t<1
= f(ta+ (1 —t)b) <tf(a) + (1 —1t)f(b))

When f is matrix monotone of order n for any n, f is called operator
monotone. We call a function f operator monotone for a C*-algebra A
if, for a,b € A, 0 < a < b implies 0 < f(a) < f(b). The following fact
is well-known([5]:Theorem 2.1). Here we give a different proof of this.

Lemma 6. If f : [0,00) — [0, 00) is continuous and matriz monotone
of order 2n, then f is matriz concave of order n.

Proof. For a,b € M,(C)T and 0 < ¢ < 1, we put

X = (‘01 2),5/: (\/% _\/F) € My (C).
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Then we have

cou [ ta+ (1=t t1—1)(b—a)
YXY( tl—t)(b—a) (1 —t)a+tb )
ta+ (1 —t)b+e 0
= ( 0 (1—t)a+tb+@(a—b)2)

for any positive number €. By the assumtion for f, we can get
YIA(X)Y = f(Y'XY)
f(ta+ (1 —t)b+e¢) 0
< t(1-t) 2 .
0 F((1=t)a+th+ T (a —b)?)
Since € is arbitrary, we have

tf(a)+ (1—t)f(b) > f(ta+ (1 —t)b).
]

As an application of this lemma, we can see that the exponential
function exp(-) is increasing and convex but not matrix monotone of
order 2. By Theorem 2, we can get another proof of Wu’s result [12].

Let f be an operator monotone function on (0, 00), that is, f is a
matrix monotone function on (0, 00) of order n for any n € N. Then
f has the analytic continuation on the upper half plane H, = {z €
C | Imz > 0} and also has the analytic continuation on the lower half
plane H_ by the reflection across (0,00). By Pick function theory, it
is known that f is represented as follows:

Az
= f(0
F&) = 10+ o+ |
where 8 > 0 and w is a positive measure with
<A

(see [1]:page 144). We denote by P, the closed right half plane {z € C |
Rez > 0} and by C(S) the closed convex hull of a subset S of C. We
consider the case that f(0) > 0. Then we can easily check f(P;) C P;.
For a € B('H), we denote by W (a) its numerical range

{(@&,&) [ €]l =1} c C.

By Kato’s theorem ([4]:Theorem 7), if W(a) is contained in Py, then
we have

dw(X),

W(f(A)) Cg?(f(ﬂ))-



Proposition 7. Let a,b € B(H) be positive and f, f, be operator
monotone functions from [0, 00) to [0,00).
(1) If ab+ba > 0, then af(b) + f(b)a > 0.
(2) If Sp(b) C fu([0,00)), af; (D) + f,'(b)a > O for all n and
N, C(fu(Py)) CR, then ab = ba.

Proof. (1) We may assume that a is invertible, replacing a by a + €
(e > 0). Then we can define the new inner product on H by

(& =(a&mn), &neH.

It suffices to show that the positivity of Reb with respect to (-, -) im-
plies the positivity of Ref(b) with respect to (-,-). Since Reb > 0 is
equivalent to

W(b) = {0, &) | (£,6) =1} C Py

and W (f(b)) € C(f(Py)) C Py, we have Ref(b) > 0.
(2) In the same setting in (1), if we get W(b) C R, this implies
ab = ba. By the argument of (1) and the assumption, we have

W (£, (b)) € Py and W(b) = W(fu(f, " (0)) € C(falP4))

for any n. So we have W(b) C N, C(f.(P})) C R. O

In [11], Uchiyama defines the function u(t) on [—ay, 00) as follows:
uw(t) = (t+a) (t+a2)™ - (t+ ax),

where a; < ay < ... < ag, 7; > 0, and he shows that the inverse
function f(x) = u~!(z) becomes operator monotone on [0, 00) if v, > 1.
We assume that f(0) >0 (i.e., a3 < 0) and

v = Zvj>1.

J:a; <0
Then f(z) is a holomorphic function from D into D, where D = C \
(—00,0] = {z € C\ {0} | -7 < argz < 7}. For z = re?? (0 < 0 < 7/2),
we set z +a; = ;% (j =1,2,...,k). Then we have
k
0<0p<- <6 <mand argu(z) = nyjﬂj > 7.
j=1
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This means that |argf(z)| < }Y|argz| if 0 < |argz| < 7/2. Since
_ — T T
C(f(Py)) cC({z € D | largz| < 5}) C{zeD|largz| < —}

C(f(P) C CI({z € D Jangel < 5-}) © { € D | fargz| < 55

C(f™(Py)) C C(f(C(f* 1 (Py))) C {z € D | |argz| < #},
we can get

ﬂ (f*(Py)) C R.

Corollary 8. Let a,b € B(H) be positive and the function u have the
following form:

u(t) = (t + a1)71 (t + a2)72 ... (t + ak)%,

where a1 < as < ... <ag, v >0,a <0,y >1and Zj:ajgo%‘ > 1.
If au™(b) + u™(b)a > 0 for all n € N, then we have ab = ba.

Proof of Theorem 2. (1)=-(2) and (1)=-(3) are trivial.

(2)=(1) If A is not commutative, then there exists a irreducible
representation 7 of A on a Hilbert space H with dim’H > 1. Let K be
a 2-dimensional subspace of ‘H. By Kadison’s transitivity theorem(see
6]), for any positive operator T' € B(K)(= My(C)), we can choose a
positive element a € A such that 7(a)|x = T. By the assumption and
Lemma 5, f is not matrix monotone of order 2. This means that we
can choose S, T € B(K) such that

0<S<Tand f(S) £ f(T
So there exist a,b € A such that
0<a<band 7w(a)=95,7(b)="T.
Since f(S) = f(w(a)) = 7(f(a)) and f(T) = f(w(b)) = w(f(b)), this

contradicts to the operator monotonicity of f for A.

(3)=(1) Let a,b be positive in A. For a sufficiently large positive
number ¢, (a +t)b+ b(a +t) becomes positive. By the assumption, we
have

(a+t)"b+bla+t)* >0 forallneN.

By Corollary 7, we have (a + t)b = b(a + t), i.e., ab = ba. Therefore A

is commutative. O
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Using the same method as the proof of (3)=(1), we can see the fol-
lowing condition (4) also becomes an equivalent condition in Theorem
2:

(4) Whenever positive operators a and b satisfy au(b) + u(b)a > 0
for a function u as in Corollary 7, au®(b) + u*(b)a > 0.
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